Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Lipid Res ; 59(6): 982-993, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29559521

RESUMO

Obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist that regulates bile acid and lipid metabolism. FXR activation induces distinct changes in circulating cholesterol among animal models and humans. The mechanistic basis of these effects has been elusive because of difficulties in studying lipoprotein homeostasis in mice, which predominantly package circulating cholesterol in HDLs. Here, we tested the effects of OCA in chimeric mice whose livers are mostly composed (≥80%) of human hepatocytes. Chimeric mice exhibited a human-like ratio of serum LDL cholesterol (LDL-C) to HDL cholesterol (HDL-C) at baseline. OCA treatment in chimeric mice increased circulating LDL-C and decreased circulating HDL-C levels, demonstrating that these mice closely model the cholesterol effects of FXR activation in humans. Mechanistically, OCA treatment increased hepatic cholesterol in chimeric mice but not in control mice. This increase correlated with decreased SREBP-2 activity and target gene expression, including a significant reduction in LDL receptor protein. Cotreatment with atorvastatin reduced total cholesterol, rescued LDL receptor protein levels, and normalized serum LDL-C. Treatment with two clinically relevant nonsteroidal FXR agonists elicited similar lipoprotein and hepatic changes in chimeric mice, suggesting that the increase in circulating LDL-C is a class effect of FXR activation.


Assuntos
Ácido Quenodesoxicólico/análogos & derivados , Quimera , Colesterol/metabolismo , Lipoproteínas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Atorvastatina/farmacologia , Ácido Quenodesoxicólico/farmacologia , Colesterol/sangue , Humanos , Lipoproteínas/sangue , Fígado/citologia , Masculino , Camundongos
2.
Pharmacol Rev ; 67(3): 564-600, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26071095

RESUMO

Amylin is a pancreatic ß-cell hormone that produces effects in several different organ systems. Here, we review the literature in rodents and in humans on amylin research since its discovery as a hormone about 25 years ago. Amylin is a 37-amino-acid peptide that activates its specific receptors, which are multisubunit G protein-coupled receptors resulting from the coexpression of a core receptor protein with receptor activity-modifying proteins, resulting in multiple receptor subtypes. Amylin's major role is as a glucoregulatory hormone, and it is an important regulator of energy metabolism in health and disease. Other amylin actions have also been reported, such as on the cardiovascular system or on bone. Amylin acts principally in the circumventricular organs of the central nervous system and functionally interacts with other metabolically active hormones such as cholecystokinin, leptin, and estradiol. The amylin-based peptide, pramlintide, is used clinically to treat type 1 and type 2 diabetes. Clinical studies in obesity have shown that amylin agonists could also be useful for weight loss, especially in combination with other agents.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Animais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiologia , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/uso terapêutico , Redução de Peso/efeitos dos fármacos
3.
Am J Physiol Gastrointest Liver Physiol ; 305(7): G483-95, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23886860

RESUMO

Shortcomings of previously reported preclinical models of nonalcoholic steatohepatitis (NASH) include inadequate methods used to induce disease and assess liver pathology. We have developed a dietary model of NASH displaying features observed clinically and methods for objectively assessing disease progression. Mice fed a diet containing 40% fat (of which ∼18% was trans fat), 22% fructose, and 2% cholesterol developed three stages of nonalcoholic fatty liver disease (steatosis, steatohepatitis with fibrosis, and cirrhosis) as assessed by histological and biochemical methods. Using digital pathology to reconstruct the left lateral and right medial lobes of the liver, we made comparisons between and within lobes to determine the uniformity of collagen deposition, which in turn informed experimental sampling methods for histological, biochemical, and gene expression analyses. Gene expression analyses conducted with animals stratified by disease severity led to the identification of several genes for which expression highly correlated with the histological assessment of fibrosis. Importantly, we have established a biopsy method allowing assessment of disease progression. Mice subjected to liver biopsy recovered well from the procedure compared with sham-operated controls with no apparent effect on liver function. Tissue obtained by biopsy was sufficient for gene and protein expression analyses, providing the opportunity to establish an objective method of assessing liver pathology before subjecting animals to treatment. The improved assessment techniques and the observation that mice fed the high-fat diet exhibit many clinically relevant characteristics of NASH establish a preclinical model for identifying pharmacological interventions with greater likelihood of translating to the clinic.


Assuntos
Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Transcriptoma
4.
Am J Physiol Gastrointest Liver Physiol ; 302(8): G762-72, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22268099

RESUMO

These preclinical studies aimed to 1) increase our understanding the dietary induction of nonalcoholic steatohepatitis (NASH), and, 2) further explore the utility and mechanisms of glucagon-like peptide-1 receptor (GLP-1R) agonism in NASH. We compared the effects of a high trans-fat (HTF) or high lard fat (HLF) diet on key facets of nonalcoholic fatty liver disease (NAFLD)/NASH in Lep(ob)/Lep(ob) and C57BL6J (B6) mice. Although HLF-fed mice experienced overall greater gains in weight and adiposity, the addition of trans-fat better mirrored pathophysiological features of NASH (e.g., hepatomegaly, hepatic lipid, and fibrosis). Administration of AC3174, an exenatide analog, and GLP-1R agonist to Lep(ob)/Lep(ob) and B6 ameliorated hepatic endpoints in both dietary models. Next, we assessed whether AC3174-mediated improvements in diet-induced NASH were solely due to weight loss in HTF-fed mice. AC3174-treatment significantly reduced body weight (8.3%), liver mass (14.2%), liver lipid (12.9%), plasma alanine aminotransferase, and triglycerides, whereas a calorie-restricted, weight-matched group demonstrated only modest nonsignificant reductions in liver mass (9%) and liver lipid (5.1%) relative to controls. Treatment of GLP-1R-deficient (GLP-1RKO) mice with AC3174 had no effect on body weight, adiposity, liver or plasma indices pointing to the GLP-1R-dependence of AC3174's effects. Interestingly, the role of endogenous GLP-1Rs in NASH merits further exploration as the GLP-1RKO model was protected from the deleterious hepatic effects of HTF. Our pharmacological data further support the clinical evaluation of the utility of GLP-1R agonists for treatment of NASH.


Assuntos
Fígado Gorduroso/tratamento farmacológico , Peptídeos/uso terapêutico , Receptores de Glucagon/agonistas , Animais , Composição Corporal/fisiologia , Peso Corporal/efeitos dos fármacos , Dieta , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Determinação de Ponto Final , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Expressão Gênica/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hormônios/sangue , Leptina/genética , Lipídeos/química , Fígado/metabolismo , Fígado/patologia , Testes de Função Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica , Receptores de Glucagon/genética , Ácidos Graxos trans/farmacologia , Redução de Peso/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 105(20): 7257-62, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18458326

RESUMO

Body weight is regulated by complex neurohormonal interactions between endocrine signals of long-term adiposity (e.g., leptin, a hypothalamic signal) and short-term satiety (e.g., amylin, a hindbrain signal). We report that concurrent peripheral administration of amylin and leptin elicits synergistic, fat-specific weight loss in leptin-resistant, diet-induced obese rats. Weight loss synergy was specific to amylin treatment, compared with other anorexigenic peptides, and dissociable from amylin's effect on food intake. The addition of leptin after amylin pretreatment elicited further weight loss, compared with either monotherapy condition. In a 24-week randomized, double-blind, clinical proof-of-concept study in overweight/obese subjects, coadministration of recombinant human leptin and the amylin analog pramlintide elicited 12.7% mean weight loss, significantly more than was observed with either treatment alone (P < 0.01). In obese rats, amylin pretreatment partially restored hypothalamic leptin signaling (pSTAT3 immunoreactivity) within the ventromedial, but not the arcuate nucleus and up-regulated basal and leptin-stimulated signaling in the hindbrain area postrema. These findings provide both nonclinical and clinical evidence that amylin agonism restored leptin responsiveness in diet-induced obesity, suggesting that integrated neurohormonal approaches to obesity pharmacotherapy may facilitate greater weight loss by harnessing naturally occurring synergies.


Assuntos
Amiloide/agonistas , Amiloide/química , Leptina/metabolismo , Tecido Adiposo/metabolismo , Amiloide/metabolismo , Amiloide/farmacologia , Animais , Peso Corporal , Restrição Calórica , Modelos Animais de Doenças , Hormônios/metabolismo , Hipotálamo/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Leptina/análogos & derivados , Leptina/farmacologia , Modelos Biológicos , Obesidade/genética , Obesidade/terapia , Consumo de Oxigênio , Ratos
6.
Am J Physiol Regul Integr Comp Physiol ; 299(2): R623-31, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20554938

RESUMO

Circulating amylin inhibits food intake via activation of the area postrema (AP). The aim of this study was to identify the neurochemical phenotype of the neurons mediating amylin's hypophagic action by immunohistochemical and feeding studies in rats. Expression of c-Fos protein was used as a marker for neuronal activation and dopamine-beta-hydroxylase (DBH), the enzyme-catalyzing noradrenaline synthesis, as a marker for noradrenergic neurons. We found that approximately 50% of amylin-activated AP neurons are noradrenergic. To clarify the functional role of these neurons in amylin's effect on eating, noradrenaline-containing neurons in the AP were lesioned using a saporin conjugated to an antibody against DBH. Amylin (5 or 20 microg/kg s.c.)-induced anorexia was observed in sham-lesioned rats with both amylin doses. Rats with a lesion of > 50% of the noradrenaline neurons were unresponsive to the low dose of amylin (5 microg/kg) and only displayed a reduction in food intake 60 min after injection of the high amylin dose (20 microg/kg). In a terminal experiment, the same rats received amylin (20 microg/kg) or saline. The AP and nucleus of the solitary tract (NTS) were stained for DBH to assess noradrenaline lesion success and for c-Fos expression to evaluate amylin-induced neuronal activation. In contrast to sham-lesioned animals, noradrenaline-lesioned rats did not show a significant increase in amylin-induced c-Fos expression in the AP and NTS. We conclude that the noradrenergic neurons in the AP mediate at least part of amylin's hypophagic effect.


Assuntos
Fibras Adrenérgicas/metabolismo , Amiloide/metabolismo , Regulação do Apetite , Área Postrema/metabolismo , Comportamento Animal , Ingestão de Alimentos , Norepinefrina/metabolismo , Fibras Adrenérgicas/patologia , Amiloide/administração & dosagem , Amiloide/toxicidade , Animais , Anorexia/induzido quimicamente , Anorexia/metabolismo , Área Postrema/patologia , Dopamina beta-Hidroxilase/metabolismo , Imuno-Histoquímica , Injeções Subcutâneas , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Masculino , Fenótipo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
7.
Sci Rep ; 9(1): 9046, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227742

RESUMO

Obeticholic acid (OCA) and elafibranor (ELA) are selective and potent agonists for the farnesoid X receptor (FXR) and dual peroxisome proliferator-activated receptor α/δ (PPAR-α/δ), respectively. Both agents have demonstrated clinical efficacy in nonalcoholic steatohepatitis (NASH). The present study used OCA and ELA to compare the effects of mono- and combination therapies on metabolic and histological endpoints in Lepob/ob mice with established diet-induced and biopsy-confirmed NASH (ob/ob-NASH). ob/ob-NASH mice were fed the AMLN diet high in trans-fat, fructose and cholesterol for 15 weeks, whereafter they received vehicle, OCA (30 mg/kg, PO, QD), ELA (3, 10 mg/kg, PO, QD), or combinations (OCA + ELA) for eight weeks. Within-subject comparisons were performed on histomorphometric changes, including fractional area of liver fat, galectin-3 and Col1a1. OCA and ELA monotherapies improved all quantitative histopathological parameters and OCA + ELA combinations exerted additive effects on metabolic and histological endpoints. In agreement with their different molecular mechanisms of action, OCA and ELA monotherapies elicited distinct hepatic gene expression profiles and their combination led to profound transcriptome changes associated with further improvements in lipid handling and insulin signaling, suppression of immune responses and reduced extracellular matrix formation. In conclusion, these findings provide preclinical proof-of-concept for combined FXR and PPAR-α/δ agonist-based therapies in NASH.


Assuntos
Chalconas/uso terapêutico , Ácido Quenodesoxicólico/análogos & derivados , Cirrose Hepática/tratamento farmacológico , Propionatos/uso terapêutico , Animais , Biópsia , Ácido Quenodesoxicólico/uso terapêutico , Modelos Animais de Doenças , Cirrose Hepática/patologia , Camundongos , PPAR alfa/metabolismo , Estudo de Prova de Conceito , Transcrição Gênica
8.
Endocrinology ; 149(11): 5679-87, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18669592

RESUMO

Previously, we reported that combination treatment with rat amylin (100 microg/kg.d) and murine leptin (500 microg/kg.d) elicited greater inhibition of food intake and greater body weight loss in diet-induced obese rats than predicted by the sum of the monotherapy conditions, a finding consistent with amylin-induced restoration of leptin responsiveness. In the present study, a 3 x 4 factorial design was used to formally test for a synergistic interaction, using lower dose ranges of amylin (0, 10, and 50 microg/kg.d) and leptin (0, 5, 25, and 125 microg/kg.d), on food intake and body weight after 4 wk continuous infusion. Response surface methodology analysis revealed significant synergistic anorexigenic (P < 0.05) and body weight-lowering (P < 0.05) effects of amylin/leptin combination treatment, with up to 15% weight loss at doses considerably lower than previously reported. Pair-feeding (PF) experiments demonstrated that reduction of food intake was the predominant mechanism for amylin/leptin-mediated weight loss. However, fat loss was 2-fold greater in amylin/leptin-treated rats than PF controls. Furthermore, amylin/leptin-mediated weight loss was not accompanied by the counterregulatory decrease in energy expenditure and chronic shift toward carbohydrate (rather than fat) utilization observed with PF. Hepatic gene expression analyses revealed that 28 d treatment with amylin/leptin (but not PF) was associated with reduced expression of genes involved in hepatic lipogenesis (Scd1 and Fasn mRNA) and increased expression of genes involved in lipid utilization (Pck1 mRNA). We conclude that amylin/leptin interact synergistically to reduce body weight and adiposity in diet-induced obese rodents through a number of anorexigenic and metabolic effects.


Assuntos
Amiloide/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Leptina/farmacologia , Obesidade/patologia , Transdução de Sinais/efeitos dos fármacos , Amiloide/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Restrição Calórica , Dieta/efeitos adversos , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Ingestão de Alimentos/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Leptina/administração & dosagem , Lipídeos/sangue , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley
9.
World J Gastroenterol ; 24(2): 195-210, 2018 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-29375205

RESUMO

AIM: To characterize the efficacy of the dual FXR/TGR5 receptor agonist INT-767 upon histological endpoints in a rodent model of diet-induced and biopsy-confirmed non-alcoholic steatohepatitis (NASH). METHODS: The effects of INT-767 on histological features of NASH were assessed in two studies using Lepob/ob (ob/ob) NASH mice fed the AMLN diet (high fat with trans-fat, cholesterol and fructose). In a proof-of-concept study, Lepob/ob (ob/ob) NASH mice were first dosed with INT-767 (3 or 10 mg/kg for 8 wk). A second ob/ob NASH study compared INT-767 (3 and 10 mg/kg) to obeticholic acid (OCA) (10 or 30 mg/kg; 16 wk). Primary histological endpoints included qualitative and quantitative assessments of NASH. Other metabolic and plasma endpoints were also assessed. A comparative assessment of INT-767 and OCA effects on drug distribution and hepatic gene expression was performed in C57Bl/6 mice on standard chow. C57Bl/6 mice were orally dosed with INT-767 or OCA (1-30 mg/kg) for 2 wk, and expression levels of candidate genes were assessed by RNA sequencing and tissue drug levels were measured by liquid chromatography tandem-mass spectrometry. RESULTS: INT-767 dose-dependently (3 and 10 mg/kg, PO, QD, 8 wk) improved qualitative morphometric scores on steatohepatitis severity, inflammatory infiltrates and fibrosis stage. Quantitative morphometric analyses revealed that INT-767 reduced parenchymal collagen area, collagen fiber density, inflammation (assessed by Galectin-3 immunohistochemistry) and hepatocyte lipid droplet area following INT-767 treatment. In a comparative study (16 wk), the FXR agonists OCA (10 and 30 mg/kg) and INT-767 (3 and 10 mg/kg) both improved NASH histopathology, with INT-767 exerting greater therapeutic potency and efficacy than OCA. Mechanistic studies suggest that both drugs accumulate similarly within the liver and ileum, however, the effects of INT-767 may be driven by enhanced hepatic, but not ileal, FXR function. CONCLUSION: These findings confirm the potential utility of FXR and dual FXR/TGR5 activation as disease intervention strategies in NASH.


Assuntos
Ácidos e Sais Biliares/farmacologia , Dieta Hiperlipídica , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/tratamento farmacológico , Animais , Ácidos e Sais Biliares/metabolismo , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Obesos , Microscopia de Fluorescência por Excitação Multifotônica , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Estudo de Prova de Conceito , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas em Tandem , Fatores de Tempo
10.
Endocrinology ; 148(12): 6054-61, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17761760

RESUMO

Circulating levels of the pancreatic beta-cell peptide hormone amylin and the gut peptide PYY[3-36] increase after nutrient ingestion. Both have been implicated as short-term signals of meal termination with anorexigenic and weight-reducing effects. However, their combined effects are unknown. We report that the combination of amylin and PYY[3-36] elicited greater anorexigenic and weight-reducing effects than either peptide alone. In high-fat-fed rats, a single ip injection of amylin (10 microg/kg) plus PYY[3-36] (1000 microg/kg) reduced food intake for 24 h (P < 0.05 vs. vehicle), whereas the anorexigenic effects of either PYY[3-36] or amylin alone began to diminish 6 h after injection. These anorexigenic effects were dissociable from changes in locomotor activity. Subcutaneous infusion of amylin plus PYY[3-36] for 14 d suppressed food intake and body weight to a greater extent than either agent alone in both rat and mouse diet-induced obesity (DIO) models (P < 0.05). In DIO-prone rats, 24-h metabolic rate was maintained despite weight loss, and amylin plus PYY[3-36] (but not monotherapy) increased 24-h fat oxidation (P < 0.05 vs. vehicle). Finally, a 4 x 3 factorial design was used to formally describe the interaction between amylin and PYY[3-36]. DIO-prone rats were treated with amylin (0, 4, 20, and 100 microg/kg.d) and PYY[3-36] (0, 200, 400 microg/kg.d) alone and in combination for 14 d. Statistical analyses revealed that food intake suppression with amylin plus PYY[3-36] treatment was synergistic, whereas body weight reduction was additive. Collectively, these observations highlight the importance of studying peptide hormones in combination and suggest that integrated neurohormonal approaches may hold promise as treatments for obesity.


Assuntos
Amiloide/farmacologia , Obesidade/tratamento farmacológico , Peptídeo YY/farmacologia , Redução de Peso/efeitos dos fármacos , Amiloide/administração & dosagem , Amiloide/uso terapêutico , Animais , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Gorduras na Dieta , Sinergismo Farmacológico , Quimioterapia Combinada , Ingestão de Alimentos/efeitos dos fármacos , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Masculino , Camundongos , Obesidade/induzido quimicamente , Fragmentos de Peptídeos , Peptídeo YY/administração & dosagem , Peptídeo YY/uso terapêutico , Ratos
11.
Endocrinology ; 147(12): 5855-64, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16935845

RESUMO

Effects of amylin and pair feeding (PF) on body weight and metabolic parameters were characterized in diet-induced obesity-prone rats. Peripherally administered rat amylin (300 microg/kg.d, 22d) reduced food intake and slowed weight gain: approximately 10% (P<0.05), similar to PF. Fat loss was 3-fold greater in amylin-treated rats vs. PF (P<0.05). Whereas PF decreased lean tissue (P<0.05 vs. vehicle controls; VEH), amylin did not. During wk 1, amylin and PF reduced 24-h respiratory quotient (mean+/-se, 0.82+/-0.0, 0.81+/-0.0, respectively; P<0.05) similar to VEH (0.84+/-0.01). Energy expenditure (EE mean+/-se) tended to be reduced by PF (5.67+/-0.1 kcal/h.kg) and maintained by amylin (5.86+/-0.1 kcal/h.kg) relative to VEH (5.77+/-0.0 kcal/h.kg). By wk 3, respiratory quotient no longer differed; however, EE increased with amylin treatment (5.74+/-0.09 kcal/.kg; P<0.05) relative to VEH (5.49+/-0.06) and PF (5.38+/-0.07 kcal/h.kg). Differences in EE, attributed to differences in lean mass, argued against specific amylin-induced thermogenesis. Weight loss in amylin and pair-fed rats was accompanied by similar increases arcuate neuropeptide Y mRNA (P<0.05). Amylin treatment, but not PF, increased proopiomelanocortin mRNA levels (P<0.05 vs. VEH). In a rodent model of obesity, amylin reduced body weight and body fat, with relative preservation of lean tissue, through anorexigenic and specific metabolic effects.


Assuntos
Amiloide/farmacologia , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Tecido Adiposo/metabolismo , Proteína Agouti Sinalizadora , Animais , Fármacos Antiobesidade/farmacologia , Calorimetria Indireta , Dieta Aterogênica , Glicogênio/análise , Hormônios Hipotalâmicos/metabolismo , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Fígado/química , Fígado/metabolismo , Glicogênio Hepático/análise , Masculino , Melaninas/metabolismo , Camundongos , Músculo Esquelético/química , Neuropeptídeo Y/metabolismo , Obesidade/sangue , Obesidade/etiologia , Hormônios Hipofisários/metabolismo , Pró-Opiomelanocortina/metabolismo , Ratos , Magreza/sangue , Triglicerídeos/análise
12.
Brain Res Mol Brain Res ; 103(1-2): 146-50, 2002 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-12106700

RESUMO

A good in vitro model within which to investigate molecular interactions between feeding relevant neuropeptide systems has been lacking. Consequently, we began using reverse transcriptase-polymerase chain reaction (RT-PCR) to screen various neuronal cell lines for the presence of feeding relevant neuropeptides and receptors. N1E-115 murine neuroblastoma cells have emerged as an attractive candidate for further analysis because they contain mRNA for a variety of key systems implicated in the regulation of energy homeostasis.


Assuntos
Metabolismo Energético/fisiologia , Neuroblastoma , Neuropeptídeos/genética , Proteínas Repressoras , Fatores de Transcrição , Proteína Relacionada com Agouti , Animais , Peptídeos e Proteínas de Sinalização Intercelular , Leptina/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Neuropeptídeo Y/genética , Pró-Opiomelanocortina/genética , Proteínas/genética , RNA Mensageiro/análise , Receptor de Insulina/genética , Receptor Tipo 3 de Melanocortina , Receptor Tipo 4 de Melanocortina , Receptores da Corticotropina/genética , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina , Células Tumorais Cultivadas/metabolismo
13.
Brain Res ; 986(1-2): 1-11, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-12965224

RESUMO

The central melanocortin system has emerged as a potential regulator of food intake. This action of melanocortins appears to occur through intrahypothalamic, melanocortin-containing projections, including those from the arcuate to the paraventricular nucleus (PVN). Although the complexity of feeding behavior and the long duration of the effects of melanocortins on food intake suggest changes in gene expression, the mechanism by which such changes occur has been elusive. In the present report, we describe experiments using in vitro and in vivo approaches to demonstrate melanocortin-induced phosphorylation (activation) of members of the mitogen-activated protein kinase (MAPK) family of transcription factors. First, application of the melanocortin agonist MTII to COS-1 cells resulted in an increase in phosphorylated MAPK after the cells were transfected with the melanocortin type 4 receptor (MC4-R), but not the type 3 receptor. Formation of cAMP, however, was observed when either receptor subtype was transfected. Subsequent experiments revealed that the effect of MTII on MAPK activation in MC4-R-transfected cells was dose-dependent and was maximal after 10 min of MTII exposure. Second, central injections of MTII increased the number of phospho-MAPK-immunoreactive cells in the rat PVN compared to vehicle-injected animals. When coupled with immunohistochemical identification of PVN neurons containing oxytocin, a clear segregation was apparent, allowing for a precise anatomical description of the pattern of activated MAPK within the PVN. These data are the first to suggest a differential coupling of MC4-R and may describe a mechanism through which the long-term and persistent behavioral actions of melanocortins are mediated.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Vias Neurais/enzimologia , Núcleo Hipotalâmico Paraventricular/enzimologia , Receptores de Melanocortina/metabolismo , alfa-MSH/metabolismo , Animais , Células COS , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Oligopeptídeos/farmacologia , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Melanocortina/genética , alfa-MSH/agonistas
14.
Artigo em Inglês | MEDLINE | ID: mdl-24657407

RESUMO

Peptide agonists of the glucagon-like peptide-1 receptor (GLP-1R) and the cholecystokinin-1 receptor (CCK1-R) have therapeutic potential because of their marked anorexigenic and weight lowering effects. Furthermore, recent studies in rodents have shown that co-administration of these agents may prove more effective than treatment either of the peptide classes alone. To correlate the pharmacodynamic effects to the pharmacokinetics of these peptide drugs in vivo, a sensitive and robust bioanalytical method is essential. Furthermore, the simultaneous determination of both analytes in plasma samples by a single method offers obvious advantages. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is well suited to this goal through its ability to simultaneously monitor multiple analytes through selected reaction monitoring (SRM). However, it is a challenge to find appropriate conditions that allow two peptides with widely disparate physiochemical properties to be simultaneously analyzed while maintaining the necessary sensitivity for their accurate plasma concentrations. Herein, we report an on-line solid phase extraction (SPE) LC-MS/MS method for simultaneous quantification of the CCK1-R agonist AC170222 and the GLP-1R agonist AC3174 in rodent plasma. The assay has a linear range from 0.0975 to 100ng/mL, with lower limits of quantification of 0.0975ng/mL and 0.195ng/mL for AC3174 and AC170222, respectively. The intra- and inter-day precisions were below 15%. The developed LC-MS/MS method was used to simultaneously quantify AC3174 and AC170222, the results showed that the terminal plasma concentrations of AC3174 or AC170222 were comparable between groups of animals that were administered with the peptides alone (247±15pg/mL of AC3174 and 1306±48pg/mL of AC170222), or in combination (222±32pg/mL and 1136±47pg/mL of AC3174 and AC170222, respectively). These data provide information on the drug exposure to aid in assessing the combination effects of AC3174 and AC170222 on rodent metabolism.


Assuntos
Depressores do Apetite/análise , Receptores da Colecistocinina/agonistas , Receptores de Glucagon/agonistas , Extração em Fase Sólida/métodos , Animais , Depressores do Apetite/isolamento & purificação , Depressores do Apetite/farmacocinética , Depressores do Apetite/farmacologia , Cromatografia Líquida/métodos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Limite de Detecção , Masculino , Peptídeos/sangue , Peptídeos/isolamento & purificação , Peptídeos/farmacocinética , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
15.
Curr Opin Endocrinol Diabetes Obes ; 20(1): 8-13, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23183359

RESUMO

PURPOSE OF REVIEW: This review focuses on recent advances in receptor signaling, neurobiology, and pharmacological interactions of amylin with nutritive status, as well as other metabolism-related regulatory signals. RECENT FINDINGS: Manipulation of components of the amylin receptor complex revealed important roles for the accessory proteins of amylin receptors in energy balance. In-vitro findings point to potential novel sites of action and postreceptor signaling pathways activated by amylin. Neurobiological studies elucidated how amylin activation of hindbrain neural circuitry modulates hypothalamic signaling and responsiveness to leptin. The notion of 'amylin resistance' was addressed in several models (drug or diet-induced hyper-amylinemia). Finally, progress in the design and delivery of amylinomimetics is briefly discussed. SUMMARY: Collectively, these mechanistic studies deepen our understanding of the role of endogenous amylin in the regulation of appetite and adiposity, and hopefully will help guide research efforts towards the development of more effective amylin-based therapies for metabolic diseases.


Assuntos
Adiposidade/efeitos dos fármacos , Depressores do Apetite/farmacologia , Regulação do Apetite/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adiposidade/fisiologia , Amiloide/metabolismo , Animais , Regulação do Apetite/fisiologia , Metabolismo Energético , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/deficiência , Leptina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurobiologia/tendências , Obesidade/tratamento farmacológico , Farmacologia/tendências , Ratos , Ratos Endogâmicos , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/efeitos dos fármacos , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo
16.
Eur J Pharmacol ; 698(1-3): 292-8, 2013 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-23178527

RESUMO

Antagonism of opioid systems (e.g., with naltrexone) has been explored as an anti-obesity strategy, and is particularly effective when co-administered with dual inhibitors of dopamine and norepinephrine reuptake (e.g., bupropion). Previously, we demonstrated that amylin enhances the food intake lowering and weight loss effects of neurohormonal (e.g., leptin, cholecystokinin, melanocortins) and small molecule (e.g., phentermine, sibutramine) agents. Here, we sought to characterize the interaction of amylin with naltrexone/bupropion on energy balance. Wild-type and amylin knockout mice were similarly responsive to the food intake lowering effects of either naltrexone (1mg/kg, subcutaneous) or bupropion (50mg/kg, subcutaneous) suggesting that they act independently of amylinergic systems and could interact additively when given in combination with amylin. To test this, diet-induced obese rats were treated (for 11 days) with vehicle, rat amylin (50 µg/kg/d, infused subcutaneously), naltrexone/bupropion (1 and 20mg/kg, respectively by twice daily subcutaneous injection) or their combination. We found that amylin+naltrexone/bupropion combination therapy exerted additive effects to reduce cumulative food intake, body weight and fat mass. In a separate study, the effects of amylin and naltrexone/bupropion administered at the same doses (for 14 days) were compared to a pair-fed group. Although the combination and pair-fed groups lost a similar amount of body weight, rats treated with the combination lost 68% more fat and better maintained their lean mass. These findings support the strategy of combined amylin agonism with opioid and catecholaminergic signaling systems for the treatment of obesity.


Assuntos
Depressores do Apetite/farmacologia , Peso Corporal/efeitos dos fármacos , Bupropiona/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Naltrexona/farmacologia , Animais , Composição Corporal/efeitos dos fármacos , Dieta/efeitos adversos , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Polipeptídeo Amiloide das Ilhotas Pancreáticas/deficiência , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Masculino , Camundongos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Ratos , Fatores de Tempo
17.
Br J Pharmacol ; 166(1): 121-36, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21671898

RESUMO

The discoveries of the incretin hormone glucagon-like peptide-1 (GLP-1) and the ß-cell hormone amylin have translated into hormone-based therapies for diabetes. Both classes of molecules also exhibit weight-lowering effects and have been investigated for their anti-obesity potential. In the present review, we explore the mechanisms underlying the physiological and pharmacological actions of GLP-1 and amylin agonism. Despite their similarities (e.g. both molecular classes slow gastric emptying, decrease glucagon and inhibit food intake), there are important distinctions between the central and/or peripheral pathways that mediate their effects on glycaemia and energy balance. We suggest that understanding the similarities and differences between these molecules holds important implications for the development of novel, combination-based therapies, which are increasingly the norm for diabetes/metabolic disease. Finally, the future of GLP-1- and amylin agonist-based therapeutics is discussed.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/agonistas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/agonistas , Receptores de Glucagon/agonistas , Animais , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/fisiopatologia , Ingestão de Alimentos/efeitos dos fármacos , Esvaziamento Gástrico/efeitos dos fármacos , Glucagon/efeitos dos fármacos , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/fisiopatologia , Obesidade/tratamento farmacológico , Obesidade/fisiopatologia , Receptores de Glucagon/metabolismo
18.
Trends Endocrinol Metab ; 21(8): 473-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20413324

RESUMO

Although the adipokine leptin is regarded as the prototypical long-term signal of energy balance, obese individuals are largely nonresponsive to exogenous leptin administration. Restoration of leptin responsiveness in obesity has been elusive despite a detailed understanding of the molecular mechanisms of leptin signaling. Recent translational research findings point to a potential therapeutic approach that incorporates amylin (a beta-cell hormone) and leptin agonism, with amylin restoring or enhancing leptin sensitivity. Here we hypothesize various physiological, neurobiological and molecular mechanisms that could mediate the interaction of these two neurohormonal signals and discuss several methodological challenges. Understanding how amylin agonism improves leptin function could point to general therapeutic strategies for combating leptin resistance and associated obesity.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/fisiologia , Leptina/farmacologia , Leptina/fisiologia , Obesidade/tratamento farmacológico , Animais , Peso Corporal/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Hipotálamo/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/uso terapêutico , Leptina/uso terapêutico , Obesidade/fisiopatologia , Rombencéfalo/efeitos dos fármacos
19.
Brain Res ; 1350: 86-94, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20096672

RESUMO

Active weight loss and the maintenance of a weight-reduced state elicit potent counter-regulatory responses in multiple neurochemical pathways rendering monotherapy-based anti-obesity agents relatively ineffective. Herein, we highlight potential strategies for overcoming counter-regulatory responses to states of negative energy balance using combinatorial approaches. We discuss methodological and practical considerations for preclinical modeling of additive/synergistic weight loss combinations that have emerged in our translational research program aimed at identifying naturally occurring neurohormonal synergies. As an example of synergy, pharmacological and mechanistic findings with the combined administration of the beta-cell hormone amylin and the adipokine leptin are reviewed. Finally, we briefly discuss what the future landscape of neurohormonal anti-obesity combinations may hold.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/uso terapêutico , Leptina/uso terapêutico , Obesidade/terapia , Redução de Peso/fisiologia , Fármacos Antiobesidade/uso terapêutico , Terapia Combinada , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Leptina/metabolismo , Obesidade/metabolismo
20.
Obesity (Silver Spring) ; 18(1): 21-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19543217

RESUMO

We have previously shown that combined amylin + leptin agonism elicits synergistic weight loss in diet-induced obese (DIO) rats. Here, we assessed the comparative efficacy of amylin, leptin, or amylin + leptin in the maintenance of amylin + leptin-mediated weight loss. DIO rats pretreated with the combination of rat amylin (50 microg/kg/day) and murine leptin (125 microg/kg/day) for 4 weeks were subsequently infused with either vehicle, amylin, leptin, or amylin + leptin for an additional 4 weeks. Food intake, body weight, body composition, plasma parameters, and the expression of key metabolic genes in liver and white adipose tissue (WAT) were assessed. Amylin + leptin treatment (weeks 0-4) reduced body weight to 87.5% of baseline. Rats subsequently maintained on vehicle or leptin regained all weight (to 104.2 and 101.2% of baseline, respectively), those maintained on amylin had partial weight regain (97.0%). By contrast, weight loss was largely maintained with continued amylin + leptin treatment (91.4%), associated with a 10% decrease in adiposity. Cumulative food intake (weeks 5-8) was reduced by amylin and amylin + leptin, but not by leptin alone. Amylin + leptin, but not amylin or leptin alone, reduced plasma triglycerides (by 55%), total cholesterol (by 19%), and insulin (by 57%) compared to vehicle. Amylin + leptin also reduced hepatic stearoyl-CoA desaturase-1 (Scd1) mRNA, and increased WAT mRNA levels of adiponectin, fatty acid synthase (Fasn), and lipoprotein lipase (Lpl). We conclude that, in DIO rats, maintenance of amylin + leptin-mediated weight loss requires continued treatment with both agonists, and is accompanied by sustained improvements in body composition, and indices of lipid metabolism and insulin sensitivity.


Assuntos
Amiloide/farmacologia , Peso Corporal/efeitos dos fármacos , Dieta , Leptina/farmacologia , Obesidade/tratamento farmacológico , Redução de Peso/efeitos dos fármacos , Adiponectina/sangue , Tecido Adiposo Branco/metabolismo , Amiloide/sangue , Análise de Variância , Animais , Depressores do Apetite/farmacologia , Composição Corporal/efeitos dos fármacos , Interações Medicamentosas , Ingestão de Alimentos/efeitos dos fármacos , Perfilação da Expressão Gênica , Insulina/sangue , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Leptina/sangue , Fígado/metabolismo , Masculino , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa