Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(35): e2121251119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994670

RESUMO

GCN2 (general control nonderepressible 2) is a serine/threonine-protein kinase that controls messenger RNA translation in response to amino acid availability and ribosome stalling. Here, we show that GCN2 controls erythrocyte clearance and iron recycling during stress. Our data highlight the importance of liver macrophages as the primary cell type mediating these effects. During different stress conditions, such as hemolysis, amino acid deficiency or hypoxia, GCN2 knockout (GCN2-/-) mice displayed resistance to anemia compared with wild-type (GCN2+/+) mice. GCN2-/- liver macrophages exhibited defective erythrophagocytosis and lysosome maturation. Molecular analysis of GCN2-/- cells demonstrated that the ATF4-NRF2 pathway is a critical downstream mediator of GCN2 in regulating red blood cell clearance and iron recycling.


Assuntos
Aminoácidos , Eritrócitos , Ferro , Fígado , Macrófagos , Proteínas Serina-Treonina Quinases , Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/deficiência , Aminoácidos/metabolismo , Anemia/metabolismo , Animais , Citofagocitose , Eritrócitos/metabolismo , Deleção de Genes , Hemólise , Hipóxia/metabolismo , Ferro/metabolismo , Fígado/citologia , Lisossomos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico
2.
Gut ; 72(6): 1143-1154, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36585238

RESUMO

OBJECTIVE: Colorectal cancer (CRC) is the third most diagnosed cancer, and requires surgical resection and reconnection, or anastomosis, of the remaining bowel to re-establish intestinal continuity. Anastomotic leak (AL) is a major complication that increases mortality and cancer recurrence. Our objective is to assess the causal role of gut microbiota in anastomotic healing. DESIGN: The causal role of gut microbiota was assessed in a murine AL model receiving faecal microbiota transplantation (FMT) from patients with CRC collected before surgery and who later developed or not, AL. Anastomotic healing and gut barrier integrity were assessed after surgery. Bacterial candidates implicated in anastomotic healing were identified using 16S rRNA gene sequencing and were isolated from faecal samples to be tested both in vitro and in vivo. RESULTS: Mice receiving FMT from patients that developed AL displayed poor anastomotic healing. Profiling of gut microbiota of patients and mice after FMT revealed correlations between healing parameters and the relative abundance of Alistipes onderdonkii and Parabacteroides goldsteinii. Oral supplementation with A. onderdonkii resulted in a higher rate of leaks in mice, while gavage with P. goldsteinii improved healing by exerting an anti-inflammatory effect. Patients with AL and mice receiving FMT from AL patients presented upregulation of mucosal MIP-1α, MIP-2, MCP-1 and IL-17A/F before surgery. Retrospective analysis revealed that patients with AL present higher circulating neutrophil and monocyte counts before surgery. CONCLUSION: Gut microbiota plays an important role in surgical colonic healing in patients with CRC. The impact of these findings may extend to a vast array of invasive gastrointestinal procedures.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Camundongos , Animais , Citocinas , Microbioma Gastrointestinal/fisiologia , Estudos Retrospectivos , RNA Ribossômico 16S , Anastomose Cirúrgica/efeitos adversos , Fístula Anastomótica/microbiologia , Neoplasias Colorretais/cirurgia
3.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G601-G608, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404375

RESUMO

Butyrate is a short-chain fatty acid produced by colonic gut bacteria as a result of fermentation of dietary fibers. In the colon, butyrate is a major energy substrate and contributes to the nutritional support and proliferation of a healthy mucosa. It also promotes the intestinal barrier function by enhancing mucus production and tight junctions. In addition to its pro-proliferative effect in healthy colonocytes, butyrate inhibits the proliferation of cancer cells. The antineoplastic effect of butyrate is associated with the inhibitory effect of butyrate on histone deacetylase (HDAC) enzymes, which promote carcinogenesis. Due to the metabolic shift of cancer cells toward glycolysis, unused butyrate accumulates and inhibits procarcinogenic HDACs. In addition, recent studies suggest that butyrate may improve the healing of colonic tissue after surgery in animal models, specifically at the site of reconnection of colonic ends, anastomosis, after surgical resection. Here, we review current evidence on the impact of butyrate on epithelial integrity and colorectal cancer and present current knowledge on data that support its potential applications in surgical practice.


Assuntos
Bactérias/metabolismo , Butiratos/metabolismo , Colo/cirurgia , Neoplasias Colorretais/metabolismo , Células Epiteliais/metabolismo , Microbioma Gastrointestinal , Movimento Celular , Proliferação de Células , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais/patologia , Metabolismo Energético , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Humanos , Invasividade Neoplásica , Permeabilidade , Cicatrização
4.
BMC Microbiol ; 21(1): 259, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583649

RESUMO

BACKGROUND: Oral iron supplementation is commonly prescribed for anemia and may play an important role in the gut microbiota recovery of anemic individuals who received antibiotic treatment. This study aims to investigate the effects of iron supplementation on gut microbiota recovery after antibiotics exposure. RESULTS: Mice were subjected to oral antibiotic treatment with neomycin and metronidazole and were fed diets with different concentrations of iron. The composition of the gut microbiota was followed throughout treatment by 16S rRNA sequencing of DNA extracted from fecal samples. Gut microbiota functions were inferred using PICRUSt2, and short-chain fatty acid concentration in fecal samples was assessed by liquid-chromatography mass spectrometry. Iron supplementation after antibiotic exposure shifted the gut microbiota composition towards a Bacteroidetes phylum-dominant composition. At the genus level, the iron-supplemented diet induced an increase in the abundance of Parasutterella and Bacteroides, and a decrease of Bilophila and Akkermansia. Parasutterella excrementihominis, Bacteroides vulgatus, and Alistipes finegoldii, were more abundant with the iron excess diet. Iron-induced shifts in microbiota composition were accompanied by functional modifications, including an enhancement of the biosynthesis of primary bile acids, nitrogen metabolism, cyanoamino acid metabolism and pentose phosphate pathways. Recovery after antibiotic treatment increased propionate levels independent of luminal iron levels, whereas butyrate levels were diminished by excess iron. CONCLUSIONS: Oral iron supplementation after antibiotic therapy in mice may lead to deleterious changes in the recovery of the gut microbiota. Our results have implications on the use of oral iron supplementation after antibiotic exposure and justify further studies on alternative treatments for anemia in these settings.


Assuntos
Antibacterianos/efeitos adversos , Bactérias/efeitos dos fármacos , Suplementos Nutricionais/efeitos adversos , Disbiose/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Ferro/efeitos adversos , Animais , Bactérias/classificação , Biodiversidade , Disbiose/microbiologia , Fezes/microbiologia , Ferro/farmacologia , Camundongos
5.
BMC Cancer ; 21(1): 172, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596864

RESUMO

BACKGROUND: Colibactin is a genotoxin that induces DNA double-strand breaks that may lead to carcinogenesis and is produced by Escherichia coli strains harboring the pks island. Human and animal studies have shown that colibactin-producing gut bacteria promote carcinogenesis and enhance the progression of colorectal cancer through cellular senescence and chromosomal abnormalities. In this study, we investigated the impact of prebiotics on the genotoxicity of colibactin-producing E. coli strains Nissle 1917 and NC101. METHODS: Bacteria were grown in medium supplemented with 20, 30 and 40 mg/mL of prebiotics inulin or galacto-oligosaccharide, and with or without 5 µM, 25 µM and 125 µM of ferrous sulfate. Colibactin expression was assessed by luciferase reporter assay for the clbA gene, essential for colibactin production, in E. coli Nissle 1917 and by RT-PCR in E. coli NC101. The human epithelial colorectal adenocarcinoma cell line, Caco-2, was used to assess colibactin-induced megalocytosis by methylene blue binding assay and genotoxicity by γ-H2AX immunofluorescence analysis. RESULTS: Inulin and galacto-oligosaccharide enhanced the expression of clbA in pks+ E. coli. However, the addition of 125 µM of ferrous sulfate inhibited the expression of clbA triggered by oligosaccharides. In the presence of either oligosaccharide, E. coli NC101 increased dysplasia and DNA double-strand breaks in Caco-2 cells compared to untreated cells. CONCLUSION: Our results suggest that, in vitro, prebiotic oligosaccharides exacerbate DNA damage induced by colibactin-producing bacteria. Further studies are necessary to establish whether oligosaccharide supplementation may lead to increased colorectal tumorigenesis in animal models colonized with pks+ E. coli.


Assuntos
Carcinogênese/patologia , Neoplasias do Colo/patologia , Dano ao DNA , Escherichia coli/metabolismo , Mutagênicos/efeitos adversos , Oligossacarídeos/farmacologia , Peptídeos/efeitos adversos , Policetídeos/efeitos adversos , Células CACO-2 , Carcinogênese/induzido quimicamente , Senescência Celular , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Ilhas Genômicas , Humanos
7.
Eur J Immunol ; 44(6): 1604-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24643698

RESUMO

MHC class I (MHC I) antigen presentation is a ubiquitous process by which cells present endogenous proteins to CD8(+) T lymphocytes during immune surveillance and response. Hereditary hemochromatosis protein, HFE, is involved in cellular iron uptake but, while structurally homologous to MHC I, is unable to bind peptides. However, increasing evidence suggests a role for HFE in the immune system. Here, we investigated the impact of HFE on CD8(+) T-lymphocyte activation. Using transient HFE transfection assays in a model of APCs, we show that WT HFE (HFEWT ), but not C282Y-mutated HFE, inhibits secretion of MIP-1ß from antigen-specific CD8(+) T lymphocytes. HFEWT expression also resulted in major decreases in CD8(+) T-lymphocyte activation as measured by 4-1BB expression. We further demonstrate that inhibition of CD8(+) T-lymphocyte activation was independent of MHC I surface levels, ß2-m competition, HFE interaction with transferrin receptor, antigen origin, or epitope affinity. Finally, we identified the α1-2 domains of HFEWT as being responsible for inhibiting CD8(+) T-lymphocyte activation. Our data imply a new role for HFEWT in altering CD8(+) T-lymphocyte reactivity, which could modulate antigen immunogenicity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Ativação Linfocitária , Proteínas de Membrana/imunologia , Substituição de Aminoácidos , Linfócitos T CD8-Positivos/citologia , Regulação da Expressão Gênica/genética , Células HEK293 , Proteína da Hemocromatose , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
8.
Oncotarget ; 15: 562-572, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39145528

RESUMO

Colorectal cancer (CRC) is highly prevalent and is a major cause of cancer-related deaths worldwide. The incidence rate of CRC remains alarmingly high despite screening measures. The main curative treatment for CRC is a surgical resection of the diseased bowel segment. Postoperative complications usually involve a weakened gut barrier and a dissemination of bacterial proinflammatory lipopolysaccharides. Herein we discuss how gut microbiota and microbial metabolites regulate basal inflammation levels in the gut and the healing process of the bowel after surgery. We further elaborate on the restoration of the gut barrier function in patients with CRC and how this potentially impacts the dissemination and implantation of CRC cells in extracolonic tissues, contributing therefore to worse survival after surgery.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Animais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia
9.
Gastroenterol Rep (Oxf) ; 12: goae058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984069

RESUMO

The prebiotic inulin has been vaunted for its potential to reduce the risk of colorectal cancer. Inulin fermentation resulting in the production of short-chain fatty acids, primarily butyrate, has been reported to be associated with properties that are beneficial for gut health and has led to an increased consumption of inulin in the Western population through processed food and over-the-counter dietary supplements. However, in clinical trials, there is limited evidence of the efficacy of inulin in preventing colorectal cancer. Moreover, recent data suggest that improper inulin consumption may even be harmful for gastro-intestinal health under certain circumstances. The main objective of this review is to provide insight into the beneficial and potentially detrimental effects of inulin supplementation in the context of colorectal cancer prevention and enhancement of treatment efficacy.

10.
Clin Cancer Res ; 30(3): 616-628, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010363

RESUMO

PURPOSE: Anastomotic leak (AL) is a major complication in colorectal cancer surgery and consists of the leakage of intestinal content through a poorly healed colonic wound. Colorectal cancer recurrence after surgery is a major determinant of survival. We hypothesize that AL may allow cancer cells to escape the gut and lead to cancer recurrence and that improving anastomotic healing may prevent local implantation and metastatic dissemination of cancer cells. EXPERIMENTAL DESIGN: We investigated the association between AL and postoperative outcomes in patients with colorectal cancer. Using mouse models of poor anastomotic healing, we assessed the processes of local implantation and dissemination of cancer cells. The effect of dietary supplementation with inulin and 5-aminosalicylate (5-ASA), which activate PPAR-γ in the gut, on local anastomotic tumors was assessed in mice undergoing colonic surgery. Inulin and 5-ASA were also assessed in a mouse model of liver metastasis. RESULTS: Patients experiencing AL displayed lower overall and oncologic survival than non-AL patients. Poor anastomotic healing in mice led to larger anastomotic and peritoneal tumors. The microbiota of patients with AL displays a lower capacity to activate the antineoplastic PPAR-γ in the gut. Modulation of gut microbiota using dietary inulin and 5-ASA reinforced the gut barrier and prevented anastomotic tumors and metastatic spread in mice. CONCLUSIONS: Our findings reinforce the hypothesis that preventing AL is paramount to improving oncologic outcomes after colorectal cancer surgery. Furthermore, they pave the way toward dietary targeting of PPAR-γ as a novel way to enhance healing and diminish cancer recurrence.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Fístula Anastomótica/etiologia , Fístula Anastomótica/prevenção & controle , Inulina , Receptores Ativados por Proliferador de Peroxissomo , Fatores de Risco , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias Colorretais/patologia
11.
Cancer Res Commun ; 4(7): 1777-1792, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38934090

RESUMO

Escherichia coli that harbor the polyketide synthase (pks) genomic island produce colibactin and are associated with sporadic colorectal cancer development. Given the considerable prevalence of pks+ bacteria in healthy individuals, we sought to identify strategies to limit the growth and expansion of pks+ E. coli. We found that culture supernatants of the probiotic strain E. coli Nissle 1917 were able to inhibit the growth of the murine pathogenic strain pks+ E. coli NC101 (EcNC101). We performed a nontargeted analysis of the metabolome in supernatants from several E. coli strains and identified putrescine as a potential postbiotic capable of suppressing EcNC101 growth in vitro. The effect of putrescine supplementation was then evaluated in the azoxymethane/dextran sulfate sodium mouse model of colorectal cancer in mice colonized with EcNC101. Putrescine supplementation inhibited the growth of pks+ E. coli, reduced the number and size of colonic tumors, and downmodulated the release of inflammatory cytokines in the colonic lumen. Additionally, putrescine supplementation led to shifts in the composition and function of gut microbiota, characterized by an increase in the Firmicutes/Bacteroidetes ratio and enhanced acetate production. The effect of putrescine was further confirmed in vitro using a pks+ E. coli strain isolated from a patient with colorectal cancer. These results suggest that probiotic-derived metabolites can be used as an alternative to live bacteria in individuals at risk of developing colorectal cancer due to the presence of pks+ bacteria in their colon. SIGNIFICANCE: Putrescine supplementation inhibits the growth of cancer-promoting bacteria in the gut, lowers inflammation, and reduces colon cancer development. The consumption of healthy foods rich in putrescine may be a potential prophylactic approach for individuals at risk of developing colorectal cancer due to the presence of pks+ bacteria in their colon.


Assuntos
Escherichia coli , Microbioma Gastrointestinal , Policetídeo Sintases , Putrescina , Putrescina/farmacologia , Putrescina/metabolismo , Animais , Escherichia coli/efeitos dos fármacos , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Policetídeo Sintases/metabolismo , Policetídeo Sintases/genética , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Humanos , Probióticos/farmacologia , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Suplementos Nutricionais , Policetídeos/farmacologia , Policetídeos/metabolismo , Modelos Animais de Doenças , Ilhas Genômicas , Colo/microbiologia , Colo/patologia , Colo/metabolismo , Colo/efeitos dos fármacos , Azoximetano , Peptídeos
12.
Am J Pathol ; 180(6): 2340-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22497726

RESUMO

Hypoferremia, associated with immune system activation, involves a marked reduction in the levels of circulating iron, coupled with iron sequestration within macrophages. Toll-like receptor (TLR) signaling plays an important role in the development of the hypoferremic response, but how downstream signaling events affect genes involved in iron metabolism is incompletely understood. We investigated the involvement of MyD88-dependent (MyD88) and MyD88-independent (TRIF) TLR signaling in the development of hypoferremia. Using MyD88-deficient and TRIF-deficient mice, we show that MyD88 and TRIF signaling pathways are critical for up-regulation by lipopolysaccharide (LPS) of the iron regulator hepcidin. In addition, MyD88 signaling is required for the induction of lipocalin 2 secretion and iron sequestration in the spleen. Activation of TLR4 and TLR3 signaling through LPS and polyinosinic:polycytidylic acid [poly(I:C)] treatments resulted in rapid down-regulation of HFE protein [encoded by the hemochromatosis gene (Hfe)] and ferroportin [encoded by solute carrier family 40 (iron-regulated transporter), member 1 (Slc40a1)] expression in the spleen, independent of MyD88 or TRIF signaling and proinflammatory cytokine production. However, lack of MyD88 signaling significantly impaired the hypoferremic response triggered by LPS, indicating that ferroportin and HFE protein down-regulation alone are insufficient to maintain hypoferremia. The extent of the hypoferremic response was found to be limited by initial, basal iron levels. Together, these results suggest that targeting specific TLR signaling pathways by affecting the function of adaptor molecules may provide new strategies to counteract iron sequestration within macrophages during inflammation.


Assuntos
Deficiências de Ferro , Fator 88 de Diferenciação Mieloide/fisiologia , Proteínas de Fase Aguda/biossíntese , Proteínas de Fase Aguda/genética , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/fisiologia , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/biossíntese , Proteínas de Transporte de Cátions/genética , Feminino , Proteína da Hemocromatose , Hepcidinas , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Interleucina-6/biossíntese , Interleucina-6/fisiologia , Ferro/sangue , Lipocalina-2 , Lipocalinas/biossíntese , Lipocalinas/sangue , Lipocalinas/genética , Lipopolissacarídeos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Proteínas Oncogênicas/biossíntese , Proteínas Oncogênicas/sangue , Proteínas Oncogênicas/genética , RNA Mensageiro/genética , Transdução de Sinais/fisiologia , Baço/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/fisiologia , Regulação para Cima
13.
Front Microbiol ; 14: 1067505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819017

RESUMO

Introduction: The prebiotic inulin has previously shown both protective and tumor-promoting effects in colorectal cancer (CRC). These inconsistencies may be due to the gut microbial composition as several bacteria have been associated with CRC. Specifically, polyketide synthase-positive (pks+) Escherichia coli promotes carcinogenesis and facilitates CRC progression through the production of colibactin, a genotoxin that induces double-strand DNA breaks (DSBs). We investigated whether colibactin-producing Escherichia coli changed the protection conferred by inulin against tumor growth and progression using the ApcMin/+ mouse model of CRC. Methods: Mice received a 2% dextran sodium sulfate (DSS) solution followed by oral gavage with the murine pks + E. coli strain NC101 (EcNC101) and were fed a diet supplemented with 10% cellulose as control or 10% inulin for 4 weeks. Results: Inulin supplementation led to increase EcNC101 colonization compared to mice receiving the control diet. The increased colonization of EcNC101 resulted in more DSBs, tumor burden, and tumor progression in ApcMin/+ mice. The tumorigenic effect of EcN101 in ApcMin/+ mice mediated by inulin was dependent on colibactin production. Pasteurized E. coli Nissle 1917 (EcN), a probiotic, suppressed the inulin-driven EcNC101 expansion and impacted tumor progression. Discussion: Our results suggest that the presence of pks + E. coli influences the outcome of inulin supplementation in CRC and that microbiota-targeted interventions may mitigate this effect. Given the prevalence of pks + E. coli in both healthy and CRC populations and the importance of a fiber-rich diet, inulin supplementation in individuals colonized with pks + bacteria should be considered with caution.

14.
J Vis Exp ; (189)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36468715

RESUMO

Gut barrier integrity is a hallmark of intestinal health. While gut barrier integrity can be assessed using indirect markers such as the measurement of plasma inflammatory markers and bacterial translocation to the spleen and lymph nodes, the gold standard directly quantifies the ability of selected molecules to traverse the gut mucosal layer toward systemic circulation. This article uses a non-invasive, cost-effective, and low-burden technique to quantify and follow in real time the intestinal permeability in mice using fluorescein-isothiocyanate-labeled dextran (FITC-dextran). Prior to oral supplementation with FITC-dextran, the mice are fasted. They are then gavaged with FITC-dextran diluted in phosphate-buffered saline (PBS). One hour after the gavage, the mice are subjected to general anesthesia using isoflurane, and the in vivo fluorescence is visualized in an imaging chamber. This technique aims to assess residual fluorescence in the abdominal cavity and the hepatic uptake, which is suggestive of portal migration of the fluorescent probe. Blood and stool samples are collected 4 h after oral gavage, and the mice are sacrificed. Plasma and fecal samples diluted in PBS are then plated, and the fluorescence is recorded. The concentration of FITC-dextran is then calculated using a standard curve. In previous research, in vivo imaging has shown that fluorescence rapidly spreads to the liver in mice with a weaker gut barrier induced by a low-fiber diet, while in mice supplemented with fiber to strengthen the gut barrier, the fluorescent signal is retained mostly in the gastrointestinal tract. In addition, in this study, control mice had elevated plasma fluorescence and reduced fluorescence in the stool, while inversely, inulin-supplemented mice had higher levels of fluorescence signals in the gut and low levels in the plasma. In summary, this protocol provides qualitative and quantitative measurements of intestinal permeability as a marker for gut health.


Assuntos
Dextranos , Corantes Fluorescentes , Camundongos , Animais , Fluoresceína-5-Isotiocianato , Fluorescência
15.
Gut Pathog ; 14(1): 51, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36578036

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most diagnosed cancer and the second most common cause of cancer deaths worldwide. CRC patients present with an increase in pathogens in their gut microbiota, such as polyketide synthase-positive bacteria (pks +) and enterotoxigenic Bacteroides fragilis (ETBF). The pks + Escherichia coli promotes carcinogenesis and facilitates CRC progression through the production of colibactin, a genotoxin that induces double-strand DNA breaks (DSBs). ETBF is a procarcinogenic bacterium producing the B. fragilis toxin (bft) that promotes colorectal carcinogenesis by modulating the mucosal immune response and inducing epithelial cell changes. METHODS: Fecal samples were collected from healthy controls (N = 62) and CRC patients (N = 94) from the province of Québec (Canada), and a bacterial DNA extraction was performed. Fecal DNA samples were then examined for the presence of the pks island gene and bft using conventional qualitative PCR. RESULTS: We found that a high proportion of healthy controls are colonized by pks + bacteria (42%) and that these levels were similar in CRC patients (46%). bft was detected in 21% of healthy controls and 32% of CRC patients, while double colonization by both pks + bacteria and ETBF occurred in 8% of the healthy controls and 13% of the CRC patients. Most importantly, we found that early-onset CRC (< 50 years) patients were significantly less colonized with pks + bacteria (20%) compared to late-onset CRC patients (52%). CONCLUSIONS: Healthy controls had similar levels of pks + bacteria and ETBF colonization as CRC patients, and their elevated levels may place both groups at greater risk of developing CRC. Colonization with pks + bacteria was less prevalent in early-compared to late-onset CRC.

16.
Int J Cancer ; 128(10): 2326-34, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20669231

RESUMO

Cancer cells require large amounts of micronutrients, particularly iron, for their rapid growth and frequent divisions. Cellular iron uptake is regulated by the transferrin receptor and the hemochromatosis protein (HFE) system. Two frequent mutations in the HFE gene, H63D and C282Y, are associated with hemochromatosis type I, an inherited iron overload disease and, possibly, with cancer. In this study, we evaluated the frequency of the H63D and C282Y mutations in a cohort of 677 consecutive cases of woman with gynecological pathologies. Cases included 80 women with tumor-free pathologies normal ovary (NOV), 124 with benign ovarian tumors (BOV), 96 with epithelial ovarian cancer (EOC) tumors of low malignant potential (LPM), 264 with invasive tumors of the ovary (TOV) and 113 with endometrial cancer. We found that the C282Y allele frequency in EOC patients was higher than that in the control NOV group (5.8% vs. 1.3%, p < 0.001) and was associated with an increased risk of ovarian cancer (OR = 4.88; 95% CI 1.15-20.61; p = 0.018). The effect of the two HFE mutations on patient survival was also analyzed. Kaplan-Meier analyses did not find any significant association between the H63D allele and patient survival. However, EOC patients with at least one C282Y allele had a decreased overall survival compared to those with no C282Y allele (p = 0.001). These results indicate that the C282Y mutation may increase the risk of developing ovarian cancer and may be further associated with poor outcomes.


Assuntos
Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe I/genética , Proteínas de Membrana/genética , Mutação , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Feminino , Genótipo , Proteína da Hemocromatose , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Prognóstico
17.
Blood ; 113(15): 3593-9, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19204324

RESUMO

Hepcidin, a key regulator of iron metabolism, is a small antimicrobial peptide produced by the liver that regulates intestinal iron absorption and iron recycling by macrophages. Hepcidin is stimulated when iron stores increase and during inflammation and, conversely, is inhibited by hypoxia and augmented erythropoiesis. In many pathologic situations, such as in the anemia of chronic disease (ACD) and iron-loading anemias, several of these factors may be present concomitantly and may generate opposing signaling to regulate hepcidin expression. Here, we address the question of dominance among the regulators of hepcidin expression. We show that erythropoiesis drive, stimulated by erythropoietin but not hypoxia, down-regulates hepcidin in a dose-dependent manner, even in the presence of lipopolysaccharide (LPS) or dietary iron-loading, which may act additively. These effects are mediated through down-regulation of phosphorylation of Stat3 triggered by LPS and of Smad1/5/8 induced by iron. In conclusion, hepcidin expression levels in the presence of opposing signaling are determined by the strength of the individual stimuli rather than by an absolute hierarchy among signaling pathways. Our findings also suggest that erythropoietic drive can inhibit both inflammatory and iron-sensing pathways, at least in part, via the suppression of STAT3 and SMAD4 signaling in vivo.


Assuntos
Anemia Ferropriva/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Hipóxia/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína Smad4/metabolismo , Animais , Eritropoese/fisiologia , Eritropoetina/metabolismo , Feminino , Hepcidinas , Interleucina-6/metabolismo , Ferro da Dieta/metabolismo , Ferro da Dieta/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo
19.
Clin Nutr ; 40(6): 3842-3851, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34130031

RESUMO

BACKGROUND AND AIMS: Anastomotic leak (AL) is a major complication in colorectal surgery. Recent evidence suggests that the gut microbiota may affect healing and may cause or prevent AL. Butyrate is a beneficial short-chain fatty acid (SCFA) that is produced as a result of bacterial fermentation of dietary oligosaccharides and has been described as beneficial in the maintenance of colonic health. To assess the impact of oligosaccharides on colonic anastomotic healing in mice, we propose to modulate the microbiota with oligosaccharides to increase butyrate production via enhancement of butyrate-producing bacteria and, consequently, improve anastomotic healing in mice. METHODS: Animal experiments were conducted in mice that were subjected to diets supplemented with inulin, galacto-oligosaccharides (GOS) or cellulose, as a control, for two weeks before undergoing a surgical colonic anastomosis. Macroscopic and histological assessment of the anastomosis was performed. Extent of epithelial proliferation was assessed by Ki-67 immunohistochemistry. Gelatin zymography was used to evaluate the extent of matrix metalloproteinase (MMP) hydrolytic activity. RESULTS: Inulin and GOS diets were associated with increased butyrate production and better anastomotic healing. Histological analysis revealed an enhanced mucosal continuity, and this was associated with an increased re-epithelialization of the wound as determined by increased epithelial proliferation. Collagen concentration in peri-anastomotic tissue was higher with inulin and GOS diets and MMP activity, a marker of collagen degradation, was lower with both oligosaccharides. Inulin and GOS diets were further associated with lower bacterial translocation. CONCLUSIONS: Dietary supplementation with inulin and GOS may improve anastomotic healing and reinforce the gut barrier in mice.


Assuntos
Fístula Anastomótica/prevenção & controle , Doenças do Colo/cirurgia , Ácidos Graxos Voláteis/administração & dosagem , Inulina/administração & dosagem , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Período Perioperatório , Complicações Pós-Operatórias/prevenção & controle , Resultado do Tratamento , Cicatrização
20.
Hepatology ; 49(3): 1012-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19152427

RESUMO

UNLABELLED: Under normal conditions, iron is taken up by the cells through the transferrin-mediated pathway. However, in hereditary hemochromatosis, a common iron-overloading disorder associated with mutations in the HFE gene, iron in plasma exceeds transferrin-binding capacity, and non-transferrin-bound iron (NTBI) appears in the circulation of patients with iron overload. NTBI can be taken up by hepatocytes through a transferrin-independent pathway. Lipocalin 2 (Lcn2), a secreted protein of the lipocalin family, has emerged as the mediator of an alternative, transferrin-independent pathway for cellular iron delivery. To evaluate the importance of Lcn2 in the pathogenesis of hepatic iron loading in Hfe knockout mice, we generated HfeLcn2 double-deficient mice. Our studies revealed that deletion of Lcn2 in Hfe-knockout mice does not influence hepatic iron accumulation in Hfe(-/-) mice, or their response to iron loading, as the phenotype of HfeLcn2(-/-) mice remained indistinguishable from that of Hfe(-/-) mice. CONCLUSION: Lcn2 is not essential for iron delivery to hepatocytes in hemochromatosis.


Assuntos
Proteínas de Fase Aguda/metabolismo , Hemocromatose/genética , Hemocromatose/fisiopatologia , Lipocalinas/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas de Fase Aguda/genética , Animais , Modelos Animais de Doenças , Feminino , Hemocromatose/metabolismo , Proteína da Hemocromatose , Hepatócitos/metabolismo , Hepatócitos/patologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Ferro/metabolismo , Lipocalina-2 , Lipocalinas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Proteínas Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa