Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 52(8): 2347-50, 2004 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15080644

RESUMO

Although the Maillard reaction between proteins and carbohydrates is of central importance for food processing and in vivo processes, only little is known about changes of the metal-binding properties induced by protein glycation. The purpose of this study was to examine the complex formation of the quantitatively important peptide-bound Maillard reaction products (MRPs) N(epsilon)-fructoselysine and N(epsilon)-carboxymethyllysine with the biologically relevant metal ions copper(II) and zinc(II). The MRPs were synthesized as the N(alpha)-hippuryllysine derivatives in order to block the coordination function of the alpha-amino group. Stability constant measurements were performed in aqueous solution using pH potentiometry. N(alpha)-Hippuryl-N(epsilon)-fructoselysine forms moderate Cu(II) complexes (Log(10) K(1) = 5.8; Log(10) K(2) = 4.0) but fails to form any complexes with Zn(II). N(alpha)-Hippuryl-N(epsilon)-carboxymethyllysine gives slightly stronger complexes with Cu(II) (Log(10) K(1) = 7.3; Log(10) K(2) = 6.3), but again no complexation with Zn(II) was observed. These results show that post-translational modification of proteins by carbohydrates leads to the formation of new coordination centers for metal ions within a protein chain. Further studies are necessary to clarify the consequences of this phenomenon in terms of protein quality and physiological processes.


Assuntos
Lisina/análogos & derivados , Lisina/química , Reação de Maillard , Metais/química , Peptídeos/química , Cobre/química , Zinco/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa