Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Annu Rev Cell Dev Biol ; 31: 201-29, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26436707

RESUMO

Plant-pathogen interactions can result in dramatic visual changes in the host, such as galls, phyllody, pseudoflowers, and altered root-system architecture, indicating that the invading microbe has perturbed normal plant growth and development. These effects occur on a cellular level but range up to the organ scale, and they commonly involve attenuation of hormone homeostasis and deployment of effector proteins with varying activities to modify host cell processes. This review focuses on the cellular-reprogramming mechanisms of filamentous and bacterial plant pathogens that exhibit a biotrophic lifestyle for part, if not all, of their lifecycle in association with the host. We also highlight strategies for exploiting our growing knowledge of microbial host reprogramming to study plant processes other than immunity and to explore alternative strategies for durable plant resistance.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Plantas/imunologia , Plantas/microbiologia , Bactérias/imunologia , Fungos/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia
2.
Plant Cell ; 36(7): 2491-2511, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38598645

RESUMO

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a prominent class of intracellular immune receptors in plants. However, our understanding of plant NLR structure and function is limited to the evolutionarily young flowering plant clade. Here, we describe an extended spectrum of NLR diversity across divergent plant lineages and demonstrate the structural and functional similarities of N-terminal domains that trigger immune responses. We show that the broadly distributed coiled-coil (CC) and toll/interleukin-1 receptor (TIR) domain families of nonflowering plants retain immune-related functions through translineage activation of cell death in the angiosperm Nicotiana benthamiana. We further examined a CC subfamily specific to nonflowering lineages and uncovered an essential N-terminal MAEPL motif that is functionally comparable with motifs in resistosome-forming CC-NLRs. Consistent with a conserved role in immunity, the ectopic activation of CCMAEPL in the nonflowering liverwort Marchantia polymorpha led to profound growth inhibition, defense gene activation, and signatures of cell death. Moreover, comparative transcriptomic analyses of CCMAEPL activity delineated a common CC-mediated immune program shared across evolutionarily divergent nonflowering and flowering plants. Collectively, our findings highlight the ancestral nature of NLR-mediated immunity during plant evolution that dates its origin to at least ∼500 million years ago.


Assuntos
Marchantia , Proteínas NLR , Nicotiana , Proteínas de Plantas , Proteínas NLR/genética , Proteínas NLR/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Marchantia/genética , Marchantia/imunologia , Marchantia/metabolismo , Domínios Proteicos , Filogenia , Imunidade Vegetal/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Proc Natl Acad Sci U S A ; 120(41): e2302985120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782806

RESUMO

Plant morphogenesis is governed by the mechanics of the cell wall-a stiff and thin polymeric box that encloses the cells. The cell wall is a highly dynamic composite material. New cell walls are added during cell division. As the cells continue to grow, the properties of cell walls are modulated to undergo significant changes in shape and size without breakage. Spatial and temporal variations in cell wall mechanical properties have been observed. However, how they relate to cell division remains an outstanding question. Here, we combine time-lapse imaging with local mechanical measurements via atomic force microscopy to systematically map the cell wall's age and growth, with their stiffness. We make use of two systems, Marchantia polymorpha gemmae, and Arabidopsis thaliana leaves. We first characterize the growth and cell division of M. polymorpha gemmae. We then demonstrate that cell division in M. polymorpha gemmae results in the generation of a temporary stiffer and slower-growing new wall. In contrast, this transient phenomenon is absent in A. thaliana leaves. We provide evidence that this different temporal behavior has a direct impact on the local cell geometry via changes in the junction angle. These results are expected to pave the way for developing more realistic plant morphogenetic models and to advance the study into the impact of cell division on tissue growth.


Assuntos
Arabidopsis , Marchantia , Arabidopsis/genética , Marchantia/genética , Folhas de Planta , Parede Celular , Polímeros
4.
Plant Cell ; 34(10): 3512-3542, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35976122

RESUMO

The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha.


Assuntos
Embriófitas , Marchantia , Evolução Biológica , Células Germinativas Vegetais , Marchantia/genética , Filogenia
5.
Genome Res ; 31(12): 2290-2302, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34772700

RESUMO

Arbuscular mycorrhizal (AM) fungi form mutualistic relationships with most land plant species. AM fungi have long been considered as ancient asexuals. Long-term clonal evolution would be remarkable for a eukaryotic lineage and suggests the importance of alternative mechanisms to promote genetic variability facilitating adaptation. Here, we assessed the potential of transposable elements for generating such genomic diversity. The dynamic expression of TEs during Rhizophagus irregularis spore development suggests ongoing TE activity. We find Mutator-like elements located near genes belonging to highly expanded gene families. Whole-genome epigenomic profiling of R. irregularis provides direct evidence of DNA methylation and small RNA production occurring at TE loci. Our results support a model in which TE activity shapes the genome, while DNA methylation and small RNA-mediated silencing keep their overproliferation in check. We propose that a well-controlled TE activity directly contributes to genome evolution in AM fungi.

6.
J Exp Bot ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824404

RESUMO

Plant macroevolutionary studies leverage the phylogenetic position of non-flowering model systems like the liverwort Marchantia polymorpha to investigate the origin and evolution of key plant processes. To date, most molecular genetic studies in Marchantia rely on hygromycin and/or chlorsulfuron herbicide resistance markers for the selection of stable transformants. Here, we use a sulfonamide-resistant dihydropteroate synthase (DHPS) gene to enable sulfadiazine-based transformation selection in M. polymorpha. We demonstrate the reliability of sulfadiazine selection on its own and in combination with existing hygromycin and chlorsulfuron selection schemes through transgene stacking experiments. The utility of this system is further demonstrated through confocal microscopy of a triple transgenic line carrying fluorescent proteins labelling the plasma membrane, cortical microtubules, and the nucleus. Collectively, our findings and resources broaden the capacity to genetically manipulate the increasingly popular model liverwort M. polymorpha.

7.
Plant Cell ; 33(5): 1447-1471, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33677602

RESUMO

Pathogens modulate plant cell structure and function by secreting effectors into host tissues. Effectors typically function by associating with host molecules and modulating their activities. This study aimed to identify the host processes targeted by the RXLR class of host-translocated effectors of the potato blight pathogen Phytophthora infestans. To this end, we performed an in planta protein-protein interaction screen by transiently expressing P. infestans RXLR effectors in Nicotiana benthamiana leaves followed by coimmunoprecipitation and liquid chromatography-tandem mass spectrometry. This screen generated an effector-host protein interactome matrix of 59 P. infestans RXLR effectors x 586 N. benthamiana proteins. Classification of the host interactors into putative functional categories revealed over 35 biological processes possibly targeted by P. infestans. We further characterized the PexRD12/31 family of RXLR-WY effectors, which associate and colocalize with components of the vesicle trafficking machinery. One member of this family, PexRD31, increased the number of FYVE positive vesicles in N. benthamiana cells. FYVE positive vesicles also accumulated in leaf cells near P. infestans hyphae, indicating that the pathogen may enhance endosomal trafficking during infection. This interactome dataset will serve as a useful resource for functional studies of P. infestans effectors and of effector-targeted host processes.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Phytophthora infestans/fisiologia , Proteínas/metabolismo , Vesículas Transportadoras/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Proteínas SNARE/metabolismo , Nicotiana/metabolismo , Nicotiana/microbiologia
8.
PLoS Biol ; 19(7): e3001326, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34260583

RESUMO

Arbuscular mycorrhiza (AM) are mutualistic interactions formed between soil fungi and plant roots. AM symbiosis is a fundamental and widespread trait in plants with the potential to sustainably enhance future crop yields. However, improving AM fungal association in crop species requires a fundamental understanding of host colonisation dynamics across varying agronomic and ecological contexts. To this end, we demonstrate the use of betalain pigments as in vivo visual markers for the occurrence and distribution of AM fungal colonisation by Rhizophagus irregularis in Medicago truncatula and Nicotiana benthamiana roots. Using established and novel AM-responsive promoters, we assembled multigene reporter constructs that enable the AM-controlled expression of the core betalain synthesis genes. We show that betalain colouration is specifically induced in root tissues and cells where fungal colonisation has occurred. In a rhizotron setup, we also demonstrate that betalain staining allows for the noninvasive tracing of fungal colonisation along the root system over time. We present MycoRed, a useful innovative method that will expand and complement currently used fungal visualisation techniques to advance knowledge in the field of AM symbiosis.


Assuntos
Betalaínas/metabolismo , Micorrizas/crescimento & desenvolvimento , Genes Fúngicos , Marcadores Genéticos , Medicago truncatula/microbiologia , Micorrizas/genética , Micorrizas/metabolismo , Raízes de Plantas/microbiologia , Regiões Promotoras Genéticas , Simbiose/genética , Nicotiana/genética , Nicotiana/microbiologia
9.
Mol Plant Microbe Interact ; 36(6): 315-322, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36734982

RESUMO

The oomycete Phytophthora palmivora infects a wide range of tropical crops worldwide. Like other filamentous plant pathogens, it secretes effectors to colonize plant tissues. Here, we characterize FIRE, an RXLR effector that contains a canonical mode I 14-3-3 phospho-sensor-binding motif that is conserved in effectors of several Phytophthora species. FIRE is phosphorylated in planta and interacts with multiple 14-3-3 proteins. Binding is sensitive to the R18 14-3-3 inhibitor. FIRE promotes plant susceptibility and co-localizes with its target around haustoria. This work uncovers a new type of oomycete effector target mechanism. It demonstrates that substrate mimicry for 14-3-3 proteins is a cross-kingdom effector strategy used by both prokaryotic and eukaryotic plant pathogens to suppress host immunity. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Phytophthora , Proteínas 14-3-3 , Plantas , Doenças das Plantas
10.
New Phytol ; 239(3): 1127-1139, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37257494

RESUMO

Pathogenic fungi use secreted effector proteins to suppress immunity and support their infection, but effectors have also been reported from fungi that engage in nutritional symbioses with plants. Sequence-based effector comparisons between pathogens and symbiotic arbuscular mycorrhizal (AM) fungi are hampered by the huge diversity of effector sequences even within closely related microbes. To find sequence-divergent but structurally similar effectors shared between symbiotic and pathogenic fungi, we compared secreted protein structure models of the AM fungus Rhizophagus irregularis to known pathogen effectors. We identified proteins with structural similarity to known Fusarium oxysporum f. sp. lycopersici dual domain (FOLD) effectors, which occur in low numbers in several fungal pathogens. Contrastingly, FOLD genes from AM fungi (MycFOLDs) are found in enlarged and diversified gene families with higher levels of positive selection in their C-terminal domains. Our structure model comparison suggests that MycFOLDs are similar to carbohydrate-binding motifs. Different MycFOLD genes are expressed during colonisation of different hosts and MycFOLD-17 transcripts accumulate in plant intracellular arbuscules. The exclusive presence of MycFOLDs across unrelated plant-colonising fungi, their inducible expression, lineage-specific sequence diversification and transcripts in arbuscules suggest that FOLD proteins act as effectors during plant colonisation of symbiotic and pathogenic fungi.


Assuntos
Proteínas Fúngicas , Micorrizas , Proteínas Fúngicas/metabolismo , Simbiose , Micorrizas/genética , Micorrizas/metabolismo , Fungos/genética , Fungos/metabolismo , Plantas/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Environ Microbiol ; 24(11): 5524-5533, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054464

RESUMO

The plant common symbiosis signalling (SYM) pathway has shared function between interactions with rhizobia and arbuscular mycorrhizal fungi, the two most important symbiotic interactions between plants and microorganisms that are crucial in plant and agricultural yields. Here, we determine the role of the plant SYM pathway in the structure and abundance of the microbiota in the model legume Medicago truncatula and whether this is controlled by the nitrogen or phosphorus status of the plant. We show that SYM mutants (dmi3) differ substantially from the wild type (WT) in the absolute abundance of the root microbiota, especially under nitrogen limitation. Changes in the structure of the microbiota were less pronounced and depended on both plant genotype and nutrient status. Thus, the SYM pathway has a major impact on microbial abundance in M. truncatula and also subtly alters the composition of the microbiota.


Assuntos
Medicago truncatula , Microbiota , Micorrizas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Fixação de Nitrogênio/genética , Proteínas de Plantas/metabolismo , Micorrizas/genética , Micorrizas/metabolismo , Simbiose/genética , Nitrogênio/metabolismo , Microbiota/genética , Raízes de Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Nodulação/genética
12.
Proc Natl Acad Sci U S A ; 116(7): 2755-2760, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30679269

RESUMO

Nucleotide binding site leucine-rich repeat (NLR) proteins of the plant innate immune system are negatively regulated by the miR482/2118 family miRNAs that are in a distinct 22-nt class of miRNAs with a double mode of action. First, they cleave the target RNA, as with the canonical 21-nt miRNAs, and second, they trigger secondary siRNA production using the target RNA as a template. Here, we address the extent to which the miR482/2118 family affects expression of NLR mRNAs and disease resistance. We show that structural differences of miR482/2118 family members in tomato (Solanum lycopersicum) are functionally significant. The predicted target of the miR482 subfamily is a conserved motif in multiple NLR mRNAs, whereas for miR2118b, it is a noncoding RNA target formed by rearrangement of several different NLR genes. From RNA sequencing and degradome data in lines expressing short tandem target mimic (STTM) RNAs of miR482/2118, we confirm the different targets of these miRNAs. The effect on NLR mRNA accumulation is slight, but nevertheless, the tomato STTM lines display enhanced resistance to infection with the oomycete and bacterial pathogens. These data implicate an RNA cascade of miRNAs and secondary siRNAs in the regulation of NLR RNAs and show that the encoded NLR proteins have a role in quantitative disease resistance in addition to dominant gene resistance that has been well characterized elsewhere. We also illustrate the use of STTM RNA in a biotechnological approach for enhancing quantitative disease resistance in highly bred cultivars.


Assuntos
Bactérias/patogenicidade , Repetições de Microssatélites , Mimetismo Molecular , Oomicetos/patogenicidade , RNA Mensageiro/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Resistência à Doença , MicroRNAs/genética , RNA Mensageiro/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo
13.
New Phytol ; 232(5): 2207-2219, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34449891

RESUMO

Soil fungi establish mutualistic interactions with the roots of most vascular land plants. Arbuscular mycorrhizal (AM) fungi are among the most extensively characterised mycobionts to date. Current approaches to quantifying the extent of root colonisation and the abundance of hyphal structures in mutant roots rely on staining and human scoring involving simple yet repetitive tasks which are prone to variation between experimenters. We developed Automatic Mycorrhiza Finder (AMFinder) which allows for automatic computer vision-based identification and quantification of AM fungal colonisation and intraradical hyphal structures on ink-stained root images using convolutional neural networks. AMFinder delivered high-confidence predictions on image datasets of roots of multiple plant hosts (Nicotiana benthamiana, Medicago truncatula, Lotus japonicus, Oryza sativa) and captured the altered colonisation in ram1-1, str, and smax1 mutants. A streamlined protocol for sample preparation and imaging allowed us to quantify mycobionts from the genera Rhizophagus, Claroideoglomus, Rhizoglomus and Funneliformis via flatbed scanning or digital microscopy, including dynamic increases in colonisation in whole root systems over time. AMFinder adapts to a wide array of experimental conditions. It enables accurate, reproducible analyses of plant root systems and will support better documentation of AM fungal colonisation analyses. AMFinder can be accessed at https://github.com/SchornacklabSLCU/amfinder.


Assuntos
Aprendizado Profundo , Glomeromycota , Lotus , Micorrizas , Fungos , Raízes de Plantas , Simbiose
14.
Proc Natl Acad Sci U S A ; 115(16): E3846-E3855, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29615512

RESUMO

The expansion of plants onto land was a formative event that brought forth profound changes to the earth's geochemistry and biota. Filamentous eukaryotic microbes developed the ability to colonize plant tissues early during the evolution of land plants, as demonstrated by intimate, symbiosis-like associations in >400 million-year-old fossils. However, the degree to which filamentous microbes establish pathogenic interactions with early divergent land plants is unclear. Here, we demonstrate that the broad host-range oomycete pathogen Phytophthora palmivora colonizes liverworts, the earliest divergent land plant lineage. We show that P. palmivora establishes a complex tissue-specific interaction with Marchantia polymorpha, where it completes a full infection cycle within air chambers of the dorsal photosynthetic layer. Remarkably, P. palmivora invaginates M. polymorpha cells with haustoria-like structures that accumulate host cellular trafficking machinery and the membrane syntaxin MpSYP13B, but not the related MpSYP13A. Our results indicate that the intracellular accommodation of filamentous microbes is an ancient plant trait that is successfully exploited by pathogens like P. palmivora.


Assuntos
Marchantia/microbiologia , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Hifas/patogenicidade , Hifas/ultraestrutura , Marchantia/ultraestrutura , Phytophthora/ultraestrutura , Simbiose
15.
Mol Plant Microbe Interact ; 33(5): 742-753, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32237964

RESUMO

Along with Plasmopara destructor, Peronosopora belbahrii has arguably been the economically most important newly emerging downy mildew pathogen of the past two decades. Originating from Africa, it has started devastating basil production throughout the world, most likely due to the distribution of infested seed material. Here, we present the genome of this pathogen and results from comparisons of its genomic features to other oomycetes. The assembly of the nuclear genome was around 35.4 Mbp in length, with an N50 scaffold length of around 248 kbp and an L50 scaffold count of 46. The circular mitochondrial genome consisted of around 40.1 kbp. From the repeat-masked genome, 9,049 protein-coding genes were predicted, out of which 335 were predicted to have extracellular functions, representing the smallest secretome so far found in peronosporalean oomycetes. About 16% of the genome consists of repetitive sequences, and, based on simple sequence repeat regions, we provide a set of microsatellites that could be used for population genetic studies of P. belbahrii. P. belbahrii has undergone a high degree of convergent evolution with other obligate parasitic pathogen groups, reflecting its obligate biotrophic lifestyle. Features of its secretome, signaling networks, and promoters are presented, and some patterns are hypothesized to reflect the high degree of host specificity in Peronospora species. In addition, we suggest the presence of additional virulence factors apart from classical effector classes that are promising candidates for future functional studies.


Assuntos
Genoma Mitocondrial , Peronospora/genética , Genômica , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas
16.
Plant Physiol ; 181(2): 565-577, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31358684

RESUMO

Fungi and plants have engaged in intimate symbioses that are globally widespread and have driven terrestrial biogeochemical processes since plant terrestrialization >500 million years ago. Recently, hitherto unknown nutritional mutualisms involving ancient lineages of fungi and nonvascular plants have been discovered, although their extent and functional significance in vascular plants remain uncertain. Here, we provide evidence of carbon-for-nitrogen exchange between an early-diverging vascular plant (Lycopodiella inundata) and Mucoromycotina (Endogonales) fine root endophyte fungi. Furthermore, we demonstrate that the same fungal symbionts colonize neighboring nonvascular and flowering plants. These findings fundamentally change our understanding of the physiology, interrelationships, and ecology of underground plant-fungal symbioses in modern terrestrial ecosystems by revealing the nutritional role of Mucoromycotina fungal symbionts in vascular plants.


Assuntos
Endófitos/fisiologia , Lycopodiaceae/microbiologia , Endófitos/ultraestrutura , Isótopos , Raízes de Plantas/microbiologia , Simbiose
17.
Plant J ; 93(2): 297-310, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29171909

RESUMO

Phytophthora palmivora is a devastating oomycete plant pathogen. We found that P. palmivora induces disease in Lotus japonicus and used this interaction to identify cellular and molecular events in response to this oomycete, which has a broad host range. Transcript quantification revealed that Lys12 was highly and rapidly induced during P. palmivora infection. Mutants of Lys12 displayed accelerated disease progression, earlier plant death and a lower level of defence gene expression than the wild type, while the defence program after chitin, laminarin, oligogalacturonide or flg22 treatment and the root symbioses with nitrogen-fixing rhizobia and arbuscular mycorrhiza were similar to the wild type. On the microbial side, we found that P. palmivora encodes an active chitin synthase-like protein, and mycelial growth is impaired after treatment with a chitin-synthase inhibitor. However, wheat germ agglutinin-detectable N-acetyl-glucosamine (GlcNAc) epitopes were not identified when the oomycete was grown in vitro or while infecting the roots. This indicates that conventional GlcNAc-mers are unlikely to be produced and/or accumulate in P. palmivora cell walls and that LYS12 might perceive an unknown carbohydrate. The impact of Lys12 on progression of root rot disease, together with the finding that similar genes are present in other P. palmivora hosts, suggests that LYS12 might mediate a common early response to this pathogen.


Assuntos
Interações Hospedeiro-Patógeno , Lotus/imunologia , Phytophthora/fisiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Transdução de Sinais , Quitina Sintase/genética , Quitina Sintase/metabolismo , Lotus/citologia , Lotus/microbiologia , Lotus/parasitologia , Micorrizas/fisiologia , Phytophthora/citologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Rhizobium/fisiologia , Simbiose
18.
Bioinformatics ; 34(13): 2295-2296, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462238

RESUMO

Motivation: The secretome denotes the collection of secreted proteins exported outside of the cell. The functional roles of secreted proteins include the maintenance and remodelling of the extracellular matrix as well as signalling between host and non-host cells. These features make secretomes rich reservoirs of biomarkers for disease classification and host-pathogen interaction studies. Common biomarkers are extracellular proteins secreted via classical pathways that can be predicted from sequence by annotating the presence or absence of N-terminal signal peptides. Several heterogeneous command line tools and web-interfaces exist to identify individual motifs, signal sequences and domains that are either characteristic or strictly excluded from secreted proteins. However, a single flexible secretome-prediction workflow that combines all analytic steps is still missing. Results: To bridge this gap the SecretSanta package implements wrapper and parser functions around established command line tools for the integrative prediction of extracellular proteins that are secreted via classical pathways. The modularity of SecretSanta enables users to create tailored pipelines and apply them across the whole tree of life to facilitate comparison of secretomes across multiple species or under various conditions. Availability and implementation: SecretSanta is implemented in the R programming language and is released under GPL-3 license. All functions have been optimized and parallelized to allow large-scale processing of sequences. The open-source code, installation instructions and vignette with use case scenarios can be downloaded from https://github.com/gogleva/SecretSanta. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Linguagens de Programação , Genômica , Fluxo de Trabalho
19.
BMC Microbiol ; 19(1): 265, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775609

RESUMO

BACKGROUND: Oomycetes are pathogens of mammals, fish, insects and plants, and the potato late blight agent Phytophthora infestans and the oil palm and cocoa infecting pathogen Phytophthora palmivora cause economically impacting diseases on a wide range of crop plants. Increasing genomic and transcriptomic resources and recent advances in oomycete biology demand new strategies for genetic modification of oomycetes. Most oomycete transformation procedures rely on geneticin-based selection of transgenic strains. RESULTS: We established N-acetyltransferase AAC(3)-I as a gentamicin-based selectable marker for oomycete transformation without interference with existing geneticin resistance. Strains carrying gentamicin resistance are fully infectious in plants. We further demonstrate the usefulness of this new antibiotic selection to super-transform well-characterized, already fluorescently-labelled P. palmivora strains and provide a comprehensive protocol for maintenance and zoospore electro-transformation of Phytophthora strains to aid in plant-pathogen research. CONCLUSIONS: N-acetyltransferase AAC(3)-I is functional in Phytophthora oomycetes. In addition, the substrate specificity of the AAC(3)-I enzyme allows for re-transformation of geneticin-resistant strains. Our findings and resources widen the possibilities to study oomycete cell biology and plant-oomycete interactions.


Assuntos
Arilamina N-Acetiltransferase/genética , Resistência a Medicamentos/genética , Gentamicinas/farmacologia , Isoenzimas/genética , Phytophthora infestans/efeitos dos fármacos , Phytophthora/efeitos dos fármacos , Corantes Fluorescentes , Phytophthora/enzimologia , Phytophthora/genética , Phytophthora infestans/enzimologia , Phytophthora infestans/genética , Doenças das Plantas , Transformação Genética
20.
New Phytol ; 223(3): 1547-1559, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980530

RESUMO

The leaf outer epidermal cell wall acts as a barrier against pathogen attack and desiccation, and as such is covered by a cuticle, composed of waxes and the polymer cutin. Cutin monomers are formed by the transfer of fatty acids to glycerol by glycerol-3-phosphate acyltransferases, which facilitate their transport to the surface. The extent to which cutin monomers affect leaf cell wall architecture and barrier properties is not known. We report a dual functionality of pathogen-inducible GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 6 (GPAT6) in controlling pathogen entry and cell wall properties affecting dehydration in leaves. Silencing of Nicotiana benthamiana NbGPAT6a increased leaf susceptibility to infection by the oomycetes Phytophthora infestans and Phytophthora palmivora, whereas overexpression of NbGPAT6a-GFP rendered leaves more resistant. A loss-of-function mutation in tomato SlGPAT6 similarly resulted in increased susceptibility of leaves to Phytophthora infection, concomitant with changes in haustoria morphology. Modulation of GPAT6 expression altered the outer wall diameter of leaf epidermal cells. Moreover, we observed that tomato gpat6-a mutants had an impaired cell wall-cuticle continuum and fewer stomata, but showed increased water loss. This study highlights a hitherto unknown role for GPAT6-generated cutin monomers in influencing epidermal cell properties that are integral to leaf-microbe interactions and in limiting dehydration.


Assuntos
Aciltransferases/metabolismo , Parede Celular/metabolismo , Nicotiana/metabolismo , Epiderme Vegetal/microbiologia , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Botrytis/fisiologia , Parede Celular/ultraestrutura , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Phytophthora/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Epiderme Vegetal/metabolismo , Epiderme Vegetal/ultraestrutura , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Estômatos de Plantas/metabolismo , Estômatos de Plantas/microbiologia , Estômatos de Plantas/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nicotiana/genética , Nicotiana/microbiologia , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa