Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Molecules ; 29(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398556

RESUMO

Lithium salt LiHDI (lithium 4,5-dicyano-2-(n-heptafluoropropyl)imidazolide) is proposed as a solid electrolyte interphase-stabilising additive for lithium-ion batteries, which can be added in a smaller amount than fluoroethylene carbonate (FEC) and vinylene carbonate (VC) additives. Electrolytes containing either lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide (LiTDI) or battery-standard LiPF6 were tested with various amounts of LiHDI additive. Chemical stability in the presence of water and the thermal stability of LiHDI are on par with LiTDI. LiHDI additive does not negatively affect the properties of electrolytes. Conductivity measurements of solutions, galvanostatic cycling of graphite-LiFePO4 cells at room temperature, cells' cycling at 60 °C, internal cell resistance monitoring during cycling, and XPS analysis of electrodes' surfaces after cycling have been performed. LiHDI, unlike the FEC-VC mixture, does not negatively affect the properties of the electrolyte. Cycling showed improved capacity retention with LiHDI additive with both graphite and LiFePO4 as capacity-limiting electrodes over samples without additives. At elevated temperatures, samples with LiHDI exhibited better capacity retention during cycling than those with FEC-VC. Internal cell resistance can be correlated with capacity retention. XPS results show changes in the composition of SEI depending on the composition of the electrolyte and the duration of cycling.

2.
Clin Proteomics ; 20(1): 11, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949424

RESUMO

Salivary stones, also known as sialoliths, are formed in a pathological situation in the salivary glands. So far, neither the mechanism of their formation nor the factors predisposing to their formation are known despite several hypotheses. While they do not directly threaten human life, they significantly deteriorate the patient's quality of life. Although this is not a typical research material, attempts are made to apply various analytical tools to characterise sialoliths and search for the biomarkers in their proteomes. In this work, we used mass spectrometry and SWATH-MS qualitative and quantitative analysis to investigate the composition and select proteins that may contribute to solid deposits in the salivary glands. Twenty sialoliths, previously characterized spectroscopically and divided into the following groups: calcified (CAL), lipid (LIP) and mixed (MIX), were used for the study. Proteins unique for each of the groups were found, including: for the CAL group among them, e.g. proteins from the S100 group (S100 A8/A12 and P), mucin 7 (MUC7), keratins (KRT1/2/4/5/13), elastase (ELANE) or stomatin (STOM); proteins for the LIP group-transthyretin (TTR), lactotransferrin (LTF), matrix Gla protein (MPG), submandibular gland androgen-regulated protein 3 (SMR3A); mixed stones had the fewest unique proteins. Bacterial proteins present in sialoliths have also been identified. The analysis of the results indicates the possible role of bacterial infections, disturbances in calcium metabolism and neutrophil extracellular traps (NETs) in the formation of sialoliths.

3.
Mikrochim Acta ; 190(9): 370, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37639048

RESUMO

A new 3D-printable composite has been developed dedicated to electroanalytical applications. Two types of diamondised nanocarbons - detonation nanodiamonds (DNDs) and boron-doped carbon nanowalls (BCNWs) - were added as fillers in poly(lactic acid) (PLA)-based composites to extrude 3D filaments. Carbon black served as a primary filler to reach high composite conductivity at low diamondised nanocarbon concentrations (0.01 to 0.2 S/cm, depending on the type and amount of filler). The aim was to thoroughly describe and understand the interactions between the composite components and how they affect the rheological, mechanical and thermal properties, and electrochemical characteristics of filaments and material extrusion printouts. The electrocatalytic properties of composite-based electrodes, fabricated with a simple 3D pen, were evaluated using multiple electrochemical techniques (cyclic and differential pulse voltammetry and electrochemical impedance spectroscopy). The results showed that the addition of 5 wt% of any of the diamond-rich nanocarbons fillers significantly enhanced the redox process kinetics, leading to lower redox activation overpotentials compared with carbon black-loaded PLA. The detection of dopamine was successfully achieved through fabricated composite electrodes, exhibiting lower limits of detection (0.12 µM for DND and 0.18 µM for BCNW) compared with the reference CB-PLA electrodes (0.48 µM). The thermogravimetric results demonstrated that both DND and BCNW powders can accelerate thermal degradation. The presence of diamondised nanocarbons, regardless of their type, resulted in a decrease in the decomposition temperature of the composite. The study provides insight into the interactions between composite components and their impact on the electrochemical properties of 3D-printed surfaces, suggesting electroanalytic potential.

4.
Mikrochim Acta ; 190(10): 410, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736868

RESUMO

This paper focuses on the development of a novel electrode based on boron-doped diamond nanosheet full-volume-enriched screen-printed carbon electrodes (BDDPE) for use as an impedimetric biosensor. Impedimetric biosensors offer high sensitivity and selectivity for virus detection, but their use as point-of-care devices is limited by the complexity of nanomaterials' architecture and the receptor immobilisation procedures. The study presents a two-step modification process involving the electroreduction of diazonium salt at the BDDPE and the immobilisation of antibodies using zero-length cross-linkers for a selective impedimetric biosensor of Haemophilus influenzae (Hi). The incorporation of diamond nanosheets into BDDPE leads to enhanced charge transfer and electrochemical behaviour, demonstrating greatly improved electrochemically active surface area compared with unmodified screen-printed electrodes (by 44% and 10% on average for [Ru(NH3)6]Cl2 and K3[Fe(CN)6], respectively). The presented sensing system shows high specificity towards protein D in Hi bacteria, as confirmed by negative controls against potential interference from other pathogens, with an estimated tolerance limit for interference under 12%. The Hi limit of detection by electrochemical impedance spectroscopy was 1 CFU/mL (measured at - 0.13 V vs BDDPE pseudo-reference), which was achieved in under 10 min, including 5 min sample incubation in the presence of the analyte.


Assuntos
Carbono , Diamante , Boro , Anticorpos , Eletrodos , Haemophilus influenzae
5.
Molecules ; 28(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375293

RESUMO

Electrolytes are one of the most influential aspects determining the efficiency of electrochemical supercapacitors. Therefore, in this paper, we investigate the effect of introducing co-solvents of ester into ethylene carbonate (EC). The use of ester co-solvents in ethylene carbonate (EC) as an electrolyte for supercapacitors improves conductivity, electrochemical properties, and stability, allowing greater energy storage capacity and increased device durability. We synthesized extremely thin nanosheets of niobium silver sulfide using a hydrothermal process and mixed them with magnesium sulfate in different wt% ratios to produce Mg(NbAgS)x)(SO4)y. The synergistic effect of MgSO4 and NbS2 increased the storage capacity and energy density of the supercapattery. Multivalent ion storage in Mg(NbAgS)x(SO4)y enables the storage of a number of ions. The Mg(NbAgS)x)(SO4)y was directly deposited on a nickel foam substrate using a simple and innovative electrodeposition approach. The synthesized silver Mg(NbAgS)x)(SO4)y provided a maximum specific capacity of 2087 C/g at 2.0 A/g current density because of its substantial electrochemically active surface area and linked nanosheet channels which aid in ion transportation. The supercapattery was designed with Mg(NbAgS)x)(SO4)y and activated carbon (AC) achieved a high energy density of 79 Wh/kg in addition to its high power density of 420 W/kg. The supercapattery (Mg(NbAgS)x)(SO4)y//AC) was subjected to 15,000 consecutive cycles. The Coulombic efficiency of the device was 81% after 15,000 consecutive cycles while retaining a 78% capacity retention. This study reveals that the use of this novel electrode material (Mg(NbAgS)x(SO4)y) in ester-based electrolytes has great potential in supercapattery applications.

6.
Langmuir ; 38(31): 9597-9610, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35894869

RESUMO

The complex electrocatalytic performance of gold nanocubes (AuNCs) is the focus of this work. The faceted shapes of AuNCs and the individual assembly processes at the electrode surfaces define the heterogeneous conditions for the purpose of electrocatalytic processes. Topographic and electron imaging demonstrated slightly rounded AuNC (average of 38 nm) assemblies with sizes of ≤1 µm, where the dominating patterns are (111) and (200) crystallographic planes. The AuNCs significantly impact the electrochemical performance of the investigated electrode [indium-tin oxide (ITO), glassy carbon (GC), and bulk gold] systems driven by surface electrons promoting the catalytic effect. Cyclic voltammetry in combination with scanning electrochemical microscopy allowed us to decipher the molecular mechanism of substrate-induced electrostatic assembly of gold nanocube arrays, revealing that the accelerated electrocatalytic effect should be attributed to the confinement of the heterogeneous diffusion fields with tremendous electrochemically active surface area variations. AuNC drop-casting at ITO, GC, and Au led to various mechanisms of heterogeneous charge transfer; only in the case of GC did the decoration significantly increase the electrochemically active surface area (EASA) and ferrocyanide redox kinetics. For ITO and Au substrates, AuNC drop-casting decreases system dimensionality rather than increasing the EASA, where Au-Au self-diffusion was also observed. Interactions of the gold, ITO, and GC surfaces with themselves and with surfactant CTAB and ferrocyanide molecules were investigated using density functional theory.

7.
Inorg Chem ; 61(25): 9433-9444, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35686953

RESUMO

Photocatalysis is regarded as a promising tool for wastewater remediation. In recent years, many studies have focused on investigating novel photocatalysts driven by visible light. In this study, K2V6O16·nH2O nanobelts and KV3O8 microplatelets were synthesized and investigated as photocatalysts. Samples were obtained via the facile method based on liquid-phase exfoliation with ion exchange. By changing the synthesis temperature (20-80 °C), different compositions, morphologies, and V4+/V5+ ratios were obtained and investigated as photocatalysts for organic dye degradation. Potassium vanadates' structural, morphological, and optical properties were characterized using X-ray diffraction(XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Physical Property Measurement System (PPMS), thermogravimetric analysis (TGA) with mass spectrometry (MS), N2 adsorption, scanning electron microscopy (SEM), photoluminescence (PL), and UV-vis diffuse reflectance spectroscopy (DRS). Synthesized K2V6O16·nH2O and KV3O8 showed an efficient absorption in the visible wavelength region with a narrow band gap energy of 1.80 and 1.91 eV, respectively. Their photocatalytic activity was evaluated by the degradation of methylene blue (MB) under simulated solar light illumination. The KV3O8 microplatelets exhibited the greatest photocatalytic activity, resulting in more than 90% degradation of the dye within the first 30 min. It is suggested that the observed excellent photocatalytic performance is attributed to the high content of V4+ species. Furthermore, the influence of active species was investigated, and the mechanism responsible for the photodegradation of the MB dye was discussed for the first time for potassium vanadates.

8.
Nanotechnology ; 33(20)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35108692

RESUMO

Although hydrogen is considered by many to be the green fuel of the future, nowadays it is primarily produced through steam reforming, which is a process far from ecological. Therefore, emphasis is being put on the development of electrodes capable of the efficient production of hydrogen and oxygen from water. To make the green alternative possible, the solution should be cost-efficient and well processable, generating less waste which is a huge challenge. In this work, the laser-based modification technique of the titania nanotubes containing sputtered transition metal species (Fe, Co, Ni, and Cu) was employed. The characteristics of the electrodes are provided both for the hydrogen and oxygen evolution reactions, where the influence of the laser treatment has been found to have the opposite effect. The structural and chemical analysis of the substrate material provides insight into pathways towards more efficient, low-temperature water splitting. Laser-assisted integration of transition metal with the tubular nanostructure results in the match-like structure where the metal species are accumulated at the head. The electrochemical data indicates a significant decrease in material resistance that leads to an overpotential of only +0.69 V at 10 mA cm-2for nickel-modified material.

9.
Sens Actuators B Chem ; 370: 132427, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35911567

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells through the binding of spike protein to the host cell surface-expressing angiotensin-converting enzyme 2 (ACE2) or by endocytosis mediated by extracellular matrix metalloproteinase inducer (CD147). We present extended statistical studies of the multisine dynamic electrochemical impedance spectroscopy (DEIS) revealing interactions between Spike RBD and cellular receptors ACE2 and CD147, and a reference anti-RBD antibody (IgG2B) based on a functionalised boron-doped diamond (BDD) electrode. The DEIS was supported by a multivariate data analysis of a SARS-CoV-2 Spike RBD assay and cross-correlated with the atomic-level information revealed by molecular dynamics simulations. This approach allowed us to study and detect subtle changes in the electrical properties responsible for the susceptibility of cellular receptors to SARS-CoV-2, revealing their interactions. Changes in electrical homogeneity in the function of the RBD concentration led to the conclusion that the ACE2 receptor delivers the most homogeneous surface, delivered by the high electrostatic potential of the relevant docking regions. For higher RBD concentrations, the differences in electrical homogeneity between electrodes with different receptors vanish. Collectively, this study reveals interdependent virus entry pathways involving separately ACE2, CD147, and spike protein, as assessed using a biosensing platform for the rapid screening of cellular interactions (i.e. testing various mutations of SARS-CoV-2 or screening of therapeutic drugs).

10.
Mikrochim Acta ; 189(8): 270, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35789434

RESUMO

An efficient additive manufacturing-based composite material fabrication for electrochemical applications is reported. The composite is composed of commercially available graphene-doped polylactide acid (G-PLA) 3D printouts and surface-functionalized with nanocrystalline boron-doped diamond foil (NDF) additives. The NDFs were synthesized on a tantalum substrate and transferred to the 3D-printout surface at 200 °C. No other electrode activation treatment was necessary. Different configurations of low- and heavy-boron doping NDFs were evaluated. The electrode kinetics was analyzed using electrochemical procedures: cyclic voltammetry and electrochemical impedance spectroscopy. The quasi-reversible electrochemical process was reported in each studied case. The studies allowed confirmation of the CV peak-to-peak separation of 63 mV and remarkably high heterogeneous electron transfer rate constant reaching 6.1 × 10-2 cm s-1 for 10 k ppm [B]/[C] thin NDF fitted topside at the G-PLA electrode. Differential pulse voltammetry was used for effective 2,4,6-trinitrotoluene (TNT) detection at the studied electrodes with a 87 ppb limit of detection, and wide linearity range between peak current density and the analyte concentration (0.064 to 64 ppm of TNT). The reported electrode kinetic differences originate primarily from the boron-dopant concentration in the diamond and the various contents of the non-diamond carbon phase.


Assuntos
Boro , Nanodiamantes , Boro/química , Diamante/química , Eletroquímica , Eletrodos , Poliésteres
11.
Molecules ; 27(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080500

RESUMO

Novel cyano-benzylidene xanthene derivatives were synthesized using one-pot and condensation reactions. A diprotic Brønsted acid (i.e., oxalic acid) was used as an effective catalyst for the promotion of the synthesis process of the new starting xanthene-aldehyde compound. Different xanthene concentrations (ca. 0.1-2.0 mM) were applied as corrosion inhibitors to control the alkaline uniform corrosion of aluminum. Measurements were conducted in 1.0 M NaOH solution using Tafel extrapolation and linear polarization resistance (LPR) methods. The investigated xanthenes acted as mixed-type inhibitors that primarily affect the anodic process. Their inhibition efficiency values were enhanced with inhibitor concentration, and varied according to their chemical structures. At a concentration of 2.0 mM, the best-performing studied xanthene derivative recorded maximum inhibition efficiency values of 98.9% (calculated via the Tafel extrapolation method) and 98.4% (estimated via the LPR method). Scanning electron microscopy (SEM) was used to examine the morphology of the corroded and inhibited aluminum surfaces, revealing strong inhibitory action of each studied compound. High-resolution X-ray photoelectron spectroscopy (XPS) profiles validated the inhibitor compounds' adsorption on the Al surface. Density functional theory (DFT) and Monte Carlo simulations were applied to investigate the distinction of the anticorrosive behavior among the studied xanthenes toward the Al (111) surface. The non-planarity of xanthenes and the presence of the nitrile group were the key players in the adsorption process. A match between the experimental and theoretical findings was evidenced.


Assuntos
Alumínio , Xantenos , Ácidos/química , Adsorção , Alumínio/química , Corrosão , Xantenos/química
12.
Nanotechnology ; 33(12)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34879361

RESUMO

Boron doped diamond (BDD) has great potential in electrical, and electrochemical sensing applications. The growth parameters, substrates, and synthesis method play a vital role in the preparation of semiconducting BDD to metallic BDD. Doping of other elements along with boron (B) into diamond demonstrated improved efficacy of B doping and exceptional properties. In the present study, B and nitrogen (N) co-doped diamond has been synthesized on single crystalline diamond (SCD) IIa and SCD Ib substrates in a microwave plasma-assisted chemical vapor deposition process. The B/N co-doping into CVD diamond has been conducted at constant N flow of N/C âˆ¼ 0.02 with three different B/C doping concentrations of B/C âˆ¼ 2500 ppm, 5000 ppm, 7500 ppm. Atomic force microscopy topography depicted the flat and smooth surface with low surface roughness for low B doping, whereas surface features like hillock structures and un-epitaxial diamond crystals with high surface roughness were observed for high B doping concentrations. KPFM measurements revealed that the work function (4.74-4.94 eV) has not varied significantly for CVD diamond synthesized with different B/C concentrations. Raman spectroscopy measurements described the growth of high-quality diamond and photoluminescence studies revealed the formation of high-density nitrogen-vacancy centers in CVD diamond layers. X-ray photoelectron spectroscopy results confirmed the successful B doping and the increase in N doping with B doping concentration. The room temperature electrical resistance measurements of CVD diamond layers (B/C âˆ¼ 7500 ppm) have shown the low resistance value âˆ¼9.29 Ω for CVD diamond/SCD IIa, and the resistance value âˆ¼16.55 Ω for CVD diamond/SCD Ib samples.

13.
Oral Dis ; 27(7): 1711-1719, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33140898

RESUMO

INTRODUCTION: Sialolithiasis remains a clinical problem with unclear etiopathogenesis, lack of prevention methods, and only surgical treatment. MATERIALS AND METHODS: An ultrastructure examination of submandibular sialoliths obtained from patients with chronic sialolithiasis was conducted using a scanning electron microscope and X-ray photoelectron spectroscopy. RESULTS: Based on the results, we divided sialoliths into three types: calcified (CAL), organic/lipid (LIP), and mixed (MIX). The core structure of the CAL and MIX is very similar. The core of the LIP has a prevalence of organic components. The intermediate layers' structure of the CAL is different from LIP and MIX. In LIP and MIX, the organic component begins to increase in intermediate layers rapidly. The structure of the superficial layers for all types of sialoliths is similar. CONCLUSIONS: We introduced a new classification of the submandibular salivary gland stones. Based on the results, it can be said that sialoliths type CAL and LIP have their separate path of origin and development, while MIX is formed as CAL stone, and the further pathway of their growth passes as LIP stones. Organic components were much more than inorganic in all layers of salivary gland stones, which highly prevents their dissolution in the patient's salivary gland duct.


Assuntos
Cálculos dos Ductos Salivares , Cálculos das Glândulas Salivares , Testes Diagnósticos de Rotina , Humanos , Microscopia , Cálculos dos Ductos Salivares/diagnóstico por imagem , Ductos Salivares , Cálculos das Glândulas Salivares/diagnóstico por imagem , Glândula Submandibular
14.
Molecules ; 26(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34684893

RESUMO

The present work aimed to assess six diaryl sulfide derivatives as potential corrosion inhibitors. These derivatives were compared with dapsone (4,4'-diaminodiphenyl sulfone), a common leprosy antibiotic that has been shown to resist the corrosion of mild steel in acidic media with a corrosion efficiency exceeding 90%. Since all the studied compounds possess a common molecular backbone (diphenyl sulfide), dapsone was taken as the reference compound to evaluate the efficiency of the remainder. In this respect, two structural factors were examined, namely, (i) the effect of replacement of the S-atom of diaryl sulfide by SO or SO2 group, (ii) the effect of the introduction of an electron-withdrawing or an electron-donating group in the aryl moiety. Two computational chemical approaches were used to achieve the objectives: the density functional theory (DFT) and the Monto Carlo (MC) simulation. First, B3LYP/6-311+G(d,p) model chemistry was employed to calculate quantum chemical descriptors of the studied molecules and their geometric and electronic structures. Additionally, the mode of adsorption of the tested molecules was investigated using MC simulation. In general, the adsorption process was favorable for molecules with a lower dipole moment. Based on the adsorption energy results, five diaryl sulfide derivatives are expected to act as better corrosion inhibitors than dapsone.

15.
Ultrastruct Pathol ; 44(2): 219-226, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32252577

RESUMO

The aim of work was the epidemiological analysis of the occurrence of sialolithiasis of the submandibular gland in adults and the evaluation of the ultrastructure of salivary stones. The study sample consisted of 44 sialoliths. Analysis of the structure and chemical composition of sialoliths was performed using a Scanning Electron Microscope and Raman Spectroscopy. Comparing our results with the literature we can say that the epidemiology of sialolithiasis has not changed significantly over the past 50 years. A wide variety of sialoliths structure was observed. In 75% (33) cases a layered structure of salivary stones was observed, while in 25% (11) - homogeneous structure. The various distribution of organic and inorganic components was observed among all the analyzed sialoliths. Raman spectroscopy allows for preliminary analysis of the sialoliths structure with only a qualitative assessment of their composition, which significantly reduces the research value of this method. The presence of organic and inorganic compounds in the core and inner layers of the salivary glands stones confirms 2 basic theories of the formation of sialoliths: inflammation and deposition of the inorganic component as a result of disruption of saliva flow in the salivary glands.


Assuntos
Cálculos dos Ductos Salivares/química , Cálculos dos Ductos Salivares/ultraestrutura , Cálculos das Glândulas Salivares/química , Cálculos das Glândulas Salivares/ultraestrutura , Doenças da Glândula Submandibular , Adulto , Feminino , Humanos , Masculino , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Análise Espectral Raman
16.
Molecules ; 25(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882948

RESUMO

In this paper, we described the synthesis procedure of TiO2@SiO2 core-shell modified with 3-(aminopropyl)trimethoxysilane (APTMS). The chemical attachment of Fmoc-glycine (Fmoc-Gly-OH) at the surface of the core-shell structure was performed to determine the amount of active amino groups on the basis of the amount of Fmoc group calculation. We characterized nanostructures using various methods: transmission electron microscope (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) to confirm the modification effectiveness. The ultraviolet-visible spectroscopy (UV-vis) measurement was adopted for the quantitative determination of amino groups present on the TiO2@SiO2 core-shell surface by determination of Fmoc substitution. The nanomaterials were functionalized by Fmoc-Gly-OH and then the fluorenylmethyloxycarbonyl (Fmoc) group was cleaved using 20% (v/v) solution of piperidine in DMF. This reaction led to the formation of a dibenzofulvene-piperidine adduct enabling the estimation of free Fmoc groups by measurement the maximum absorption at 289 and 301 nm using UV-vis spectroscopy. The calculations of Fmoc loading on core-shell materials was performed using different molar absorption coefficient: 5800 and 6089 dm3 × mol-1 × cm-1 for λ = 289 nm and both 7800 and 8021 dm3 × mol-1 × cm-1 for λ = 301 nm. The obtained results indicate that amount of Fmoc groups present on TiO2@SiO2-(CH2)3-NH2 was calculated at 6 to 9 µmol/g. Furthermore, all measurements were compared with Fmoc-Gly-OH used as the model sample.


Assuntos
Fluorenos/química , Glicina/análogos & derivados , Fluorenos/síntese química , Glicina/síntese química , Glicina/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
17.
Indoor Air ; 29(6): 979-992, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31469187

RESUMO

The photocatalytic deactivation of volatile organic compounds and mold fungi using TiO2 modified with mono- and bimetallic (Pt, Cu, Ag) particles is reported in this study. The mono- and bimetal-modified (Pt, Cu, Ag) titanium(IV) oxide photocatalysts were prepared by chemical reduction method and characterized using XRD, XPS, DR/UV-Vis, BET, and TEM analysis. The effect of incident light, type and content of mono- and bimetallic nanoparticles deposited on titanium(IV) oxide was studied. Photocatalytic activity of as-prepared nanocomposites was examined in the gas phase using LEDs array. High photocatalytic activity of Ag/Pt-TiO2 and Cu/Pt-TiO2 in the reaction of toluene degradation resulted from improved efficiency of interfacial charge transfer process, which was consistent with the fluorescence quenching effect revealed by photoluminescence (PL) emission spectra. The photocatalytic deactivation of Penicillium chrysogenum, a pathogenic fungi present in the indoor environment, especially in a damp or water-damaged building using mono- and bimetal-modified (Pt, Cu, Ag) titanium(IV) oxide was evaluated for the first time. TiO2 modified with mono- and bimetallic NPs of Ag/Pt, Cu, and Ag deposited on TiO2 exhibited improved fungicidal activity under LEDs illumination than pure TiO2 .


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Fungos/isolamento & purificação , Nanocompostos/química , Óxidos , Compostos Orgânicos Voláteis/isolamento & purificação , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Cobre , Platina , Prata , Titânio
18.
Molecules ; 24(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835739

RESUMO

A new method of obtaining functional foam material has been proposed. The materials were created by mixing the poly lactic acid (PLA) solution in chloroform, chitosan (CS) dissolved in water saturated with CO2 and polyethylene glycol (PEG), and freeze-dried for removal of the solvents. The composite foams were characterized for their structural (SEM, FT-IR, density, porosity), thermal (DSC), functional (hardness, elasticity, swelling capacity, solubility), and biological (antimicrobial and cytotoxic) properties. Chitosan in the composites was a component for obtaining their foamed form with 7.4 to 22.7 times lower density compared to the neat PLA and high porosity also confirmed by the SEM. The foams had a hardness in the range of 70-440 kPa. The FT-IR analysis confirmed no new chemical bonds between the sponge ingredients. Other results showed low sorption capacity (2.5-7.2 g/g) and solubility of materials (less than 0.2%). The obtained foams had the lower Tg value and improved ability of crystallization compared to neat PLA. The addition of chitosan provides the bacteriostatic and bactericidal properties against Escherichia coli and Staphylococcus aureus. Biocompatibility studies have shown that the materials obtained are not cytotoxic to the L929 cell line.


Assuntos
Antibacterianos/síntese química , Quitosana/química , Poliésteres/química , Substâncias Viscoelásticas/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Dióxido de Carbono/química , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Liofilização , Humanos , Polietilenoglicóis/química , Porosidade , Solubilidade , Staphylococcus aureus/efeitos dos fármacos , Substâncias Viscoelásticas/química , Substâncias Viscoelásticas/farmacologia
19.
Materials (Basel) ; 17(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38930201

RESUMO

3D-printable composites have become an attractive option used for the design and manufacture of electrochemical sensors. However, to ensure proper charge-transfer kinetics at the electrode/electrolyte interface, activation is often required, with this step consisting of polymer removal to reveal the conductive nanofiller. In this work, we present a novel effective method for the activation of composites consisting of poly(lactic acid) filled with carbon black (CB-PLA) using microwave radiation. A microwave synthesizer used in chemical laboratories (CEM, Matthews, NC, USA) was used for this purpose, establishing that the appropriate activation time for CB-PLA electrodes is 15 min at 70 °C with a microwave power of 100 W. However, the usefulness of an 80 W kitchen microwave oven is also presented for the first time and discussed as a more sustainable approach to CB-PLA electrode activation. It has been established that 10 min in a kitchen microwave oven is adequate to activate the electrode. The electrochemical properties of the microwave-activated electrodes were determined by electrochemical techniques, and their topography was characterized using scanning electron microscopy (SEM), Raman spectroscopy, and contact-angle measurements. This study confirms that during microwave activation, PLAs decompose to uncover the conductive carbon-black filler. We deliver a proof-of-concept of the utility of kitchen microwave-oven activation of a 3D-printed, free-standing electrochemical cell (FSEC) in paracetamol electroanalysis in aqueous electrolyte solution. We established satisfactory limits of linearity for paracetamol detection using voltammetry, ranging from 1.9 µM to 1 mM, with a detection limit (LOD) of 1.31 µM.

20.
ACS Appl Mater Interfaces ; 16(28): 36784-36795, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38967626

RESUMO

Tailoring the defects in graphene and its related carbon allotropes has great potential to exploit their enhanced electrochemical properties for energy applications, environmental remediation, and sensing. Vertical graphene, also known as carbon nanowalls (CNWs), exhibits a large surface area, enhanced charge transfer capability, and high defect density, making it suitable for a wide range of emerging applications. However, precise control and tuning of the defect size, position, and density remain challenging; moreover, due to their characteristic labyrinthine morphology, conventional characterization techniques and widely accepted quality indicators fail or need to be reformulated. This study primarily focuses on examining the impact of boron heterodoping and argon plasma treatment on CNW structures, uncovering complex interplays between specific defect-induced three-dimensional nanostructures and electrochemical performance. Moreover, the study introduces the use of defect-rich CNWs as a label-free electrode for directly oxidizing glyphosate (GLY), a common herbicide, and its metabolites (sarcosine and aminomethylphosphonic acid) for the first time. Crucially, we discovered that the presence of specific boron bonds (BC and BN), coupled with the absence of Lewis-base functional groups such as pyridinic-N, is essential for the oxidation of these analytes. Notably, the D+D* second-order combinational Raman modes at ≈2570 cm-1 emerged as a reliable indicator of the analytes' affinity. Contrary to expectations, the electrochemically active surface area and the presence of oxygen-containing functional groups played a secondary role. Argon-plasma post-treatment was found to adversely affect both the morphology and surface chemistry of CNWs, leading to an increase in sp3-hybridized carbon, the introduction of oxygen, and alterations in the types of nitrogen functional groups. Simulations support that certain defects are functional for GLY rather than AMPA. Sarcosine oxidation is the least affected by defect type.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa