Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Mol Cell ; 78(3): 477-492.e8, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32386542

RESUMO

Myelofibrosis is a severe myeloproliferative neoplasm characterized by increased numbers of abnormal bone marrow megakaryocytes that induce fibrosis, destroying the hematopoietic microenvironment. To determine the cellular and molecular basis for aberrant megakaryopoiesis in myelofibrosis, we performed single-cell transcriptome profiling of 135,929 CD34+ lineage- hematopoietic stem and progenitor cells (HSPCs), single-cell proteomics, genomics, and functional assays. We identified a bias toward megakaryocyte differentiation apparent from early multipotent stem cells in myelofibrosis and associated aberrant molecular signatures. A sub-fraction of myelofibrosis megakaryocyte progenitors (MkPs) are transcriptionally similar to healthy-donor MkPs, but the majority are disease specific, with distinct populations expressing fibrosis- and proliferation-associated genes. Mutant-clone HSPCs have increased expression of megakaryocyte-associated genes compared to wild-type HSPCs, and we provide early validation of G6B as a potential immunotherapy target. Our study paves the way for selective targeting of the myelofibrosis clone and illustrates the power of single-cell multi-omics to discover tumor-specific therapeutic targets and mediators of tissue fibrosis.


Assuntos
Hematopoese/fisiologia , Megacariócitos/patologia , Mielofibrose Primária/sangue , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Feminino , Regulação da Expressão Gênica , Hematopoese/genética , Células-Tronco Hematopoéticas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Megacariócitos/fisiologia , Pessoa de Meia-Idade , Mutação , Receptores Imunológicos/genética , Análise de Célula Única/métodos
2.
Nature ; 583(7814): 96-102, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581362

RESUMO

Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.


Assuntos
Internacionalidade , Programas Nacionais de Saúde , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Bases de Dados Factuais , Eritrócitos/metabolismo , Fator de Transcrição GATA1/genética , Humanos , Fenótipo , Locos de Características Quantitativas , Receptores de Trombopoetina/genética , Medicina Estatal , Reino Unido
3.
Genome Res ; 31(7): 1159-1173, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34088716

RESUMO

Regulatory interactions mediated by transcription factors (TFs) make up complex networks that control cellular behavior. Fully understanding these gene regulatory networks (GRNs) offers greater insight into the consequences of disease-causing perturbations than can be achieved by studying single TF binding events in isolation. Chromosomal translocations of the lysine methyltransferase 2A (KMT2A) gene produce KMT2A fusion proteins such as KMT2A-AFF1 (previously MLL-AF4), causing poor prognosis acute lymphoblastic leukemias (ALLs) that sometimes relapse as acute myeloid leukemias (AMLs). KMT2A-AFF1 drives leukemogenesis through direct binding and inducing the aberrant overexpression of key genes, such as the anti-apoptotic factor BCL2 and the proto-oncogene MYC However, studying direct binding alone does not incorporate possible network-generated regulatory outputs, including the indirect induction of gene repression. To better understand the KMT2A-AFF1-driven regulatory landscape, we integrated ChIP-seq, patient RNA-seq, and CRISPR essentiality screens to generate a model GRN. This GRN identified several key transcription factors such as RUNX1 that regulate target genes downstream of KMT2A-AFF1 using feed-forward loop (FFL) and cascade motifs. A core set of nodes are present in both ALL and AML, and CRISPR screening revealed several factors that help mediate response to the drug venetoclax. Using our GRN, we then identified a KMT2A-AFF1:RUNX1 cascade that represses CASP9, as well as KMT2A-AFF1-driven FFLs that regulate BCL2 and MYC through combinatorial TF activity. This illustrates how our GRN can be used to better connect KMT2A-AFF1 behavior to downstream pathways that contribute to leukemogenesis, and potentially predict shifts in gene expression that mediate drug response.

4.
Blood ; 139(13): 1939-1953, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35015835

RESUMO

Understanding the biological and clinical impact of copy number aberrations (CNAs) on the development of precision therapies in cancer remains an unmet challenge. Genetic amplification of chromosome 1q (chr1q-amp) is a major CNA conferring an adverse prognosis in several types of cancer, including in the blood cancer multiple myeloma (MM). Although several genes across chromosome 1 (chr1q) portend high-risk MM disease, the underpinning molecular etiology remains elusive. Here, with reference to the 3-dimensional (3D) chromatin structure, we integrate multi-omics data sets from patients with MM with genetic variables to obtain an associated clinical risk map across chr1q and to identify 103 adverse prognosis genes in chr1q-amp MM. Prominent among these genes, the transcription factor PBX1 is ectopically expressed by genetic amplification and epigenetic activation of its own preserved 3D regulatory domain. By binding to reprogrammed superenhancers, PBX1 directly regulates critical oncogenic pathways and a FOXM1-dependent transcriptional program. Together, PBX1 and FOXM1 activate a proliferative gene signature that predicts adverse prognosis across multiple types of cancer. Notably, pharmacological disruption of the PBX1-FOXM1 axis with existing agents (thiostrepton) and a novel PBX1 small molecule inhibitor (T417) is selectively toxic against chr1q-amp myeloma and solid tumor cells. Overall, our systems medicine approach successfully identifies CNA-driven oncogenic circuitries, links them to clinical phenotypes, and proposes novel CNA-targeted therapy strategies in MM and other types of cancer.


Assuntos
Mieloma Múltiplo , Cromossomos Humanos Par 1/metabolismo , Proteína Forkhead Box M1/genética , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Prognóstico , Análise de Sistemas , Fatores de Transcrição/genética
5.
Blood ; 140(1): 38-44, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35421218

RESUMO

CD19-directed immunotherapies have revolutionized the treatment of advanced B-cell acute lymphoblastic leukemia (B-ALL). Despite initial impressive rates of complete remission (CR) many patients ultimately relapse. Patients with B-ALL successfully treated with CD19-directed T cells eventually relapse, which, coupled with the early onset of CD22 expression during B-cell development, suggests that preexisting CD34+CD22+CD19- (pre)-leukemic cells represent an "early progenitor origin-related" mechanism underlying phenotypic escape to CD19-directed immunotherapies. We demonstrate that CD22 expression precedes CD19 expression during B-cell development. CD34+CD19-CD22+ cells are found in diagnostic and relapsed bone marrow samples of ∼70% of patients with B-ALL, and their frequency increases twofold in patients with B-ALL in CR after CD19 CAR T-cell therapy. The median of CD34+CD19-CD22+ cells before treatment was threefold higher in patients in whom B-ALL relapsed after CD19-directed immunotherapy (median follow-up, 24 months). Fluorescence in situ hybridization analysis in flow-sorted cell populations and xenograft modeling revealed that CD34+CD19-CD22+ cells harbor the genetic abnormalities present at diagnosis and initiate leukemogenesis in vivo. Our data suggest that preleukemic CD34+CD19-CD22+ progenitors underlie phenotypic escape after CD19-directed immunotherapies and reinforce ongoing clinical studies aimed at CD19/CD22 dual targeting as a strategy for reducing CD19- relapses. The implementation of CD34/CD19/CD22 immunophenotyping in clinical laboratories for initial diagnosis and subsequent monitoring of patients with B-ALL during CD19-targeted therapy is encouraged.


Assuntos
Antígenos CD19 , Linfoma de Burkitt , Antígenos CD34 , Linfócitos B , Humanos , Imunofenotipagem , Hibridização in Situ Fluorescente , Recidiva , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
6.
Haematologica ; 108(10): 2570-2581, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439336

RESUMO

Children with Down syndrome (DS, trisomy 21) are at a significantly higher risk of developing acute leukemia compared to the overall population. Many studies investigating the link between trisomy 21 and leukemia initiation and progression have been conducted over the last two decades. Despite improved treatment regimens and significant progress in iden - tifying genes on chromosome 21 and the mechanisms by which they drive leukemogenesis, there is still much that is unknown. A focused group of scientists and clinicians with expertise in leukemia and DS met in October 2022 at the Jérôme Lejeune Foundation in Paris, France for the 1st International Symposium on Down Syndrome and Leukemia. This meeting was held to discuss the most recent advances in treatment regimens and the biology underlying the initiation, progression, and relapse of acute lymphoblastic leukemia and acute myeloid leukemia in children with DS. This review provides a summary of what is known in the field, challenges in the management of DS patients with leukemia, and key questions in the field.


Assuntos
Síndrome de Down , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Síndrome de Down/complicações , Síndrome de Down/genética , Leucemia Mieloide Aguda/epidemiologia , Doença Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , França
7.
Blood ; 136(21): 2410-2415, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32599615

RESUMO

Although cytokine-mediated expansion of human hematopoietic stem cells (HSCs) can result in high yields of hematopoietic progenitor cells, this generally occurs at the expense of reduced bone marrow HSC repopulating ability, thereby limiting potential therapeutic applications. Because bromodomain-containing proteins (BCPs) have been demonstrated to regulate mouse HSC self-renewal and stemness, we screened small molecules targeting various BCPs as potential agents for ex vivo expansion of human HSCs. Of 10 compounds tested, only the bromodomain and extra-terminal motif inhibitor CPI203 enhanced the expansion of human cord blood HSCs without losing cell viability in vitro. The expanded cells also demonstrated improved engraftment and repopulation in serial transplantation assays. Transcriptomic and functional studies showed that the expansion of long-term repopulating HSCs was accompanied by synchronized expansion and maturation of megakaryocytes consistent with CPI203-mediated reprogramming of cord blood hematopoietic stem and progenitor cells. This approach may therefore prove beneficial for ex vivo gene editing, for enhanced platelet production, and for the improved usage of cord blood for transplantation research and therapy.


Assuntos
Acetamidas/farmacologia , Azepinas/farmacologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Megacariócitos/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Animais , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Sobrevivência de Enxerto/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Transcriptoma/efeitos dos fármacos
8.
Haematologica ; 107(3): 721-732, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33596642

RESUMO

Multiple myeloma is a malignancy of plasma cells initiated and driven by primary and secondary genetic events. However, myeloma plasma cell survival and proliferation might be sustained by non-genetic drivers. Z-DNA-binding protein 1 (ZBP1; also known as DAI) is an interferon-inducible, Z-nucleic acid sensor that triggers RIPK3-MLKL-mediated necroptosis in mice. ZBP1 also interacts with TBK1 and the transcription factor IRF3 but the function of this interaction is unclear, and the role of the ZBP1-IRF3 axis in cancer is not known. Here we show that ZBP1 is selectively expressed in late B-cell development in both human and murine cells and it is required for optimal T-cell-dependent humoral immune responses. In myeloma plasma cells, the interaction of constitutively expressed ZBP1 with TBK1 and IRF3 results in IRF3 phosphorylation. IRF3 directly binds and activates cell cycle genes, in part through co-operation with the plasma cell lineage-defining transcription factor IRF4, thereby promoting myeloma cell proliferation. This generates a novel, potentially therapeutically targetable and relatively selective myeloma cell addiction to the ZBP1-IRF3 axis. Our data also show a noncanonical function of constitutive ZBP1 in human cells and expand our knowledge of the role of cellular immune sensors in cancer biology.


Assuntos
Mieloma Múltiplo , Animais , Proliferação de Células , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Mieloma Múltiplo/genética , Fosforilação , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Int J Mol Sci ; 23(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35409034

RESUMO

The past five decades have seen significant progress in our understanding of human hematopoiesis. This has in part been due to the unprecedented development of advanced technologies, which have allowed the identification and characterization of rare subsets of human hematopoietic stem and progenitor cells and their lineage trajectories from embryonic through to adult life. Additionally, surrogate in vitro and in vivo models, although not fully recapitulating human hematopoiesis, have spurred on these scientific advances. These approaches have heightened our knowledge of hematological disorders and diseases and have led to their improved diagnosis and therapies. Here, we review human hematopoiesis at each end of the age spectrum, during embryonic and fetal development and on aging, providing exemplars of recent progress in deciphering the increasingly complex cellular and molecular hematopoietic landscapes in health and disease. This review concludes by highlighting links between chronic inflammation and metabolic and epigenetic changes associated with aging and in the development of clonal hematopoiesis.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Envelhecimento/genética , Hematopoiese Clonal , Epigênese Genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos
10.
Blood ; 134(13): 1059-1071, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31383639

RESUMO

Human lymphopoiesis is a dynamic lifelong process that starts in utero 6 weeks postconception. Although fetal B-lymphopoiesis remains poorly defined, it is key to understanding leukemia initiation in early life. Here, we provide a comprehensive analysis of the human fetal B-cell developmental hierarchy. We report the presence in fetal tissues of 2 distinct CD19+ B-progenitors, an adult-type CD10+ve ProB-progenitor and a new CD10-ve PreProB-progenitor, and describe their molecular and functional characteristics. PreProB-progenitors and ProB-progenitors appear early in the first trimester in embryonic liver, followed by a sustained second wave of B-progenitor development in fetal bone marrow (BM), where together they form >40% of the total hematopoietic stem cell/progenitor pool. Almost one-third of fetal B-progenitors are CD10-ve PreProB-progenitors, whereas, by contrast, PreProB-progenitors are almost undetectable (0.53% ± 0.24%) in adult BM. Single-cell transcriptomics and functional assays place fetal PreProB-progenitors upstream of ProB-progenitors, identifying them as the first B-lymphoid-restricted progenitor in human fetal life. Although fetal BM PreProB-progenitors and ProB-progenitors both give rise solely to B-lineage cells, they are transcriptionally distinct. As with their fetal counterparts, adult BM PreProB-progenitors give rise only to B-lineage cells in vitro and express the expected B-lineage gene expression program. However, fetal PreProB-progenitors display a distinct, ontogeny-related gene expression pattern that is not seen in adult PreProB-progenitors, and they share transcriptomic signatures with CD10-ve B-progenitor infant acute lymphoblastic leukemia blast cells. These data identify PreProB-progenitors as the earliest B-lymphoid-restricted progenitor in human fetal life and suggest that this fetal-restricted committed B-progenitor might provide a permissive cellular context for prenatal B-progenitor leukemia initiation.


Assuntos
Feto/citologia , Linfopoese , Neprilisina/análise , Células Precursoras de Linfócitos B/citologia , Adulto , Medula Óssea/embriologia , Medula Óssea/metabolismo , Células Cultivadas , Feto/embriologia , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fígado/embriologia , Fígado/metabolismo , Neprilisina/genética , Células Precursoras de Linfócitos B/metabolismo , Transcriptoma
11.
Haematologica ; 106(4): 1106-1119, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32527952

RESUMO

The megakaryocyte/erythroid Transient Myeloproliferative Disorder (TMD) in newborns with Down Syndrome (DS) occurs when N-terminal truncating mutations of the hemopoietic transcription factor GATA1, that produce GATA1short protein (GATA1s), are acquired early in development. Prior work has shown that murine GATA1s, by itself, causes a transient yolk sac myeloproliferative disorder. However, it is unclear where in the hemopoietic cellular hierarchy GATA1s exerts its effects to produce this myeloproliferative state. Here, through a detailed examination of hemopoiesis from murine GATA1s ES cells and GATA1s embryos we define defects in erythroid and megakaryocytic differentiation that occur relatively late in hemopoiesis. GATA1s causes an arrest late in erythroid differentiation in vivo, and even more profoundly in ES-cell derived cultures, with a marked reduction of Ter-119 cells and reduced erythroid gene expression. In megakaryopoiesis, GATA1s causes a differentiation delay at a specific stage, with accumulation of immature, kit-expressing CD41hi megakaryocytic cells. In this specific megakaryocytic compartment, there are increased numbers of GATA1s cells in S-phase of cell cycle and reduced number of apoptotic cells compared to GATA1 cells in the same cell compartment. There is also a delay in maturation of these immature GATA1s megakaryocytic lineage cells compared to GATA1 cells at the same stage of differentiation. Finally, even when GATA1s megakaryocytic cells mature, they mature aberrantly with altered megakaryocyte-specific gene expression and activity of the mature megakaryocyte enzyme, acetylcholinesterase. These studies pinpoint the hemopoietic compartment where GATA1s megakaryocyte myeloproliferation occurs, defining where molecular studies should now be focussed to understand the oncogenic action of GATA1s.


Assuntos
Síndrome de Down , Reação Leucemoide , Animais , Diferenciação Celular , Fator de Transcrição GATA1/genética , Humanos , Recém-Nascido , Megacariócitos , Camundongos
12.
Br J Haematol ; 191(4): 593-603, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33190251

RESUMO

Paediatric haematology began to establish itself as a speciality in the UK just over 60 years ago. In that time, clinical trials involving all the specialist centres in the country, and based on scientific advances, have dramatically improved the outlook for children with a range of malignant and non-malignant disorders, but particularly acute leukaemia. As in many specialties, multidisciplinary teams have played a major role in delivering these advances. With these structures in place at a national level, perhaps, of all specialities, paediatric haematology is poised to benefit from the new developments in precision medicine, gene editing and immunotherapy.


Assuntos
Hematologia , Pediatria , Adolescente , Criança , Pré-Escolar , Hematologia/métodos , Hematologia/tendências , Humanos , Lactente , Recém-Nascido , Pediatria/métodos , Pediatria/tendências , Reino Unido
13.
J Pediatr Hematol Oncol ; 42(4): e235-e237, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30933022

RESUMO

Diamond-Blackfan Anemia (DBA) is a rare inherited form of pure red cell aplasia that usually manifests in infancy or early childhood, and is characterized by normochromic macrocytic anemia and bone marrow erythroblastopenia. The majority of DBA cases are associated with mutations in ribosomal protein genes. Here, we describe a Lebanese girl with RPL5-mutated DBA unresponsive to steroid treatment who died from complications following late hematopoietic stem cell transplantation performed at the age of 15 years.


Assuntos
Anemia de Diamond-Blackfan/genética , Sequência de Bases , Resistência a Medicamentos/genética , Mutação da Fase de Leitura , Proteínas Ribossômicas/genética , Deleção de Sequência , Adolescente , Aloenxertos , Anemia de Diamond-Blackfan/terapia , Criança , Pré-Escolar , Evolução Fatal , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Recém-Nascido , Líbano , Esteroides
14.
Br J Haematol ; 186(2): 321-326, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30980390

RESUMO

Diamond-Blackfan anaemia (DBA) is a rare bone marrow failure syndrome characterised by anaemia, congenital anomalies and cancer predisposition. Although infections are the second leading cause of mortality in non-transplanted patients, immune function is largely unexplored. We identified quantitative deficits in serum immunoglobulins and/or circulating T, natural killer and B lymphocytes in 59 of 107 unselected patients (55·1%) attending our centre over a 7-year period. Immune abnormalities were independent of ribosomal protein genotype and arose in both steroid-treated and steroid-untreated patients. In summary, these data highlight the high prevalence and spectrum of infections and immune defects in DBA.


Assuntos
Anemia de Diamond-Blackfan , Genótipo , Imunidade Celular , Imunidade Humoral , Adolescente , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/imunologia , Anemia de Diamond-Blackfan/mortalidade , Anemia de Diamond-Blackfan/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/imunologia , Reino Unido/epidemiologia
15.
Blood ; 140(6): 523, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35749683
16.
Haematologica ; 104(6): 1176-1188, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30679323

RESUMO

B-cell acute lymphoblastic leukemia is the commonest childhood cancer. In infants, B-cell acute lymphoblastic leukemia remains fatal, especially in patients with t(4;11), present in ~80% of cases. The pathogenesis of t(4;11)/KMT2A-AFF1+ (MLL-AF4+) infant B-cell acute lymphoblastic leukemia remains difficult to model, and the pathogenic contribution in cancer of the reciprocal fusions resulting from derivative translocated-chromosomes remains obscure. Here, "multi-layered" genome-wide analyses and validation were performed on a total of 124 de novo cases of infant B-cell acute lymphoblastic leukemia uniformly diagnosed and treated according to the Interfant 99/06 protocol. These patients showed the most silent mutational landscape reported so far for any sequenced pediatric cancer. Recurrent mutations were exclusively found in K-RAS and N-RAS, were subclonal and were frequently lost at relapse, despite a larger number of non-recurrent/non-silent mutations. Unlike non-MLL-rearranged B-cell acute lymphoblastic leukemias, B-cell receptor repertoire analysis revealed minor, non-expanded B-cell clones in t(4;11)+ infant B-cell acute lymphoblastic leukemia, and RNA-sequencing showed transcriptomic similarities between t(4;11)+ infant B-cell acute lymphoblastic leukemias and the most immature human fetal liver hematopoietic stem and progenitor cells, confirming a "pre-VDJ" fetal cellular origin for both t(4;11) and RAS mut The reciprocal fusion AF4-MLL was expressed in only 45% (19/43) of the t(4;11)+ patients, and HOXA cluster genes are exclusively expressed in AF4-MLL-expressing patients. Importantly, AF4-MLL/HOXA-expressing patients had a significantly better 4-year event-free survival (62.4% vs 11.7%, P=0.001), and overall survival (73.7 vs 25.2%, P=0.016). AF4-MLL expression retained its prognostic significance when analyzed in a Cox model adjusting for risk stratification according to the Interfant-06 protocol based on age at diagnosis, white blood cell count and response to prednisone. This study has clinical implications for disease outcome and diagnostic risk-stratification of t(4;11)+ infant B-cell acute lymphoblastic leukemia.


Assuntos
Biomarcadores Tumorais , Suscetibilidade a Doenças , Estudo de Associação Genômica Ampla , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/etiologia , Biópsia , Medula Óssea/metabolismo , Aberrações Cromossômicas , Perfilação da Expressão Gênica , Rearranjo Gênico , Instabilidade Genômica , Histona-Lisina N-Metiltransferase/genética , Proteínas de Homeodomínio/genética , Humanos , Hibridização in Situ Fluorescente , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Prognóstico , Transdução de Sinais , Análise de Sobrevida , Recombinação V(D)J , Proteínas ras/metabolismo
17.
Br J Haematol ; 182(2): 170-184, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29806701

RESUMO

Neonatal leukaemia is defined as occurring within the first 28 days of life and most, if not all, cases are congenital. With the exception of Down syndrome-associated transient abnormal myelopoiesis, which is not considered here, neonatal leukaemias are rare. In two-thirds of patients the disease manifests as an acute myeloid leukaemia, frequently with monocytic/monoblastic characteristics. Most other cases are acute lymphoblastic leukaemia, particularly B lineage, but some are mixed phenotype or blastic plasmacytoid dendritic cell neoplasms. The most frequently observed cytogenetic/molecular abnormality is t(4;11)(q21.3;q23.3)/KMT2A-AFF1 followed by t(1;22)(p13.3;q13.1)/RBM15-MKL1 and t(8;16)(p11.2;p13.3)/KAT6A-CREBBP. Common clinical features include prominent hepatosplenomegaly and a high incidence of skin involvement, sometimes in the absence of bone marrow disease. A distinctive feature is the occurrence of spontaneous remission in some cases, particularly in association with t(8;16). In this review, we summarise current knowledge of the clinical, cytogenetic and molecular features of neonatal leukaemia and discuss clinical management of these cases.


Assuntos
Leucemia/congênito , Antineoplásicos/uso terapêutico , Células Dendríticas , Diagnóstico Diferencial , Exantema/congênito , Exantema/genética , Exantema/terapia , Ordem dos Genes/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Recém-Nascido , Leucemia/genética , Leucemia/terapia , Proteína de Leucina Linfoide-Mieloide/genética , Remissão Espontânea , Resultado do Tratamento
18.
Clin Immunol ; 183: 8-16, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28645875

RESUMO

The ontogeny of the natural, public IgM repertoire remains incompletely explored. Here, high-resolution immunogenetic analysis of B cells from (unrelated) fetal, child, and adult samples, shows that although fetal liver (FL) and bone marrow (FBM) IgM repertoires are equally diversified, FL is the main source of IgM natural immunity during the 2nd trimester. Strikingly, 0.25% of all prenatal clonotypes, comprising 18.7% of the expressed repertoire, are shared with the postnatal samples, consistent with persisting fetal IgM+ B cells being a source of natural IgM repertoire in adult life. Further, the origins of specific stereotypic IgM+ B cell receptors associated with chronic lymphocytic leukemia, can be traced back to fetal B cell lymphopoiesis, suggesting that persisting fetal B cells can be subject to malignant transformation late in life. Overall, these novel data provide unique insights into the ontogeny of physiological and malignant B lymphopoiesis that spans the human lifetime.


Assuntos
Linfócitos B/imunologia , Medula Óssea/imunologia , Feto/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Imunoglobulina M/genética , Leucemia Linfocítica Crônica de Células B/genética , Fígado/imunologia , Linfopoese/genética , Receptores de Antígenos de Linfócitos B/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Imunoglobulina M/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Linfopoese/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa