Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Chem Res Toxicol ; 37(7): 1139-1154, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875017

RESUMO

Mitochondrial dysfunction is often linked to neurotoxicity and neurological diseases and stems from oxidative stress, yet effective therapies are lacking. Deoxynivalenol (DON or vomitoxin) is one of the most common and hazardous type-B trichothecene mycotoxins, which contaminates crops used for food and animal feed. Despite the abundance of preliminary reports, comprehensive investigations are scarce to explore the relationship between these fungal metabolites and neurodegenerative disorders. The present study aimed to elucidate the precise role of DON in mitochondrial dynamics and cell death in neuronal cells. Excessive mitochondrial fission is associated with the pathology of several neurodegenerative diseases. Human SH-SY5Y cells were treated with different concentrations of DON (250-1000 ng/mL). Post 24 and 48 h DON treatment, the indexes were measured as follows: generation of reactive oxygen species (ROS), ATP levels, mitochondrial membrane potential, calcium levels, and cytotoxicity in SH-SY5Y cells. The results showed that cytotoxicity, intracellular calcium levels, and ROS in the DON-treated group increased, while the ATP levels and mitochondrial membrane potential decreased in a dose-dependent manner. With increasing DON concentrations, the expression levels of P-Drp-1, mitochondrial fission proteins Mff, and Fis-1 were elevated with reduced activities of MFN1, MFN2, and OPA1, further resulting in an increased expression of autophagic marker LC3 and beclin-1. The reciprocal relationship between mitochondrial damage and ROS generation is evident as ROS can instigate structural and functional deficiencies within the mitochondria. Consequently, the impaired mitochondria facilitate the release of ROS, thereby intensifying the cycle of damage and exacerbating the overall process. Using specific hydroxyl, superoxide inhibitors, and calcium chelators, our study confirmed that ROS and Ca2+-mediated signaling pathways played essential roles in DON-induced Drp1 phosphorylation. Therefore, ROS and mitochondrial fission inhibitors could provide critical research tools for drug development in mycotoxin-induced neurodegenerative diseases.


Assuntos
Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Tricotecenos , Tricotecenos/toxicidade , Humanos , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dinaminas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Dinâmica Mitocondrial/efeitos dos fármacos , Linhagem Celular Tumoral
2.
AAPS PharmSciTech ; 25(5): 104, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724836

RESUMO

Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.


Assuntos
Adenocarcinoma , Antineoplásicos , Apoptose , Portadores de Fármacos , Transição Epitelial-Mesenquimal , Nanopartículas , Neoplasias da Próstata , Piranos , Ratos Wistar , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Animais , Piranos/farmacologia , Piranos/administração & dosagem , Apoptose/efeitos dos fármacos , Humanos , Ratos , Linhagem Celular Tumoral , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Portadores de Fármacos/química , Nanopartículas/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Movimento Celular/efeitos dos fármacos , Células PC-3 , Sistemas de Liberação de Medicamentos/métodos , Policetídeos de Poliéter
3.
Regul Toxicol Pharmacol ; 123: 104960, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34022260

RESUMO

Cassia occidentalis Linn (CO) is an annual/perennial plant having traditional uses in the treatments of ringworm, gastrointestinal ailments and piles, bone fracture, and wound healing. Previously, we confirmed the medicinal use of the stem extract (ethanolic) of CO (henceforth CSE) in fracture healing at 250 mg/kg dose in rats and described an osteogenic mode of action of four phytochemicals present in CSE. Here we studied CSE's preclinical safety and toxicity. CSE prepared as per regulations of Current Good Manufacturing Practice for human pharmaceuticals/phytopharmaceuticals and all studies were performed in rodents in a GLP-accredited facility. In acute dose toxicity as per New Drug and Clinical Trial Rules, 2019 (prior name schedule Y), in rats and mice and ten-day dose range-finding study in rats, CSE showed no mortality and no gross abnormality at 2500 mg/kg dose. Safety Pharmacology showed no adverse effect on central nervous system, cardiovascular system, and respiratory system at 2500 mg/kg dose. CSE was not mutagenic in the Ames test and did not cause clastogenicity assessed by in vivo bone marrow genotoxicity assay. By a sub chronic (90 days) repeated dose (as per OECD, 408 guideline) study in rats, the no-observed-adverse-effect-level was found to be 2500 mg/kg assessed by clinico-biochemistry and all organs histopathology. We conclude that CSE is safe up to 10X the dose required for its osteogenic effect.


Assuntos
Compostos Fitoquímicos/toxicidade , Extratos Vegetais/toxicidade , Senna , Animais , Etanol , Camundongos , Nível de Efeito Adverso não Observado , Ratos , Roedores , Testes de Toxicidade
4.
AAPS PharmSciTech ; 22(8): 259, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34704177

RESUMO

Cliv-92 is a mixture of three structurally similar coumarinolignoids and a proven hepatoprotective agent. Low aqueous solubility and poor bioavailability are notable hindrances for its further use. Therefore, glycyrrhetinic acid-linked chitosan nanoparticles loaded with Cliv-92 were prepared for active targeting to the liver. The nanoparticles were prepared by the ionic gelation method to avoid the use of toxic solvents/rigorous agitation. The method of preparation was optimized using a central composite design with independent variables, namely polymer: drug ratio (3:1, w/w), crosslinker concentration (0.5%), and stirring speed (750 rpm). The optimized nanoparticles had a mean particle size of 185.17 nm, a polydispersity index of 0.41, a zeta potential of 30.93 mV, and a drug loading of 16.30%. The prepared formulation showed sustained release of approximately 63% of loaded Cliv-92 over 72 h. The nanoparticles were freeze-dried for long-term storage and further characterized. The formulation was found to be biocompatible for parenteral delivery. In vivo imaging study showed that optimized nanoparticles were preferentially accumulated in the liver and successfully targeting the liver. The present study successfully demonstrated the improved pharmacokinetic properties (≈12% relative bioavailability) and efficacy profile (evidenced by in vivo and histopathological studies) of fabricated Cliv-92 nanoparticles.


Assuntos
Quitosana , Ácido Glicirretínico , Nanopartículas , Portadores de Fármacos , Tamanho da Partícula , Solubilidade
5.
Biol Reprod ; 100(4): 917-938, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423016

RESUMO

Endometriosis is a prevalent gynecological disorder that eventually gives rise to painful invasive lesions. Increased levels of transforming growth factor-beta 1 (TGF-B1) have been reported in endometriosis. However, details of the effects of high TGF-B1 on downstream signaling in ectopic endometrial tissue remain obscure. We induced endometriotic lesions in mice by surgical auto-transplantation of endometrial tissues to the peritoneal regions. We then treated endometriotic (ectopic and eutopic endometrial tissues) and nonendometriotic (only eutopic endometrial tissues) animal groups with either active TGF-B1 or PBS. Our results demonstrate that externally supplemented TGF-B1 increases the growth of ectopically implanted endometrial tissues in mice, possibly via SMAD2/3 activation and PTEN suppression. Adhesion molecules integrins (beta3 and beta8) and FAK were upregulated in the ectopic endometrial tissue when TGF-B1 was administered. Phosphorylated E-cadherin, N-cadherin, and vimentin were enhanced in the ectopic endometrial tissue in the presence of TGF-B1 in the mouse model, and correlated with epithelial-mesenchymal transition (EMT) in ovarian endometriotic cells of human origin. Furthermore, in response to TGF-B1, the expression of RHOGTPases (RAC1, RHOC, and RHOG) was increased in the human endometriotic cells (ovarian cyst derived cells from endometriosis patient) and tissues from the mouse model of endometriosis (ectopic endometrial tissue). TGF-B1 enhanced the migratory, invasive, and colonizing potential of human endometriotic cells. Therefore, we conclude that TGF-B1 potentiates the adhesion of ectopic endometrial cells/tissues in the peritoneal region by enhancing the integrin and FAK signaling axis, and also migration via cadherin-mediated EMT and RHOGTPase signaling cascades.


Assuntos
Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Endometriose/patologia , Doenças Peritoneais/patologia , Fator de Crescimento Transformador beta1/farmacologia , Adesividade/efeitos dos fármacos , Animais , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Endometriose/sangue , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Humanos , Camundongos , Doenças Peritoneais/sangue , Proteínas Recombinantes/farmacologia , Fator de Crescimento Transformador beta1/sangue
6.
Mol Pharm ; 16(9): 3744-3759, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31441308

RESUMO

We have devised a nanocarrier using "tocopheryl polyethylene glycol succinate (TPGS) conjugated to triphenylphosphonium cation" (TPP-TPGS) for improving the efficacy of doxorubicin hydrochloride (DOX). Triphenylphosphonium cation (TPP) has affinity for an elevated transmembrane potential gradient (mitochondrial), which is usually high in cancer cells. Consequently, when tested in molecular docking and cytotoxicity assays, TPP-TPGS, owing to its structural similarity to mitochondrially directed anticancer compounds of the "tocopheryl succinate" family, interferes specifically in mitochondrial CII enzyme activity, increases intracellular oxidative stress, and induces apoptosis in breast cancer cells. DOX loaded nanocarrier (DTPP-TPGS) constructed using TPP-TPGS was positively charged, spherical in shape, sized below 100 nm, and had its drug content distributed evenly. DTPP-TPGS offers greater intracellular drug delivery due to its rapid endocytosis and subsequent endosomal escape. DTPP-TPGS also efficiently inhibits efflux transporter P glycoprotein (PgP), which, along with greater cell uptake and inherent cytotoxic activity of the construction material (TPP-TPGS), cumulatively results in 3-fold increment in anticancer activity of DOX in resistant breast cancer cells as well as greater induction of necroapoptosis and arrest in all phases of the cell cycle. DTPP-TPGS after intravenous administration in Balb/C mice with breast cancer accumulates preferentially in tumor tissue, which produces significantly greater antitumor activity when compared to DOX solution. Toxicity evaluation was also performed to confirm the safety of this formulation. Overall TPP-TPGS is a promising candidate for delivery of DOX.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mitocôndrias/metabolismo , Vitamina E/química , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Doxorrubicina/química , Doxorrubicina/farmacocinética , Portadores de Fármacos/farmacocinética , Feminino , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual , Vitamina E/farmacocinética
7.
J Biol Chem ; 292(13): 5507-5518, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28202544

RESUMO

In eukaryotes, the basal transcription in interphase is orchestrated through the regulation by kinases (Kin28, Bur1, and Ctk1) and phosphatases (Ssu72, Rtr1, and Fcp1), which act through the post-translational modification of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. The CTD comprises the repeated Tyr-Ser-Pro-Thr-Ser-Pro-Ser motif with potential epigenetic modification sites. Despite the observation of transcription and periodic expression of genes during mitosis with entailing CTD phosphorylation and dephosphorylation, the associated CTD specific kinase(s) and its role in transcription remains unknown. Here we have identified Cdc15 as a potential kinase phosphorylating Ser-2 and Ser-5 of CTD for transcription during mitosis in the budding yeast. The phosphorylation of CTD by Cdc15 is independent of any prior Ser phosphorylation(s). The inactivation of Cdc15 causes reduction of global CTD phosphorylation during mitosis and affects the expression of genes whose transcript levels peak during mitosis. Cdc15 also influences the complete transcription of clb2 gene and phosphorylates Ser-5 at the promoter and Ser-2 toward the 3' end of the gene. The observation that Cdc15 could phosphorylate Ser-5, as well as Ser-2, during transcription in mitosis is in contrast to the phosphorylation marks put by the kinases in interphase (G1, S, and G2), where Cdck7/Kin28 phosphorylates Ser-5 at promoter and Bur1/Ctk1 phosphorylates Ser-2 at the 3' end of the genes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Mitose/genética , Processamento de Proteína Pós-Traducional/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Motivos de Aminoácidos , Sítios de Ligação , Ciclina B/genética , Regulação Fúngica da Expressão Gênica , Fosforilação , Domínios Proteicos , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica
8.
Biochem Biophys Res Commun ; 495(2): 1915-1921, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29208466

RESUMO

Human triple-negative breast cancer (TNBC) is poorly diagnosed and unresponsive to conventional hormone therapy. Chetomin (CHET), a fungal metabolite synthesized by Chaetomium cochliodes, has been reported as a promising anticancer and antiangiogenic agent but the complete molecular mechanism of its anticancer potential remains to be elucidated. In our study, we explored the anti-neoplastic action of CHET on TNBC cells. Cytotoxicity studies were performed in human TNBC cells viz. MDA-MB-231 and MDA-MB-468 cells by Sulforhodamine B assay. It exhibited antiproliferative response and induced apoptosis in both the cell types. Cell cycle analysis revealed that it increases the sub G0/G1 phase cell population. Modulation of mitochondrial membrane potential, activation of caspase 3/7 and a remarkable increase in the expression of cleaved PARP and increased chromatin condensation was observed after CHET treatment in MDA-MB-231 and MDA-MB-468 cells. Additionally, an elevated level of intracellular Ca2+ played an important role in CHET mediated cell death response. Calcium overload in mitochondria led to release of cytochrome c which in turn triggered caspase-3 mediated cell death. Inhibition of calcium signalling using BAPTA-AM reduced apoptosis confirming the involvement of calcium signalling in CHET induced cell death. Chetomin also inhibited PI3K/mTOR cell survival pathway in human TNBC cells. The overall findings suggest that Chetomin inhibited the growth of human TNBC cells by caspase-dependent apoptosis and modulation of PI3K/mTOR signalling and could be used as a novel chemotherapeutic agent for the treatment of human TNBC in future.


Assuntos
Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Dissulfetos/administração & dosagem , Alcaloides Indólicos/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/patologia
9.
Apoptosis ; 22(10): 1246-1259, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28748373

RESUMO

Resveratrol (RES) is a natural polyphenol having anti-proliferative activity against breast cancer cells. RES in combination with other chemo modulatory agents, minimizes toxicity and increases efficacy of the treatment. Salinomycin (SAL), a monocarboxylic polyether ionophore is known for selectively targeting breast cancer stem cells. Purpose of the present study was to investigate whether RES in combination with SAL exerts synergistic anti-proliferative activity on breast cancer cells. We further evaluated the molecular mechanism behind SAL and RES mediated cell death. Cytotoxicity assay was performed to determine 50% inhibitory concentration (IC50) of SAL and RES in different human breast cancer cells (HBCCs). Drug synergism and combination index (CI) were calculated using CompuSyn software and effects of synergistic combinations (CI < 1) involving lower doses of SAL and RES were selected for further studies. This combination significantly induced apoptosis in HBCCs without affecting non tumorigenic human breast epithelial cells MCF-10A. Co-treatment enhanced apoptosis in MCF-7 cells via reactive oxygen species (ROS) mediated mitochondrial dysfunction. Oxidative stress disrupt redox homeostasis which altered antioxidant enzymes viz. CuZn Superoxide dismutase (SOD), MnSOD and catalase. Additionally, combination altered nuclear morphology, enhanced PARP cleavage and led to caspase activation. SAL and RES also synergistically modulated MAPK pathway. Study suggests that SAL and RES offer a novel combination approach for the treatment of breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/fisiopatologia , Piranos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estilbenos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Citometria de Fluxo , Humanos , Concentração Inibidora 50 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Resveratrol , Ensaio Tumoral de Célula-Tronco
10.
Artigo em Inglês | MEDLINE | ID: mdl-28031196

RESUMO

Leishmaniasis chemotherapy remains very challenging due to high cost of the drug and its associated toxicity and drug resistance, which develops over a period of time. Combination therapies (CT) are now in use to treat many diseases, such as cancer and malaria, since it is more effective and affordable than monotherapy. CT are believed to represent a new explorable strategy for leishmaniasis, a neglected tropical disease caused by the obligate intracellular parasite Leishmania In the present study, we investigated the effect of a combination of a traditional Indian medicine (ayurveda), a natural product curcumin and miltefosine, the only oral drug for visceral leishmaniasis (VL) using a Leishmania donovani-hamster model. We developed an oral nanoparticle-based formulation of curcumin. Nanoformulation of curcumin alone exhibited significant leishmanicidal activity both in vitro and in vivo In combination with miltefosine, it exhibited a synergistic effect on both promastigotes and amastigotes under in vitro conditions. The combination of these two agents also demonstrated increased in vivo leishmanicidal activity accompanied by increased production of toxic reactive oxygen/nitrogen metabolites and enhanced phagocytic activity. The combination also exhibited increased lymphocyte proliferation. The present study thus establishes the possible use of nanocurcumin as an adjunct to antileishmanial chemotherapy.


Assuntos
Antiprotozoários/farmacologia , Curcumina/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Nanopartículas/administração & dosagem , Fosforilcolina/análogos & derivados , Administração Oral , Animais , Proliferação de Células/efeitos dos fármacos , Cricetinae , Modelos Animais de Doenças , Portadores de Fármacos , Combinação de Medicamentos , Resistência a Medicamentos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Leishmania donovani/crescimento & desenvolvimento , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Masculino , Ayurveda , Nanopartículas/ultraestrutura , Fagocitose/efeitos dos fármacos , Fosforilcolina/farmacologia , Espécies Reativas de Nitrogênio/agonistas , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo
11.
Tumour Biol ; 39(3): 1010428317695035, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28349817

RESUMO

The primary hurdle in the treatment of cancer is acquisition of resistance by the tumor cells toward multiple drugs and selectively targeting the cancer stem cells. This problem was overcome by the chemotherapeutic property of recently discovered drug salinomycin. Exact mechanism of action of salinomycin is not yet known, but there are multiple pathways by which salinomycin inhibits tumor growth. Salinomycin decreases the expression of adenosine triphosphate-binding cassette transporter in multidrug resistance cells and interferes with Akt signaling pathway, Wnt/ß-catenin, Hedgehog, and Notch pathways of cancer progression. Salinomycin selectively targets cancer stem cells. The potential of salinomycin to eliminate both cancer stem cells and therapy-resistant cancer cells may characterize the compound as a novel and an efficient chemotherapeutic drug.


Assuntos
Neoplasias/tratamento farmacológico , Piranos/uso terapêutico , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/biossíntese , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
12.
Mol Pharm ; 14(8): 2749-2765, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28636400

RESUMO

PLGA was functionalized with PEG and biotin using click chemistry to generate a biotin receptor targeted copolymer (biotinylated-PEG-PLGA) which in turn was used to fabricate ultrafine nanoparticles (BPNP) of doxorubicin hydrochloride (DOX) for effective delivery in 4T1 cell induced breast cancer. However, adequate entrapment of a hydrophilic bioactive like DOX in a hydrophobic polymer system made of PLGA is not usually possible. We therefore modified a conventional W/O/W emulsion method by utilizing NH4Cl in the external phase to constrain DOX in dissolved polymer phase by suppressing DOX's inherent aqueous solubility as per common ion effect. This resulted in over 8-fold enhancement in entrapment efficiency of DOX inside BPNP, which otherwise is highly susceptible to leakage due to its relatively high aqueous solubility. TEM and DLS established BPNP to be sized below 100 nm, storage stability studies showed that BPNP were stable for one month at 4 °C, and in vitro release suggested significant control in drug release. Extensive in vitro and in vivo studies were conducted to propound anticancer and antiproliferative activity of BPNP. Plasma and tissue distribution study supplemented by pertinent in vivo fluorescence imaging mapped the exact fate of DOX contained inside BPNP once it was administered intravenously. A comparative safety profile via acute toxicity studies in mice was also generated to out rightly establish usefulness of BPNP. Results suggest that BPNP substantially enhance anticancer activity of DOX while simultaneously mitigating its toxic potential due to altered spatial and temporal presentation of drug and consequently deserve further allometric iteration.


Assuntos
Doxorrubicina/química , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Receptores de Fatores de Crescimento/química , Biotinilação , Química Click/métodos
13.
Mol Biol Rep ; 42(11): 1515-31, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26033434

RESUMO

Cancer is characterized by the uncontrolled division of cells, followed by their invasion to other tissues. These kinds of cellular abnormalities arise as a result of the accumulation of genetic mutations or epigenetic alterations. Targeting genetic mutations by drugs is a conventional treatment approach. Nowadays, the development and use of epigenetic drugs are burgeoning, owing to the advancements in epigenetic research. The therapeutic intervention of cancer development by histone deacetylase inhibitors (HDACIs) holds promise for helping to control the disease, but their nonspecific functions impose certain side effects. Therefore, the search for more HDACIs becomes essential. Plentiful literature on the versatility of dietary components including flavones, a class of the flavonoid group, has already established these compounds to be better anticancer agents. The present review focuses on the significance of flavones with regard to their HDACI-mimicking effects as suggested by the recent evidences. The review also proposes an in-depth screening of flavones in future studies, in the hope that flavones may provide a better alternative to synthetic HDACIs.


Assuntos
Antineoplásicos/farmacologia , Flavonas/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Flavonas/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Humanos
14.
Mol Pharm ; 11(12): 4314-26, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25317848

RESUMO

In the present work, a novel nanoemulsion laden with moxifloxacin has been developed for effective management of complicated intra-abdominal infections. Moxifloxacin nanoemulsion fabricated using high pressure homogenization was evaluated for various pharmaceutical parameters, pharmacokinetics (PK) and pharmacodynamics (PD) in rats with E. coli-induced peritonitis and sepsis. The developed nanoemulsion MONe6 (size 168 ± 28 nm and zeta potential (ZP) 24.78 ± 0.45 mV, respectively) was effective for intracellular delivery and sustaining the release of MOX. MONe6 demonstrated improved plasma (AUC(MONe6/MOX) = 2.38-fold) and tissue pharmacokinetics of MOX (AUC(MONe6/MOX) = 2.63 and 1.47 times in lung and liver, respectively). Calculated PK/PD index correlated well with a reduction in bacterial burden in plasma as well as tissues. Enhanced survival on treatment with MONe6 (65.44%) and as compared to the control group (8.22%) was a result of reduction in lipid peroxidation, neutrophil migration, and cytokine levels (TNF-α and IL6) as compared to untreated groups in the rat model of E. coli-induced sepsis. Parenteral nanoemulsions of MOX hold a promising advantage in the therapy of E. coli-induced complicated intra-abdominal infections and is helpful in the prevention of further complications like septic shock and death.


Assuntos
Escherichia coli/patogenicidade , Fluoroquinolonas/uso terapêutico , Infecções Intra-Abdominais/tratamento farmacológico , Infecções Intra-Abdominais/microbiologia , Animais , Fluoroquinolonas/farmacocinética , Interleucina-6/metabolismo , Masculino , Moxifloxacina , Ratos , Sepse/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
ACS Chem Neurosci ; 15(15): 2741-2755, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38795032

RESUMO

TTK21 is a small-molecule activator of p300/creb binding protein (CBP) acetyltransferase activity, which, upon conjugation with a glucose-derived carbon nanosphere (CSP), can efficiently cross the blood-brain barrier and activate histone acetylation in the brain. Its role in adult neurogenesis and retention of long-term spatial memory following intraperitoneal (IP) administration is well established. In this study, we successfully demonstrate that CSP-TTK21 can be effectively administered via oral gavage. Using a combination of molecular biology, microscopy, and electrophysiological techniques, we systematically investigate the comparative efficacy of oral administration of CSP and CSP-TTK21 in wild-type mice and evaluate their functional effects in comparison to intraperitoneal (IP) administration. Our findings indicate that CSP-TTK21, when administered orally, induces long-term potentiation in the hippocampus without significantly altering basal synaptic transmission, a response comparable to that achieved through IP injection. Remarkably, in a spinal cord injury model, oral administration of CSP-TTK21 exhibits efficacy equivalent to that of IP administration. Furthermore, our research demonstrates that oral delivery of CSP-TTK21 leads to improvements in motor function, histone acetylation dynamics, and increased expression of regeneration-associated genes (RAGs) in a spinal injury rat model, mirroring the effectiveness of IP administration. Importantly, no toxic and mutagenic effects of CSP-TTK21 are observed at a maximum tolerated dose of 1 g/kg in Sprague-Dawley (SD) rats via the oral route. Collectively, these results underscore the potential utility of CSP as an oral drug delivery system, particularly for targeting the neural system.


Assuntos
Plasticidade Neuronal , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Administração Oral , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/metabolismo , Camundongos Endogâmicos C57BL , Potenciação de Longa Duração/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino
16.
Metabolism ; 152: 155771, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184165

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) continues to pose a significant health challenge and is often diagnosed at advanced stages. Metabolic reprogramming is a hallmark of many cancer types, including HCC and it involves alterations in various metabolic or nutrient-sensing pathways within liver cells to facilitate the rapid growth and progression of tumours. However, the role of STAT3-NFκB in metabolic reprogramming is still not clear. APPROACH AND RESULTS: Diethylnitrosamine (DEN) administered animals showed decreased body weight and elevated level of serum enzymes. Also, Transmission electron microscopy (TEM) analysis revealed ultrastructural alterations. Increased phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated nuclear factor kappa B (p-NFκß), dynamin related protein 1 (Drp-1) and alpha-fetoprotein (AFP) expression enhance the carcinogenicity as revealed in immunohistochemistry (IHC). The enzyme-linked immunosorbent assay (ELISA) concentration of IL-6 was found to be elevated in time dependent manner both in blood serum and liver tissue. Moreover, immunoblot analysis showed increased level of p-STAT3, p-NFκß and IL-6 stimulated the upregulation of mitophagy proteins such as Drp-1, Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK-1). Meanwhile, downregulation of Poly [ADP-ribose] polymerase 1 (PARP-1) and cleaved caspase 3 suppresses apoptosis and enhanced expression of AFP supports tumorigenesis. The mRNA level of STAT3 and Drp-1 was also found to be significantly increased. Furthermore, we performed high-field 800 MHz Nuclear Magnetic Resonance (NMR) based tissue and serum metabolomics analysis to identify metabolic signatures associated with the progression of liver cancer. The metabolomics findings revealed aberrant metabolic alterations in liver tissue and serum of 75th and 105th days of intervention groups in comparison to control, 15th and 45th days of intervention groups. Tissue metabolomics analysis revealed the accumulation of succinate in the liver tissue samples, whereas, serum metabolomics analysis revealed significantly decreased circulatory levels of ketone bodies (such as 3-hydroxybutyrate, acetate, acetone, etc.) and membrane metabolites suggesting activated ketolysis in advanced stages of liver cancer. CONCLUSION: STAT3-NFκß signaling axis has a significant role in mitochondrial dysfunction and metabolic alterations in the development of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Doenças Mitocondriais , Transdução de Sinais , Animais , alfa-Fetoproteínas/metabolismo , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Interleucina-6/metabolismo , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/metabolismo , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo
17.
Life Sci ; 319: 121432, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36706833

RESUMO

Chronic kidney disease (CKD) is associated with a variety of distinct disease processes that permanently change the function and structure of the kidney across months or years. CKD is characterized as a glomerular filtration defect or proteinuria that lasts longer than three months. In most instances, CKD leads to end-stage kidney disease (ESKD), necessitating kidney transplantation. Mitochondrial dysfunction is a typical response to damage in CKD patients. Despite the abundance of mitochondria in the kidneys, variations in mitochondrial morphological and functional characteristics have been associated with kidney inflammatory responses and injury during CKD. Despite these variations, CKD is frequently used to define some classic signs of mitochondrial dysfunction, including altered mitochondrial shape and remodeling, increased mitochondrial oxidative stress, and a marked decline in mitochondrial biogenesis and ATP generation. With a focus on the most significant developments and novel understandings of the involvement of mitochondrial remodeling in the course of CKD, this article offers a summary of the most recent advances in the sources of procured mitochondrial dysfunction in the advancement of CKD. Understanding mitochondrial biology and function is crucial for developing viable treatment options for CKD.


Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Humanos , Rim/metabolismo , Estresse Oxidativo , Mitocôndrias/metabolismo
18.
Toxicology ; 483: 153373, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370889

RESUMO

Recent studies have focused on exploring the efficacy of Cissus quadrangularis extract (EECQ) against various metabolic disorders involving the liver as the prime target organ, suggesting a considerable threat of hepatotoxicity in the person encountering it. Consequently, the current study was aimed to unravel the mutagenic, cytotoxic, mitochondrial dysfunction, apoptotic activity in HepG2 cells, and acute toxicity of EECQ. MTT, SRB, trypan blue dye exclusion, and lactate dehydrogenase (LDH) assay were performed in HepG2 cell lines to determine the cytotoxicity of the extract. The mutagenic potential was determined by the Ames test using various strains of Salmonella typhimurium. Acute toxicity was done at a dose of 2000 mg/kg in Sprague Dawley rats. MTT and SRB cytotoxicity assays demonstrated dose-dependent cytotoxicity of extract. The three highest noncytotoxic doses from the above assay, investigated by trypan blue dye exclusion and LDH assay, did not reveal cytotoxicity. Besides, mitochondrial dysfunction was determined by measuring cellular and mitochondrial ROS, ATP, NAD, mitochondrial membrane potential, Bax/Bcl2 ratio, mitochondrial and cytoplasmic cytochrome c, and apoptosis-inducing factor, were found to be equivalent in both extract exposed and unexposed cells. Moreover, the apoptotic cell morphology and the expression of pro-apoptotic mRNAs and proteins were equivalent in both the group. In acute toxicity, EECQ in rats did not cause any significant change in body weight, liver index, and liver function test. All-encompassing, the present study unraveled that EECQ is not mutagenic, cytotoxic, nor apoptotic in human hepatic cells, as well as neither acute toxicity.


Assuntos
Cissus , Ratos , Humanos , Animais , Mutagênicos , Azul Tripano/farmacologia , Extratos Vegetais/toxicidade , Ratos Sprague-Dawley , Etanol , Mitocôndrias
19.
Matrix Biol ; 112: 72-89, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35964866

RESUMO

Intrarenal extracellular matrix production or kidney fibrosis is a prevalent feature of all forms of chronic kidney disease (CKD). The transforming growth factor-beta (TGFß) is believed to be a major driver of extracellular matrix production. Nevertheless, anti-TGFß therapies have consistently failed to reduce extracellular matrix production in CKD patients indicating the need for novel therapeutic strategies. We have previously shown that necroinflammation contributes to acute kidney injury. Here, we show that chronic/persistent necroinflammation drives intrarenal extracellular matrix production during CKD. We found that renal expression of receptor-interacting protein kinase-1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) increases with the production of intrarenal extracellular matrix and declined kidney function in both humans and mice. Furthermore, we found that TGFß exposure induces the translocation of RIPK3 and MLKL to mitochondria resulting in mitochondrial dysfunction and ROS production. Mitochondrial ROS activates the serine-threonine kinase calcium/calmodulin-dependent protein kinases-II (CaMKII) that increases phosphorylation of Smad2/3 and subsequent production of alpha-smooth muscle actin (αSMA), collagen (Col) 1α1, etc. in response to TGFß during the intrarenal extracellular matrix production. Consistent with this, deficiency or knockdown of RIPK3 or MLKL as well as pharmacological inhibition of RIPK1, RIPK3, and CaMKII prevents the intrarenal extracellular matrix production in oxalate-induced CKD and unilateral ureteral obstruction (UUO). Together, RIPK1, RIPK3, MLKL, CaMKII, and Smad2/3 are molecular targets to inhibit intrarenal extracellular matrix production and preserve kidney function during CKD.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Insuficiência Renal Crônica , Actinas/metabolismo , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Matriz Extracelular/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Oxalatos/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Fatores de Crescimento Transformadores/metabolismo
20.
Front Endocrinol (Lausanne) ; 13: 951800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060935

RESUMO

Tea (Camellia sinensis) has several reported health benefits, including that on bone health attributed to catechins of which the most abundant is epigallocatechin-3-gallate (EGCG). However, several preclinical and clinical studies raise safety concerns about EGCG in tea extract causing acute liver failure. Tea also contains kaempferol, albeit scanty, and it has hepatoprotective and osteogenic effects. Here, we utilized a novel extraction procedure of acid hydrolysis to enhance the osteogenic effect of tea extract while reducing its hepatotoxicity. The resultant extract (USKECSE) has a ~40-fold increase in kaempferol and a 2.5-fold reduction in EGCG content compared with the hydroethanolic extract (USCSE). In a female Sprague Dawley (SD) rat femur osteotomy model, USKECSE (100 mg/kg) but not USCSE promoted bone regeneration. In a rat postmenopausal osteoporosis model induced by bilateral ovariectomy (OVX), USKECSE through an osteogenic mechanism maintained bone mass, strength, and microarchitecture to the levels of ovary-intact rats with no hepatotoxic effect. After a single oral dose (100 mg/kg) of USKECSE to adult rats, kaempferol was detectable for 48 hours, suggesting its significant absorption and distribution in plasma. Peak kaempferol concentration in plasma (Cmax) was 483 ng/ml (2 µM), and at this concentration, kaempferol induces osteoblast differentiation. USKECSE had no genotoxicity, and its safety index assessed by preclinical toxicity studies, including safety pharmacology, was >20-fold. Taken together, we report a novel extraction process that enhanced the osteogenicity and concomitantly reduced hepatotoxicity of tea extract with significant kaempferol bioavailability and a favorable systemic safety profile. Based on these data, we propose assessing the USKECSE effect for postmenopausal osteoporosis treatment.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Osteoporose Pós-Menopausa , Osteoporose , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Feminino , Humanos , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Osteoporose/tratamento farmacológico , Osteoporose Pós-Menopausa/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Sprague-Dawley , Chá
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa