Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nucleic Acids Res ; 50(D1): D259-D264, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34302483

RESUMO

PIWI-interacting RNAs (piRNAs) and their partnering PIWI proteins defend the animal germline against transposable elements and play a crucial role in fertility. Numerous studies in the past have uncovered many additional functions of the piRNA pathway, including gene regulation, anti-viral defense, and somatic transposon repression. Further, comparative analyses across phylogenetic groups showed that the PIWI/piRNA system evolves rapidly and exhibits great evolutionary plasticity. However, the presence of so-called piRNA clusters as the major source of piRNAs is common to nearly all metazoan species. These genomic piRNA-producing loci are highly divergent across taxa and critically influence piRNA populations in different evolutionary lineages. We launched the initial version of the piRNA cluster database to facilitate research on regulation and evolution of piRNA-producing loci across tissues und species. In recent years the amount of small RNA sequencing data that was generated and the abundance of species that were studied has grown rapidly. To keep up with this recent progress, we have released a major update for the piRNA cluster database (https://www.smallrnagroup.uni-mainz.de/piRNAclusterDB), expanding it from 12 to a total of 51 species with hundreds of new datasets, and revised its overall structure to enable easy navigation through this large amount of data.


Assuntos
Proteínas Argonautas/genética , Análise por Conglomerados , Bases de Dados Genéticas , Genoma , RNA Interferente Pequeno/genética , Software , Animais , Proteínas Argonautas/classificação , Proteínas Argonautas/metabolismo , Elementos de DNA Transponíveis , Conjuntos de Dados como Assunto , Evolução Molecular , Loci Gênicos , Humanos , Internet , Filogenia , RNA Interferente Pequeno/classificação , RNA Interferente Pequeno/metabolismo
2.
RNA ; 26(6): 694-707, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144192

RESUMO

Fragments of mature tRNAs have long been considered as mere degradation products without physiological function. However, recent reports show that tRNA-derived small RNAs (tsRNAs) play prominent roles in diverse cellular processes across a wide spectrum of species. Contrasting the situation in other small RNA pathways the mechanisms behind these effects appear more diverse, more complex, and are generally less well understood. In addition, surprisingly little is known about the expression profiles of tsRNAs across different tissues and species. Here, we provide an initial overview of tsRNA expression in different species and tissues, revealing very high levels of 5' tRNA halves (5' tRHs) particularly in the primate hippocampus. We further modulated the regulation capacity of selected 5' tRHs in human cells by transfecting synthetic tsRNA mimics ("overexpression") or antisense-RNAs ("inhibition") and identified differentially expressed transcripts based on RNA-seq. We then used a novel k-mer mapping approach to dissect the underlying targeting rules, suggesting that 5' tRHs silence genes in a sequence-specific manner, while the most efficient target sites align to the mid-region of the 5' tRH and are located within the CDS or 3' UTR of the target. This amends previous observations that tsRNAs guide Argonaute proteins to silence their targets via a miRNA-like 5' seed match and suggests a yet unknown mechanism of regulation. Finally, our data suggest that some 5' tRHs that are also able to sequence-specifically stabilize mRNAs as up-regulated mRNAs are also significantly enriched for 5' tRH target sites.


Assuntos
Regulação da Expressão Gênica , Hipocampo/metabolismo , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/química , Animais , Células HEK293 , Humanos , Camundongos , MicroRNAs/metabolismo , Neurogênese/genética , Primatas/genética , RNA Interferente Pequeno/metabolismo , Ratos , Análise de Sequência de RNA
3.
Proc Natl Acad Sci U S A ; 116(21): 10547-10556, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31061112

RESUMO

There is a growing body of evidence linking maternal overnutrition to obesity and psychopathology that can be conserved across multiple generations. Recently, we demonstrated in a maternal high-fat diet (HFD; MHFD) mouse model that MHFD induced enhanced hedonic behaviors and obesogenic phenotypes that were conserved across three generations via the paternal lineage, which was independent of sperm methylome changes. Here, we show that sperm tRNA-derived small RNAs (tsRNAs) partly contribute to the transmission of such phenotypes. We observe increased expression of sperm tsRNAs in the F1 male offspring born to HFD-exposed dams. Microinjection of sperm tsRNAs from the F1-HFD male into normal zygotes reproduces obesogenic phenotypes and addictive-like behaviors, such as increased preference of palatable foods and enhanced sensitivity to drugs of abuse in the resultant offspring. The expression of several of the differentially expressed sperm tsRNAs predicted targets such as CHRNA2 and GRIN3A, which have been implicated in addiction pathology, are altered in the mesolimbic reward brain regions of the F1-HFD father and the resultant HFD-tsRNA offspring. Together, our findings demonstrate that sperm tsRNA is a potential vector that contributes to the transmission of MHFD-induced addictive-like behaviors and obesogenic phenotypes across generations, thereby emphasizing its role in diverse pathological outcomes.


Assuntos
Fenômenos Fisiológicos da Nutrição Materna , Obesidade/genética , Efeitos Tardios da Exposição Pré-Natal , RNA/metabolismo , Espermatozoides/metabolismo , Animais , Comportamento Aditivo , Dieta Hiperlipídica/efeitos adversos , Feminino , Masculino , Camundongos , Fenótipo , Gravidez
4.
Kidney Int ; 100(5): 1092-1100, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34153329

RESUMO

Biallelic deletions in the NPHP1 gene are the most frequent molecular defect of nephronophthisis, a kidney ciliopathy and leading cause of hereditary end-stage kidney disease. Nephrocystin 1, the gene product of NPHP1, is also expressed in photoreceptors where it plays an important role in intra-flagellar transport between the inner and outer segments. However, the human retinal phenotype has never been investigated in detail. Here, we characterized retinal features of 16 patients with homozygous deletions of the entire NPHP1 gene. Retinal assessment included multimodal imaging (optical coherence tomography, fundus autofluorescence) and visual function testing (visual acuity, full-field electroretinography, color vision, visual field). Fifteen patients had a mild retinal phenotype that predominantly affected cones, but with relative sparing of the fovea. Despite a predominant cone dysfunction, night vision problems were an early symptom in some cases. The consistent retinal phenotype on optical coherence tomography images included reduced reflectivity and often a granular appearance of the ellipsoid zone, fading or loss of the interdigitation zone, and mild outer retinal thinning. However, there were usually no obvious structural changes visible upon clinical examination and fundus autofluorescence imaging (occult retinopathy). More advanced retinal degeneration might occur with ageing. An identified additional CEP290 variant in one patient with a more severe retinal degeneration may indicate a potential role for genetic modifiers, although this requires further investigation. Thus, diagnostic awareness about this distinct retinal phenotype has implications for the differential diagnosis of nephronophthisis and for individual prognosis of visual function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Doenças Renais Císticas/genética , Doenças Retinianas , Eletrorretinografia , Angiofluoresceinografia , Humanos , Doenças Retinianas/genética , Tomografia de Coerência Óptica , Campos Visuais
5.
BMC Genomics ; 21(1): 876, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287698

RESUMO

BACKGROUND: Planarians reliably regenerate all body parts after injury, including a fully functional head and central nervous system. But until now, the expression dynamics and functional role of miRNAs and other small RNAs during the process of head regeneration are not well understood. Furthermore, little is known about the evolutionary conservation of the relevant small RNAs pathways, rendering it difficult to assess whether insights from planarians will apply to other taxa. RESULTS: In this study, we applied high throughput sequencing to identify miRNAs, tRNA fragments and piRNAs that are dynamically expressed during head regeneration in Dugesia japonica. We further show that knockdown of selected small RNAs, including three novel Dugesia-specific miRNAs, during head regeneration induces severe defects including abnormally small-sized eyes, cyclopia and complete absence of eyes. CONCLUSIONS: Our findings suggest that a complex pool of small RNAs takes part in the process of head regeneration in Dugesia japonica and provide novel insights into global small RNA expression profiles and expression changes in response to head amputation. Our study reveals the evolutionary conserved role of miR-124 and brings further promising candidate small RNAs into play that might unveil new avenues for inducing restorative programs in non-regenerative organisms via small RNA mimics based therapies.


Assuntos
Planárias , Animais , Sistema Nervoso Central , Sequenciamento de Nucleotídeos em Larga Escala , Planárias/genética , RNA Interferente Pequeno/genética
6.
RNA ; 23(9): 1352-1364, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28630141

RESUMO

The majority of Drosophila genes are expressed in a temperature-dependent manner, but the way in which small RNAs may contribute to this effect is completely unknown as we currently lack an idea of how small RNA transcriptomes change as a function of temperature. Applying high-throughput sequencing techniques complemented by quantitative real-time PCR experiments, we demonstrate that altered ambient temperature induces drastic but reversible changes in sequence composition and total abundance of both miRNA and piRNA populations. Further, mRNA sequencing reveals that the expression of miRNAs and their predicted target transcripts correlates inversely, suggesting that temperature-responsive miRNAs drive adaptation to different ambient temperatures on the transcriptome level. Finally, we demonstrate that shifts in temperature affect both primary and secondary piRNA pools, and the observed aberrations are consistent with altered expression levels of the involved Piwi-pathway factors. We further reason that enhanced ping-pong processing at 29°C is driven by dissolved RNA secondary structures at higher temperatures, uncovering target sites that are not accessible at low temperatures. Together, our results show that small RNAs are an important part of epigenetic regulatory mechanisms that ensure homeostasis and adaptation under fluctuating environmental conditions.


Assuntos
Adaptação Biológica/genética , Drosophila/genética , MicroRNAs/genética , Temperatura , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , RNA Interferente Pequeno/genética , Transcriptoma
7.
J Biol Chem ; 292(15): 6039-6046, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28193840

RESUMO

Piwi-interacting RNAs (piRNAs) are 26-30-nucleotide germ line-specific small non-coding RNAs that have evolutionarily conserved function in mobile genetic element (transposons) silencing and maintenance of genome integrity. Drosophila Hsp70/90-organizing protein homolog (Hop), a co-chaperone, interacts with piRNA-binding protein Piwi and mediates silencing of phenotypic variations. However, it is not known whether Hop has a direct role in piRNA biogenesis and transposon silencing. Here, we show that knockdown of Hop in the germ line nurse cells (GLKD) of Drosophila ovaries leads to activation of transposons. Hop GLKD females can lay eggs at the same rate as wild-type counterparts, but the eggs do not hatch into larvae. Hop GLKD leads to the accumulation of γ-H2Av foci in the germ line, indicating increased DNA damage in the ovary. We also show that Hop GLKD-induced transposon up-regulation is due to inefficient piRNA biogenesis. Based on these results, we conclude that Hop is a critical component of the piRNA pathway and that it maintains genome integrity by silencing transposons.


Assuntos
Proteínas Argonautas/metabolismo , Elementos de DNA Transponíveis , Proteínas de Drosophila/metabolismo , Inativação Gênica , Células Germinativas/metabolismo , Janus Quinases/metabolismo , Ovário/metabolismo , RNA Interferente Pequeno/biossíntese , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Proteínas Argonautas/genética , Dano ao DNA , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Instabilidade Genômica , Células Germinativas/citologia , Janus Quinases/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética
8.
RNA Biol ; 15(3): 308-313, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29345184

RESUMO

Temperature has a major impact on gene expression in ectotherms. But until recently, it was not clear in which way, if any, small non-coding RNAs such as miRNAs or piRNAs contribute to thermosensitive gene regulation. We have recently shown that temperature-responsive miRNAs in Drosophila drive adaptation to different ambient temperatures on the transcriptome level. Moreover, we demonstrated that higher temperatures lead to a more efficient piRNA-dependent transposon silencing, possibly due to heat-induced unfolding of RNA secondary structures. In this commentary, we will dwell upon particular interesting aspects connected to our findings, hoping that our point of view may encourage other scientists to address some of the questions raised here. We will particularly focus on aspects related to climate-dependent transposon propagation in evolution and putative transgenerational epigenetic effects of altered small RNA transcriptomes. We further briefly indicate how temperature-responsive miRNAs may confound the interpretation of data obtained from experiments comprising heat-shock treatment which is a widely used technique not only in Drosophila genetics.


Assuntos
Drosophila melanogaster/genética , MicroRNAs/genética , RNA Interferente Pequeno/genética , Estresse Fisiológico , Animais , Elementos de DNA Transponíveis , Proteínas de Drosophila/genética , Epigênese Genética , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Temperatura
9.
Nucleic Acids Res ; 44(D1): D223-30, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26582915

RESUMO

Piwi proteins and their guiding small RNAs, termed Piwi-interacting (pi-) RNAs, are essential for silencing of transposons in the germline of animals. A substantial fraction of piRNAs originates from genomic loci termed piRNA clusters and sequences encoded in these piRNA clusters determine putative targets for the Piwi/piRNA system. In the past decade, studies of piRNA transcriptomes in different species revealed additional roles for piRNAs beyond transposon silencing, reflecting the astonishing plasticity of the Piwi/piRNA system along different phylogenetic branches. Moreover, piRNA transcriptomes can change drastically during development and vary across different tissues.Since piRNA clusters crucially shape piRNA profiles, analysis of these loci is imperative for a thorough understanding of functional and evolutionary aspects of the piRNA pathway. But despite the ever-growing amount of available piRNA sequence data, we know little about the factors that determine differential regulation of piRNA clusters, nor the evolutionary events that cause their gain or loss.In order to facilitate addressing these subjects, we established a user-friendly piRNA cluster database (http://www.smallrnagroup-mainz.de/piRNAclusterDB.html) that provides comprehensive data on piRNA clusters in multiple species, tissues and developmental stages based on small RNA sequence data deposited at NCBI's Sequence Read Archive (SRA).


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA Interferente Pequeno/genética , Animais , Loci Gênicos , Humanos , Internet , Camundongos , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/metabolismo
10.
BMC Genomics ; 18(1): 644, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830358

RESUMO

BACKGROUND: Next generation sequencing is a key technique in small RNA biology research that has led to the discovery of functionally different classes of small non-coding RNAs in the past years. However, reliable annotation of the extensive amounts of small non-coding RNA data produced by high-throughput sequencing is time-consuming and requires robust bioinformatics expertise. Moreover, existing tools have a number of shortcomings including a lack of sensitivity under certain conditions, limited number of supported species or detectable sub-classes of small RNAs. RESULTS: Here we introduce unitas, an out-of-the-box ready software for complete annotation of small RNA sequence datasets, supporting the wide range of species for which non-coding RNA reference sequences are available in the Ensembl databases (currently more than 800). unitas combines high quality annotation and numerous analysis features in a user-friendly manner. A complete annotation can be started with one simple shell command, making unitas particularly useful for researchers not having access to a bioinformatics facility. Noteworthy, the algorithms implemented in unitas are on par or even outperform comparable existing tools for small RNA annotation that map to publicly available ncRNA databases. CONCLUSIONS: unitas brings together annotation and analysis features that hitherto required the installation of numerous different bioinformatics tools which can pose a challenge for the non-expert user. With this, unitas overcomes the problem of read normalization. Moreover, the high quality of sequence annotation and analysis, paired with the ease of use, make unitas a valuable tool for researchers in all fields connected to small RNA biology.


Assuntos
Anotação de Sequência Molecular/métodos , Pequeno RNA não Traduzido/genética , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
11.
RNA ; 21(5): 911-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25802409

RESUMO

Argonaute proteins comprising Piwi-like and Argonaute-like proteins and their guiding small RNAs combat mobile DNA on the transcriptional and post-transcriptional level. While Piwi-like proteins and associated piRNAs are generally restricted to the germline, Argonaute-like proteins and siRNAs have been linked with transposon control in the germline as well as in the soma. Intriguingly, evolution has realized distinct Argonaute subfunctionalization patterns in different species but our knowledge about mammalian RNA interference pathways relies mainly on findings from the mouse model. However, mice differ from other mammals by absence of functional Piwil3 and expression of an oocyte-specific Dicer isoform. Thus, studies beyond the mouse model are required for a thorough understanding of function and evolution of mammalian RNA interference pathways. We high-throughput sequenced small RNAs from the male Tupaia belangeri germline, which represents a close outgroup to primates, hence phylogenetically links mice with humans. We identified transposon-derived piRNAs as well as siRNAs clearly contrasting the separation of piRNA- and siRNA-pathways into male and female germline as seen in mice. Genome-wide analysis of tree shrew transposons reveal that putative siRNAs map to transposon sites that form foldback secondary structures thus representing suitable Dicer substrates. In contrast piRNAs target transposon sites that remain accessible. With this we provide a basic mechanistic explanation how secondary structure of transposon transcripts influences piRNA- and siRNA-pathway utilization. Finally, our analyses of tree shrew piRNA clusters indicate A-Myb and the testis-expressed transcription factor RFX4 to be involved in the transcriptional regulation of mammalian piRNA clusters.


Assuntos
Proteínas Argonautas/metabolismo , Elementos de DNA Transponíveis/genética , Instabilidade Genômica/genética , Interferência de RNA , RNA Interferente Pequeno/fisiologia , Tupaia/genética , Animais , Sequência de Bases , Evolução Molecular , Inativação Gênica/fisiologia , Células Germinativas/metabolismo , Masculino , Mamíferos/genética , Família Multigênica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificação
12.
Reproduction ; 153(3): 305-318, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27965401

RESUMO

PIWI proteins and their associated piRNAs have been the focus of intensive research in the past decade; therefore, their participation in the maintenance of genomic integrity during spermatogenesis has been well established. Recent studies have suggested important roles for the PIWI/piRNA system outside of gametogenesis, based on the presence of piRNAs and PIWI proteins in several somatic tissues, cancers, and the early embryo. Here, we investigated the small RNA complement present in bovine gonads, gametes, and embryos through next-generation sequencing. A distinct piRNA population was present in the testis as expected. However, we also found a large population of slightly shorter, 24-27 nt piRNA-like RNA (pilRNAs) in pools of oocytes and zygotes. These oocyte and embryo pilRNAs exhibited many of the canonical characteristics of piRNAs including a 1U bias, the presence of a 'ping-pong' signature, genomic clustering, and transposable element targeting. Some of the major transposons targeted by oocyte and zygote pilRNA were from the LINE RTE and ERV1 classes. We also identified pools of pilRNA potentially derived from, or targeted at, specific mRNA sequences. We compared the frequency of these gene-associated pilRNAs to the fold change in the expression of respective mRNAs from two previously reported transcriptome datasets. We observed significant negative correlations between the number of pilRNAs targeting mRNAs, and their fold change in expression between the 4-8 cell and 8-16 cell stages. Together, these results represent one of the first characterizations of the PIWI/piRNA pathway in the translational bovine model, and in the novel context of embryogenesis.


Assuntos
Elementos de DNA Transponíveis , Oócitos/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Espermatogênese/fisiologia , Testículo/metabolismo , Animais , Bovinos , Feminino , Masculino , Oócitos/citologia , RNA Mensageiro/genética , Testículo/citologia , Transcriptoma
13.
Mol Phylogenet Evol ; 96: 79-92, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26702959

RESUMO

A monophyletic origin of endoparasitic thorny-headed worms (Acanthocephala) and wheel-animals (Rotifera) is widely accepted. However, the phylogeny inside the clade, be it called Syndermata or Rotifera, has lacked validation by mitochondrial (mt) data. Herein, we present the first mt genome of the key taxon Seison and report conflicting results of phylogenetic analyses: while mt sequence-based topologies showed monophyletic Lemniscea (Bdelloidea+Acanthocephala), gene order analyses supported monophyly of Pararotatoria (Seisonidea+Acanthocephala) and Hemirotifera (Bdelloidea+Pararotatoria). Sequence-based analyses obviously suffered from substitution saturation, compositional bias, and branch length heterogeneity; however, we observed no compromising effects in gene order analyses. Moreover, gene order-based topologies were robust to changes in coding (genes vs. gene pairs, two-state vs. multistate, aligned vs. non-aligned), tree reconstruction methods, and the treatment of the two monogonont mt genomes. Thus, mt gene order verifies seisonids as sister to acanthocephalans within monophyletic Hemirotifera, while deviating results of sequence-based analyses reflect artificial signal. This conclusion implies that the complex life cycle of extant acanthocephalans evolved from a free-living state, as retained by most monogononts and bdelloids, via an epizoic state with a simple life cycle, as shown by seisonids. Hence, Acanthocephala represent a rare example where ancestral transitional stages have counterparts amongst the closest relatives.


Assuntos
Acantocéfalos/classificação , Acantocéfalos/genética , Ordem dos Genes/genética , Genes Mitocondriais/genética , Filogenia , Rotíferos/classificação , Rotíferos/genética , Animais , Genoma Mitocondrial/genética , Estágios do Ciclo de Vida
14.
Proc Biol Sci ; 281(1775): 20132607, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24307672

RESUMO

To assess the relative impact of functional constraint and post-mating sexual selection on sequence evolution of reproductive proteins, we examined 169 primate sperm proteins. In order to recognize potential genome-wide trends, we additionally analysed a sample of altogether 318 non-reproductive (brain and postsynaptic) proteins. Based on cDNAs of eight primate species (Anthropoidea), we observed that pre-mating sperm proteins engaged in sperm composition and assembly show significantly lower incidence of site-specific positive selection and overall lower non-synonymous to synonymous substitution rates (dN/dS) across sites as compared with post-mating sperm proteins involved in capacitation, hyperactivation, acrosome reaction and fertilization. Moreover, database screening revealed overall more intracellular protein interaction partners in pre-mating than in post-mating sperm proteins. Finally, post-mating sperm proteins evolved at significantly higher evolutionary rates than pre-mating sperm and non-reproductive proteins on the branches to multi-male breeding species, while no such increase was observed on the branches to unimale and monogamous species. We conclude that less protein-protein interactions of post-mating sperm proteins account for lowered functional constraint, allowing for stronger impact of post-mating sexual selection, while the opposite holds true for pre-mating sperm proteins. This pattern is particularly strong in multi-male breeding species showing high female promiscuity.


Assuntos
Evolução Molecular , Haplorrinos/genética , Comportamento Sexual Animal , Espermatozoides/metabolismo , Animais , DNA Complementar/química , Masculino , Preferência de Acasalamento Animal , Domínios e Motivos de Interação entre Proteínas , Análise de Sequência de DNA , Testículo/metabolismo
15.
J Clin Invest ; 133(8)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36862503

RESUMO

Defects in primary or motile cilia result in a variety of human pathologies, and retinal degeneration is frequently associated with these so-called ciliopathies. We found that homozygosity for a truncating variant in CEP162, a centrosome and microtubule-associated protein required for transition zone assembly during ciliogenesis and neuronal differentiation in the retina, caused late-onset retinitis pigmentosa in 2 unrelated families. The mutant CEP162-E646R*5 protein was expressed and properly localized to the mitotic spindle, but it was missing from the basal body in primary and photoreceptor cilia. This impaired recruitment of transition zone components to the basal body and corresponded to complete loss of CEP162 function at the ciliary compartment, reflected by delayed formation of dysmorphic cilia. In contrast, shRNA knockdown of Cep162 in the developing mouse retina increased cell death, which was rescued by expression of CEP162-E646R*5, indicating that the mutant retains its role for retinal neurogenesis. Human retinal degeneration thus resulted from specific loss of the ciliary function of CEP162.


Assuntos
Degeneração Retiniana , Animais , Humanos , Camundongos , Centrossomo/metabolismo , Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Neurogênese/genética , Retina/metabolismo , Degeneração Retiniana/metabolismo
16.
BMC Bioinformatics ; 13: 5, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22233380

RESUMO

BACKGROUND: Throughout the metazoan lineage, typically gonadal expressed Piwi proteins and their guiding piRNAs (~26-32nt in length) form a protective mechanism of RNA interference directed against the propagation of transposable elements (TEs). Most piRNAs are generated from genomic piRNA clusters. Annotation of experimentally obtained piRNAs from small RNA/cDNA-libraries and detection of genomic piRNA clusters are crucial for a thorough understanding of the still enigmatic piRNA pathway, especially in an evolutionary context. Currently, detection of piRNA clusters relies on bioinformatics rather than detection and sequencing of primary piRNA cluster transcripts and the stringency of the methods applied in different studies differs considerably. Additionally, not all important piRNA cluster characteristics were taken into account during bioinformatic processing. Depending on the applied method this can lead to: i) an accidentally underrepresentation of TE related piRNAs, ii) overlook duplicated clusters harboring few or no single-copy loci and iii) false positive annotation of clusters that are in fact just accumulations of multi-copy loci corresponding to frequently mapped reads, but are not transcribed to piRNA precursors. RESULTS: We developed a software which detects and analyses piRNA clusters (proTRAC, probabilistic TRacking and Analysis of Clusters) based on quantifiable deviations from a hypothetical uniform distribution regarding the decisive piRNA cluster characteristics. We used piRNA sequences from human, macaque, mouse and rat to identify piRNA clusters in the respective species with proTRAC and compared the obtained results with piRNA cluster annotation from piRNABank and the results generated by different hitherto applied methods.proTRAC identified clusters not annotated at piRNABank and rejected annotated clusters based on the absence of important features like strand asymmetry. We further show, that proTRAC detects clusters that are passed over if a minimum number of single-copy piRNA loci are required and that proTRAC assigns more sequence reads per cluster since it does not preclude frequently mapped reads from the analysis. CONCLUSIONS: With proTRAC we provide a reliable tool for detection, visualization and analysis of piRNA clusters. Detected clusters are well supported by comprehensible probabilistic parameters and retain a maximum amount of information, thus overcoming the present conflict of sensitivity and specificity in piRNA cluster detection.


Assuntos
RNA Interferente Pequeno/isolamento & purificação , Software , Animais , Elementos de DNA Transponíveis , Biblioteca Gênica , Genômica , Humanos , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos
17.
BMC Evol Biol ; 11: 297, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21989384

RESUMO

BACKGROUND: Several mechanistic models aim to explain the diversification of the multitude of endemic species on Madagascar. The island's biogeographic history probably offered numerous opportunities for secondary contact and subsequent hybridization. Existing diversification models do not consider a possible role of these processes. One key question for a better understanding of their potential importance is how they are influenced by different environmental settings. Here, we characterized a contact zone between two species of mouse lemurs, Microcebus griseorufus and M. murinus, in dry spiny bush and mesic gallery forest that border each other sharply without intermediate habitats between them. We performed population genetic analyses based on mtDNA sequences and nine nuclear microsatellites and compared the results to a known hybrid zone of the same species in a nearby wide gradient from dry spiny bush over transitional forest to humid littoral forest. RESULTS: In the spiny-gallery system, Microcebus griseorufus is restricted to the spiny bush; Microcebus murinus occurs in gallery forest and locally invades the dryer habitat of its congener. We found evidence for bidirectional introgressive hybridization, which is closely linked to increased spatial overlap within the spiny bush. Within 159 individuals, we observed 18 hybrids with mitochondrial haplotypes of both species. Analyses of simulated microsatellite data indicate that we identified hybrids with great accuracy and that we probably underestimated their true number. We discuss short-term climatic fluctuations as potential trigger for the dynamic of invasion and subsequent hybridization. In the gradient hybrid zone in turn, long-term aridification could have favored unidirectional nuclear introgression from Microcebus griseorufus into M. murinus in transitional forest. CONCLUSIONS: Madagascar's southeastern transitional zone harbors two very different hybrid zones of mouse lemurs in different environmental settings. This sheds light on the multitude of opportunities for the formation of hybrid zones and indicates an important influence of environmental factors on secondary contact and hybridization. Our findings suggest that hybridization could enhance the adaptability of mouse lemurs without necessarily leading to a loss of distinctiveness. They point to a potential role of hybridization in Madagascar's diversification history that requires further investigation.


Assuntos
Cheirogaleidae/genética , Ecossistema , Hibridização Genética , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Primers do DNA/genética , DNA Mitocondrial/genética , Genética Populacional , Haplótipos/genética , Desequilíbrio de Ligação , Madagáscar , Repetições de Microssatélites/genética , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA
18.
Cells ; 9(6)2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486081

RESUMO

P-element induced wimpy testis (PIWIs) are crucial guardians of genome integrity, particularly in germ cells. While mammalian PIWIs have been primarily studied in mouse and rat, a homologue for the human PIWIL3 gene is absent in the Muridae family, and hence the unique function of PIWIL3 in germ cells cannot be effectively modeled by mouse knockouts. Herein, we investigated the expression, distribution, and interaction of PIWIL3 in bovine oocytes. We localized PIWIL3 to mitochondria, and demonstrated that PIWIL3 expression is stringently controlled both spatially and temporally before and after fertilization. Moreover, we identified PIWIL3 in a mitochondrial-recruited three-membered complex with Tudor and KH domain-containing protein (TDRKH) and poly(A)-specific ribonuclease-like domain containing 1 (PNLDC1), and demonstrated by mutagenesis that PIWIL3 N-terminal arginines are required for complex assembly. Finally, we sequenced the piRNAs bound to PIWIL3-TDRKH-PNLDC1 and report here that about 50% of these piRNAs map to transposable elements, recapitulating the important role of PIWIL3 in maintaining genome integrity in mammalian oocytes.


Assuntos
Proteínas Argonautas/metabolismo , Oócitos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Arginina/metabolismo , Proteínas Argonautas/química , Bovinos , Citoplasma/metabolismo , Elementos de DNA Transponíveis/genética , Desenvolvimento Embrionário , Exorribonucleases/metabolismo , Mitocôndrias/metabolismo , Ligação Proteica , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/química
19.
Genome Biol Evol ; 11(4): 1088-1104, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30888404

RESUMO

PIWI proteins and their guiding Piwi-interacting (pi-) RNAs direct the silencing of target nucleic acids in the animal germline and soma. Although in mammal testes fetal piRNAs are involved in extensive silencing of transposons, pachytene piRNAs have additionally been shown to act in post-transcriptional gene regulation. The bulk of pachytene piRNAs is produced from large genomic loci, named piRNA clusters. Recently, the presence of reversed pseudogenes within piRNA clusters prompted the idea that piRNAs derived from such sequences might direct regulation of their parent genes. Here, we examine primate piRNA clusters and integrated pseudogenes in a comparative approach to gain a deeper understanding about mammalian piRNA cluster evolution and the presumed gene-regulatory role of pseudogene-derived piRNAs. Initially, we provide a broad analysis of the evolutionary relationships of piRNA clusters and their differential activity among six primate species. Subsequently, we show that pseudogenes in reserve orientation relative to piRNA cluster transcription direction generally do not exhibit signs of selection pressure and cause weakly conserved targeting of homologous genes among species, suggesting a lack of functional constraints and thus only a minor significance for gene regulation in most cases. Finally, we report that piRNA-producing loci generally tend to be located in active genomic regions with elevated gene and pseudogene density. Thus, we conclude that the presence of most pseudogenes in piRNA clusters might be regarded as a byproduct of piRNA cluster generation, whereas this does not exclude that some pseudogenes nevertheless play critical roles in individual cases.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Primatas/genética , Pseudogenes , RNA Interferente Pequeno/genética , Adaptação Biológica , Animais , Primatas/metabolismo , RNA Interferente Pequeno/metabolismo
20.
Open Biol ; 9(5): 190020, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31138098

RESUMO

Codon composition, GC content and local RNA secondary structures can have a profound effect on gene expression, and mutations affecting these parameters, even though they do not alter the protein sequence, are not neutral in terms of selection. Although evidence exists that, in some cases, selection favours more stable RNA secondary structures, we currently lack a concrete idea of how many genes are affected within a species, and whether this is a universal phenomenon in nature. We searched for signs of structural selection in a global manner, analysing a set of 1 million coding sequences from 73 species representing all domains of life, as well as viruses, by means of our newly developed software PACKEIS. We show that codon composition and amino acid identity are main determinants of RNA secondary structure. In addition, we show that the arrangement of synonymous codons within coding sequences is non-random, yielding extremely high, but also extremely low, RNA structuredness significantly more often than expected by chance. Taken together, we demonstrate that selection for high and low levels of secondary structure is a widespread phenomenon. Our results provide another line of evidence that synonymous mutations are less neutral than commonly thought, which is of importance for many evolutionary models.


Assuntos
Biologia Computacional/métodos , Fases de Leitura Aberta , RNA/química , Composição de Bases , Uso do Códon , Conformação de Ácido Nucleico , Software
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa