Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Semin Cell Dev Biol ; 112: 82-91, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33160824

RESUMO

Sphingolipids are complex lipids. They play a structural role in neurons, but are also involved in regulating cellular communication, and neuronal differentiation and maturation. There is increasing evidence to suggest that dysregulated metabolism of sphingolipids is linked to neurodegenerative processes in amyotrophic lateral sclerosis (ALS), Parkinson's disease and Gaucher's disease. In this review, we provide an overview of the role of sphingolipids in the development and maintenance of the nervous system. We describe the implications of altered metabolism of sphingolipids in the pathophysiology of certain neurodegenerative diseases, with a primary focus on ALS. Finally, we provide an update of potential treatments that could be used to target the metabolism of sphingolipids in neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Metabolismo dos Lipídeos/genética , Doenças Neurodegenerativas/metabolismo , Esfingolipídeos/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Esfingolipídeos/genética
2.
Neurobiol Dis ; 152: 105289, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33577922

RESUMO

Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.


Assuntos
Colesterol/biossíntese , Medula Espinal/patologia , Ataxias Espinocerebelares/patologia , Proteinopatias TDP-43/patologia , Animais , Ataxina-2 , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Camundongos , Medula Espinal/metabolismo , Ataxias Espinocerebelares/metabolismo , Proteinopatias TDP-43/metabolismo
3.
Neurobiol Dis ; 136: 104710, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31837425

RESUMO

Amyotrophic lateral sclerosis and frontotemporal dementia are two neurodegenerative diseases with currently no cure. These two diseases share a clinical continuum with overlapping genetic causes. Mutations in the CHMP2B gene are found in patients with ALS, FTD and ALS-FTD. To highlight deregulated mechanisms occurring in ALS-FTD linked to the CHMP2B gene, we performed a whole transcriptomic study on lumbar spinal cord from CHMP2Bintron5 mice, a model that develops progressive motor alterations associated with dementia symptoms reminiscent of both ALS and FTD. To gain insight into the transcriptomic changes taking place during disease progression this study was performed at three stages: asymptomatic, symptomatic and end stage. We showed that before appearance of motor symptoms, the major disrupted mechanisms were linked with the immune system/inflammatory response and lipid metabolism. These processes were progressively replaced by alterations of neuronal electric activity as motor symptoms appeared, alterations that could lead to motor neuron dysfunction. To investigate overlapping alterations in gene expression between two ALS-causing genes, we then compared the transcriptome of symptomatic CHMP2Bintron5 mice with the one of symptomatic SOD1G86R mice and found the same families deregulated providing further insights into common underlying dysfunction of biological pathways, disrupted or disturbed in ALS. Altogether, this study provides a database to explore potential new candidate genes involved in the CHMP2Bintron5-based pathogenesis of ALS, and provides molecular clues to further understand the functional consequences that diseased neurons expressing CHMP2B mutant may have on their neighbor cells.


Assuntos
Esclerose Lateral Amiotrófica/genética , Modelos Animais de Doenças , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Proteínas do Tecido Nervoso/genética , Superóxido Dismutase-1/genética , Transcriptoma/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Medula Espinal/metabolismo , Medula Espinal/patologia
4.
Hum Mol Genet ; 25(15): 3341-3360, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27329763

RESUMO

Mutations in the charged multivesicular body protein 2B (CHMP2B) are associated with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), and with a mixed ALS-FTD syndrome. To model this syndrome, we generated a transgenic mouse line expressing the human CHMP2Bintron5 mutant in a neuron-specific manner. These mice developed a dose-dependent disease phenotype. A longitudinal study revealed progressive gait abnormalities, reduced muscle strength and decreased motor coordination. CHMP2Bintron5 mice died due to generalized paralysis. When paralyzed, signs of denervation were present as attested by altered electromyographic profiles, by decreased number of fully innervated neuromuscular junctions, by reduction in size of motor endplates and by a decrease of sciatic nerve axons area. However, spinal motor neurons cell bodies were preserved until death. In addition to the motor dysfunctions, CHMP2Bintron5 mice progressively developed FTD-relevant behavioural modifications such as disinhibition, stereotypies, decrease in social interactions, compulsivity and change in dietary preferences. Furthermore, neurons in the affected spinal cord and brain regions showed accumulation of p62-positive cytoplasmic inclusions associated or not with ubiquitin and CHMP2Bintron5 As observed in FTD3 patients, these inclusions were negative for TDP-43 and FUS. Moreover, astrogliosis and microgliosis developed with age. Altogether, these data indicate that the neuronal expression of human CHMP2Bintron5 in areas involved in motor and cognitive functions induces progressive motor alterations associated with dementia symptoms and with histopathological hallmarks reminiscent of both ALS and FTD.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Comportamento Animal , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Demência Frontotemporal/metabolismo , Regulação da Expressão Gênica , Íntrons , Mutação , Neurônios/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Axônios/metabolismo , Axônios/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/fisiopatologia , Humanos , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia
5.
Acta Neuropathol ; 133(6): 887-906, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28243725

RESUMO

Motor neuron-extrinsic mechanisms have been shown to participate in the pathogenesis of ALS-SOD1, one familial form of amyotrophic lateral sclerosis (ALS). It remains unclear whether such mechanisms contribute to other familial forms, such as TDP-43 and FUS-associated ALS. Here, we characterize a single-copy mouse model of ALS-FUS that conditionally expresses a disease-relevant truncating FUS mutant from the endogenous murine Fus gene. We show that these mice, but not mice heterozygous for a Fus null allele, develop similar pathology as ALS-FUS patients and a mild motor neuron phenotype. Most importantly, CRE-mediated rescue of the Fus mutation within motor neurons prevented degeneration of motor neuron cell bodies, but only delayed appearance of motor symptoms. Indeed, we observed downregulation of multiple myelin-related genes, and increased numbers of oligodendrocytes in the spinal cord supporting their contribution to behavioral deficits. In all, we show that mutant FUS triggers toxic events in both motor neurons and neighboring cells to elicit motor neuron disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Axônios/metabolismo , Axônios/patologia , Citoplasma/metabolismo , Citoplasma/patologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Neurônios Motores/patologia , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/genética , Medula Espinal/metabolismo , Medula Espinal/patologia
6.
FASEB J ; 30(5): 1696-711, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26718890

RESUMO

Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Fibroblastos/fisiologia , Regulação da Expressão Gênica/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Junção Neuromuscular/fisiologia , Animais , Células Cultivadas , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/fisiologia
7.
Neurodegener Dis ; 16(3-4): 127-39, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26517704

RESUMO

The behavioral variant of frontotemporal dementia (bvFTD) is a neurodegenerative disease affecting people in their early sixties, characterized by dramatic changes in individual and social behavior. Despite the heterogeneity in the presentation of the clinical symptoms of bvFTD, some characteristic changes can be highlighted. Social disinhibition, changes in food preferences as well as loss of empathy and apathy are commonly described. This is accompanied by a characteristic and dramatic atrophy of the prefrontal cortex with the accumulation of protein aggregates in the neurons in this area. Several causative mutations in different genes have been discovered, allowing the development of transgenic animal models, especially mouse models. In mice, attention has been focused on the histopathological aspects of the pathology, but now studies are taking interest in assessing the behavioral phenotype of FTD models. Finding the right test corresponding to human symptoms is quite challenging, especially since the frontal cortex is much less developed in mice than in humans. Although challenging, the ability to detect relevant prefrontal cortex impairments in mice is crucial for therapeutic approaches. In this review, we aim to present the approaches that have been used to model the behavioral symptoms of FTD and to explore other relevant approaches to assess behavior involving the prefrontal cortex, as well as the deficits associated with FTD.


Assuntos
Comportamento Animal , Modelos Animais de Doenças , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/psicologia , Testes Psicológicos , Animais , Demência Frontotemporal/fisiopatologia , Humanos , Camundongos , Fenótipo
8.
Hum Mol Genet ; 22(12): 2350-60, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23446633

RESUMO

The mutations P56S and T46I in the gene encoding vesicle-associated membrane protein-associated protein B/C (VAPB) cause ALS8, a familial form of amyotrophic lateral sclerosis (ALS). Overexpression of mutant forms of VAPB leads to cytosolic aggregates, suggesting a gain of function of the mutant protein. However, recent work suggested that the loss of VAPB function could be the major mechanism leading to ALS8. Here, we used multiple genetic and experimental approaches to study whether VAPB loss of function might be sufficient to trigger motor neuron degeneration. In order to identify additional ALS-associated VAPB mutations, we screened the entire VAPB gene in a cohort of ALS patients and detected two mutations (A145V and S160Δ). To directly address the contribution of VAPB loss of function in ALS, we generated zebrafish and mouse models with either a decreased or a complete loss of Vapb expression. Vapb knockdown in zebrafish led to swimming deficits. Mice knocked-out for Vapb showed mild motor deficits after 18 months of age yet had innervated neuromuscular junctions (NMJs). Importantly, overexpression of VAPB mutations were unable to rescue the motor deficit caused by Vapb knockdown in zebrafish and failed to cause a toxic gain-of-function defect on their own. Thus, Vapb loss of function weakens the motor system of vertebrate animal models but is on its own unable to lead to a complete ALS phenotype. Our findings are consistent with the notion that VAPB mutations constitute a risk factor for motor neuron disease through a loss of VAPB function.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Animais , Sequência de Bases , Estudos de Coortes , Feminino , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Alinhamento de Sequência , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Peixe-Zebra
9.
Brain ; 136(Pt 2): 483-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23114367

RESUMO

Spasticity is a common and disabling symptom observed in patients with central nervous system diseases, including amyotrophic lateral sclerosis, a disease affecting both upper and lower motor neurons. In amyotrophic lateral sclerosis, spasticity is traditionally thought to be the result of degeneration of the upper motor neurons in the cerebral cortex, although degeneration of other neuronal types, in particular serotonergic neurons, might also represent a cause of spasticity. We performed a pathology study in seven patients with amyotrophic lateral sclerosis and six control subjects and observed that central serotonergic neurons suffer from a degenerative process with prominent neuritic degeneration, and sometimes loss of cell bodies in patients with amyotrophic lateral sclerosis. Moreover, distal serotonergic projections to spinal cord motor neurons and hippocampus systematically degenerated in patients with amyotrophic lateral sclerosis. In SOD1 (G86R) mice, a transgenic model of amyotrophic lateral sclerosis, serotonin levels were decreased in brainstem and spinal cord before onset of motor symptoms. Furthermore, there was noticeable atrophy of serotonin neuronal cell bodies along with neuritic degeneration at disease onset. We hypothesized that degeneration of serotonergic neurons could underlie spasticity in amyotrophic lateral sclerosis and investigated this hypothesis in vivo using tail muscle spastic-like contractions in response to mechanical stimulation as a measure of spasticity. In SOD1 (G86R) mice, tail muscle spastic-like contractions were observed at end-stage. Importantly, they were abolished by 5-hydroxytryptamine-2b/c receptors inverse agonists. In line with this, 5-hydroxytryptamine-2b receptor expression was strongly increased at disease onset. In all, we show that serotonergic neurons degenerate during amyotrophic lateral sclerosis, and that this might underlie spasticity in mice. Further research is needed to determine whether inverse agonists of 5-hydroxytryptamine-2b/c receptors could be of interest in treating spasticity in patients with amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Espasticidade Muscular/patologia , Degeneração Neural/patologia , Neurônios Serotoninérgicos/patologia , Adulto , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/epidemiologia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Espasticidade Muscular/epidemiologia , Degeneração Neural/epidemiologia
10.
Sci Transl Med ; 16(738): eadg3665, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478631

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the death of upper (UMN) and lower motor neurons (LMN) in the motor cortex, brainstem, and spinal cord. Despite decades of research, ALS remains incurable, challenging to diagnose, and of extremely rapid progression. A unifying feature of sporadic and familial forms of ALS is cortical hyperexcitability, which precedes symptom onset, negatively correlates with survival, and is sufficient to trigger neurodegeneration in rodents. Using electrocorticography in the Sod1G86R and FusΔNLS/+ ALS mouse models and standard electroencephalography recordings in patients with sporadic ALS, we demonstrate a deficit in theta-gamma phase-amplitude coupling (PAC) in ALS. In mice, PAC deficits started before symptom onset, and in patients, PAC deficits correlated with the rate of disease progression. Using mass spectrometry analyses of CNS neuropeptides, we identified a presymptomatic reduction of noradrenaline (NA) in the motor cortex of ALS mouse models, further validated by in vivo two-photon imaging in behaving SOD1G93A and FusΔNLS/+ mice, that revealed pronounced reduction of locomotion-associated NA release. NA deficits were also detected in postmortem tissues from patients with ALS, along with transcriptomic alterations of noradrenergic signaling pathways. Pharmacological ablation of noradrenergic neurons with DSP-4 reduced theta-gamma PAC in wild-type mice and administration of a synthetic precursor of NA augmented theta-gamma PAC in ALS mice. Our findings suggest theta-gamma PAC as means to assess and monitor cortical dysfunction in ALS and warrant further investigation of the NA system as a potential therapeutic target.


Assuntos
Esclerose Lateral Amiotrófica , Doenças do Sistema Nervoso Autônomo , Dopamina beta-Hidroxilase/deficiência , Doenças Neurodegenerativas , Norepinefrina/deficiência , Humanos , Camundongos , Animais , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Doenças Neurodegenerativas/metabolismo , Medula Espinal/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Superóxido Dismutase/metabolismo
11.
Neurobiol Dis ; 58: 220-30, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23742762

RESUMO

Mutations in the DYNC1H1 gene encoding for dynein heavy chain cause two closely related human motor neuropathies, dominant spinal muscular atrophy with lower extremity predominance (SMA-LED) and axonal Charcot-Marie-Tooth (CMT) disease, and lead to sensory neuropathy and striatal atrophy in mutant mice. Dynein is the molecular motor carrying mitochondria retrogradely on microtubules, yet the consequences of dynein mutations on mitochondrial physiology have not been explored. Here, we show that mouse fibroblasts bearing heterozygous or homozygous point mutation in Dync1h1, similar to human mutations, show profoundly abnormal mitochondrial morphology associated with the loss of mitofusin 1. Furthermore, heterozygous Dync1h1 mutant mice display progressive mitochondrial dysfunction in muscle and mitochondria progressively increase in size and invade sarcomeres. As a likely consequence of systemic mitochondrial dysfunction, Dync1h1 mutant mice develop hyperinsulinemia and hyperglycemia and progress to glucose intolerance with age. Similar defects in mitochondrial morphology and mitofusin levels are observed in fibroblasts from patients with SMA-LED. Last, we show that Dync1h1 mutant fibroblasts show impaired perinuclear clustering of mitochondria in response to mitochondrial uncoupling. Our results show that dynein function is required for the maintenance of mitochondrial morphology and function with aging and suggest that mitochondrial dysfunction contributes to dynein-dependent neurological diseases, such as SMA-LED.


Assuntos
Envelhecimento/patologia , Dineínas do Citoplasma/genética , Mitocôndrias/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Mutação/genética , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Glucagon/sangue , Ácido Glutâmico/genética , Humanos , Insulina/sangue , Lisina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/ultraestrutura , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Transfecção
12.
Am J Pathol ; 180(5): 2040-55, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22449950

RESUMO

Congenital peripheral nerve hyperexcitability (PNH) is usually associated with impaired function of voltage-gated K(+) channels (VGKCs) in neuromyotonia and demyelination in peripheral neuropathies. Schwartz-Jampel syndrome (SJS) is a form of PNH that is due to hypomorphic mutations of perlecan, the major proteoglycan of basement membranes. Schwann cell basement membrane and its cell receptors are critical for the myelination and organization of the nodes of Ranvier. We therefore studied a mouse model of SJS to determine whether a role for perlecan in these functions could account for PNH when perlecan is lacking. We revealed a role for perlecan in the longitudinal elongation and organization of myelinating Schwann cells because perlecan-deficient mice had shorter internodes, more numerous Schmidt-Lanterman incisures, and increased amounts of internodal fast VGKCs. Perlecan-deficient mice did not display demyelination events along the nerve trunk but developed dysmyelination of the preterminal segment associated with denervation processes at the neuromuscular junction. Investigating the excitability properties of the peripheral nerve suggested a persistent axonal depolarization during nerve firing in vitro, most likely due to defective K(+) homeostasis, and excluded the nerve trunk as the original site for PNH. Altogether, our data shed light on perlecan function by revealing critical roles in Schwann cell physiology and suggest that PNH in SJS originates distally from synergistic actions of peripheral nerve and neuromuscular junction changes.


Assuntos
Axônios/fisiologia , Proteoglicanas de Heparan Sulfato/fisiologia , Osteocondrodisplasias/patologia , Células de Schwann/fisiologia , Potenciais de Ação/fisiologia , Envelhecimento/fisiologia , Animais , Membrana Basal/metabolismo , Doenças Desmielinizantes/etiologia , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Proteoglicanas de Heparan Sulfato/deficiência , Proteoglicanas de Heparan Sulfato/genética , Canal de Potássio Kv1.1/biossíntese , Camundongos , Camundongos Mutantes , Microscopia Eletrônica , Mutação , Bainha de Mielina/fisiologia , Bainha de Mielina/ultraestrutura , Junção Neuromuscular/fisiopatologia , Osteocondrodisplasias/complicações , Osteocondrodisplasias/fisiopatologia , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Células de Schwann/metabolismo , Nervo Isquiático/fisiopatologia , Nervo Isquiático/ultraestrutura
13.
Ann Neurol ; 72(4): 536-49, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23109148

RESUMO

OBJECTIVE: Activated microglia play a central role in the inflammatory and excitotoxic component of various acute and chronic neurological disorders. However, the mechanisms leading to their activation in the latter context are poorly understood, particularly the involvement of N-methyl-D-aspartate receptors (NMDARs), which are critical for excitotoxicity in neurons. We hypothesized that microglia express functional NMDARs and that their activation would trigger neuronal cell death in the brain by modulating inflammation. METHODS AND RESULTS: We demonstrate that microglia express NMDARs in the murine and human central nervous system and that these receptors are functional in vitro. We show that NMDAR stimulation triggers microglia activation in vitro and secretion of factors that induce cell death of cortical neurons. These damaged neurons are further shown to activate microglial NMDARs and trigger a release of neurotoxic factors from microglia in vitro, indicating that microglia can signal back to neurons and possibly induce, aggravate, and/or maintain neurologic disease. Neuronal cell death was significantly reduced through pharmacological inhibition or genetically induced loss of function of the microglial NMDARs. We generated Nr1 LoxP(+/+) LysM Cre(+/-) mice lacking the NMDAR subunit NR1 in cells of the myeloid lineage. In this model, we further demonstrate that a loss of function of the essential NMDAR subunit NR1 protects from excitotoxic neuronal cell death in vivo and from traumatic brain injury. INTERPRETATION: Our findings link inflammation and excitotoxicity in a potential vicious circle and indicate that an activation of the microglial NMDARs plays a pivotal role in neuronal cell death in the perinatal and adult brain.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Inflamação/induzido quimicamente , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/agonistas , Animais , Lesões Encefálicas/patologia , Cálcio/metabolismo , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Meios de Cultivo Condicionados , Humanos , Ácido Ibotênico/toxicidade , Imuno-Histoquímica , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , Microscopia Confocal , Neocórtex/patologia , Técnicas de Patch-Clamp , Espécies Reativas de Oxigênio , Acidente Vascular Cerebral/patologia
14.
Biochim Biophys Acta ; 1812(1): 59-69, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20887786

RESUMO

The molecular motor dynein is regulated by the huntingtin protein, and Huntington's disease (HD) mutations of huntingtin disrupt dynein motor activity. Besides abnormalities in the central nervous system, HD animal models develop prominent peripheral pathology, with defective brown tissue thermogenesis and dysfunctional white adipocytes, but whether this peripheral phenotype is recapitulated by dynein dysfunction is unknown. Here, we observed prominently increased adiposity in mice harboring the legs at odd angles (Loa/+) or the Cramping mutations (Cra/+) in the dynein heavy chain gene. In Cra/+ mice, hyperadiposity occurred in the absence of energy imbalance and was the result of impaired norepinephrine-stimulated lipolysis. A similar phenotype was observed in 3T3L1 adipocytes upon chemical inhibition of dynein showing that loss of functional dynein leads to impairment of lipolysis. Ex vivo, dynein mutant adipose tissue displayed increased reactive oxygen species production that was, at least partially, responsible for the decreased cellular responses to norepinephrine and subsequent defect in stimulated lipolysis. Dynein mutation also affected norepinephrine efficacy to elicit a thermogenic response and led to morphological abnormalities in brown adipose tissue and cold intolerance in dynein mutant mice. Interestingly, protein levels of huntingtin were decreased in dynein mutant adipose tissue. Collectively, our results provide genetic evidence that dynein plays a key role in lipid metabolism and thermogenesis through a modulation of oxidative stress elicited by norepinephrine. This peripheral phenotype of dynein mutant mice is similar to that observed in various animal models of HD, lending further support for a functional link between huntingtin and dynein.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dineínas do Citoplasma/genética , Metabolismo Energético/genética , Mutação , Células 3T3-L1 , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Western Blotting , Dineínas do Citoplasma/metabolismo , Feminino , Expressão Gênica , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Lipólise/efeitos dos fármacos , Lipólise/genética , Masculino , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Norepinefrina/farmacologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Termogênese/genética
15.
Hum Mol Genet ; 19(22): 4385-98, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20807776

RESUMO

The molecular motor dynein and its associated regulatory subunit dynactin have been implicated in several neurodegenerative conditions of the basal ganglia, such as Huntington's disease (HD) and Perry syndrome, an atypical Parkinson-like disease. This pathogenic role has been largely postulated from the existence of mutations in the dynactin subunit p150(Glued). However, dynactin is also able to act independently of dynein, and there is currently no direct evidence linking dynein to basal ganglia degeneration. To provide such evidence, we used here a mouse strain carrying a point mutation in the dynein heavy chain gene that impairs retrograde axonal transport. These mice exhibited motor and behavioural abnormalities including hindlimb clasping, early muscle weakness, incoordination and hyperactivity. In vivo brain imaging using magnetic resonance imaging showed striatal atrophy and lateral ventricle enlargement. In the striatum, altered dopamine signalling, decreased dopamine D1 and D2 receptor binding in positron emission tomography SCAN and prominent astrocytosis were observed, although there was no neuronal loss either in the striatum or substantia nigra. In vitro, dynein mutant striatal neurons displayed strongly impaired neuritic morphology. Altogether, these findings provide a direct genetic evidence for the requirement of dynein for the morphology and function of striatal neurons. Our study supports a role for dynein dysfunction in the pathogenesis of neurodegenerative disorders of the basal ganglia, such as Perry syndrome and HD.


Assuntos
Corpo Estriado/patologia , Dineínas/genética , Neurônios/metabolismo , Mutação Puntual , Animais , Atrofia , Comportamento Animal/fisiologia , Células Cultivadas , Corpo Estriado/metabolismo , Dopamina/genética , Dopamina/metabolismo , Complexo Dinactina , Embrião de Mamíferos , Heterozigoto , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Proteínas Associadas aos Microtúbulos/genética , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neuritos/metabolismo , Neuritos/patologia , Neurônios/patologia , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia , Substância Negra/fisiopatologia
16.
Life (Basel) ; 13(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36676070

RESUMO

Amyotrophic Lateral Sclerosis is a progressive neurodegenerative disease and is the most common adult motor neuron disease. The disease pathogenesis is complex with the perturbation of multiple pathways proposed, including mitochondrial dysfunction, RNA processing, glutamate excitotoxicity, endoplasmic reticulum stress, protein homeostasis and endosomal transport/extracellular vesicle (EV) secretion. EVs are nanoscopic membrane-bound particles that are released from cells, involved in the intercellular communication of proteins, lipids and genetic material, and there is increasing evidence of their role in ALS. After discussing the biogenesis of EVs, we review their roles in the propagation of pathological proteins in ALS, such as TDP-43, SOD1 and FUS, and their contribution to disease pathology. We also discuss the ALS related genes which are involved in EV formation and vesicular trafficking, before considering the EV protein and RNA dysregulation found in ALS and how these have been investigated as potential biomarkers. Finally, we highlight the potential use of EVs as therapeutic agents in ALS, in particular EVs derived from mesenchymal stem cells and EVs as drug delivery vectors for potential treatment strategies.

17.
Biomolecules ; 12(4)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35454086

RESUMO

CHMP2B is a protein that coordinates membrane scission events as a core component of the ESCRT machinery. Mutations in CHMP2B are an uncommon cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two neurodegenerative diseases with clinical, genetic, and pathological overlap. Different mutations have now been identified across the ALS-FTD spectrum. Disruption of the neuromuscular junction is an early pathogenic event in ALS. Currently, the links between neuromuscular junction functionality and ALS-associated genes, such as CHMP2B, remain poorly understood. We have previously shown that CHMP2B transgenic mice expressing the CHMP2Bintron5 mutant specifically in neurons develop a progressive motor phenotype reminiscent of ALS. In this study, we used complementary approaches (behavior, histology, electroneuromyography, and biochemistry) to determine the extent to which neuron-specific expression of CHMP2Bintron5 could impact the skeletal muscle characteristics. We show that neuronal expression of the CHMP2Bintron5 mutant is sufficient to trigger progressive gait impairment associated with structural and functional changes in the neuromuscular junction. Indeed, CHMP2Bintron5 alters the pre-synaptic terminal organization and the synaptic transmission that ultimately lead to a switch of fast-twitch glycolytic muscle fibers to more oxidative slow-twitch muscle fibers. Taken together these data indicate that neuronal expression of CHMP2Bintron5 is sufficient to induce a synaptopathy with molecular and functional changes in the motor unit reminiscent of those found in ALS patients.


Assuntos
Esclerose Lateral Amiotrófica , Complexos Endossomais de Distribuição Requeridos para Transporte , Demência Frontotemporal , Proteínas do Tecido Nervoso , Junção Neuromuscular , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Humanos , Camundongos , Músculos/metabolismo , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Neurônios/metabolismo
18.
Br J Pharmacol ; 179(8): 1732-1752, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34783031

RESUMO

BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by the degeneration of upper and lower motor neurons, progressive wasting and paralysis of voluntary muscles and is currently incurable. Although considered to be a pure motor neuron disease, increasing evidence indicates that the sole protection of motor neurons by a single targeted drug is not sufficient to improve the pathological phenotype. We therefore evaluated the therapeutic potential of the multi-target drug used to treatment of coronary artery disease, trimetazidine, in SOD1G93A mice. EXPERIMENTAL APPROACH: As a metabolic modulator, trimetazidine improves glucose metabolism. Furthermore, trimetazidine enhances mitochondrial metabolism and promotes nerve regeneration, exerting an anti-inflammatory and antioxidant effect. We orally treated SOD1G93A mice with trimetazidine, solubilized in drinking water at a dose of 20 mg kg-1 , from disease onset. We assessed the impact of trimetazidine on disease progression by studying metabolic parameters, grip strength and histological alterations in skeletal muscle, peripheral nerves and the spinal cord. KEY RESULTS: Trimetazidine administration delays motor function decline, improves muscle performance and metabolism, and significantly extends overall survival of SOD1G93A mice (increased median survival of 16 days and 12.5 days for male and female respectively). Moreover, trimetazidine prevents the degeneration of neuromuscular junctions, attenuates motor neuron loss and reduces neuroinflammation in the spinal cord and in peripheral nerves. CONCLUSION AND IMPLICATIONS: In SOD1G93A mice, therapeutic effect of trimetazidine is underpinned by its action on mitochondrial function in skeletal muscle and spinal cord.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Trimetazidina , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Trimetazidina/farmacologia , Trimetazidina/uso terapêutico
19.
Proc Natl Acad Sci U S A ; 105(2): 740-5, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18182498

RESUMO

The Nogo-66 receptor (NgR) plays a critical role in restricting axon regeneration in the central nervous system. This inhibitory action is in part mediated by a neuronal receptor complex containing p75NTR, a multifunctional receptor also well known to trigger cell death upon binding to neurotrophins such as NGF. In the present study, we show that Pep4 and NEP1-40, which are two peptides derived from the Nogo-66 sequence that modulate NgR-mediated neurite outgrowth inhibition, prevent NGF-stimulated p75NTR-dependent death of cultured embryonic motor neurons. They also confer protection on spinal cord motor neurons after neonatal sciatic nerve axotomy. These findings demonstrate an as-yet-unknown function of NgR in maintaining neuronal survival that may be relevant for motor neuron development and degeneration.


Assuntos
Morte Celular , Regulação da Expressão Gênica , Proteínas da Mielina/fisiologia , Degeneração Neural/metabolismo , Receptores de Superfície Celular/fisiologia , Receptores de Fator de Crescimento Neural/metabolismo , Nervo Isquiático/metabolismo , Animais , Astrócitos/metabolismo , Proteínas Ligadas por GPI , Camundongos , Neurônios Motores/metabolismo , Proteínas da Mielina/metabolismo , Fator de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Receptor Nogo 1 , Ratos , Receptores de Superfície Celular/metabolismo , Receptores de Fatores de Crescimento
20.
Cells ; 10(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207859

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive and selective loss of motor neurons, amyotrophy and skeletal muscle paralysis usually leading to death due to respiratory failure. While generally considered an intrinsic motor neuron disease, data obtained in recent years, including our own, suggest that motor neuron protection is not sufficient to counter the disease. The dismantling of the neuromuscular junction is closely linked to chronic energy deficit found throughout the body. Metabolic (hypermetabolism and dyslipidemia) and mitochondrial alterations described in patients and murine models of ALS are associated with the development and progression of disease pathology and they appear long before motor neurons die. It is clear that these metabolic changes participate in the pathology of the disease. In this review, we summarize these changes seen throughout the course of the disease, and the subsequent impact of glucose-fatty acid oxidation imbalance on disease progression. We also highlight studies that show that correcting this loss of metabolic flexibility should now be considered a major goal for the treatment of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Músculo Esquelético/metabolismo , Animais , Humanos , Masculino , Músculo Esquelético/patologia , Superóxido Dismutase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa