Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Toxicol Appl Pharmacol ; 387: 114855, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31830491

RESUMO

Vanillin is a natural compound endowed with antioxidant and anti-mutagenic properties. We previously identified the vanillin derivative VND3207 with strong radio-protective and antioxidant effects and found that VND3207 confers survival benefit and protection against radiation-induced intestinal injury (RIII) in mice. We also observed that VND3207 treatment enhanced the expression level of the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) in human lymphoblastoid cells with or without γ-irradiation. DNA-PKcs is a critical component of DNA double strand break repair pathway and also regulates mitotic progression by stabilizing spindle formation and preventing mitotic catastrophe in response to DNA damage. In the present study, we found that VND3207 protected intestinal epithelial cells in vitro against ionizing radiation by promoting cell proliferation and inhibiting cell apoptosis. In addition, VND3207 promoted DNA-PKcs activity by increasing autophosphorylation at S2056 site. Consistent with this, VND3207 significantly decreased the number of γH2AX foci and mitotic catastrophe after radiation. DNA-PKcs deficiency abolished these VND3207 radio-protective effects, indicating that DNA-PKcs activation is essential for VND3207 activity. In conclusion, VND3207 promoted intestinal repair following radiation injury by regulating the DNA-PKcs pathway.


Assuntos
Benzaldeídos/farmacologia , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Proteína Quinase Ativada por DNA/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Raios gama/efeitos adversos , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação , Mutação com Perda de Função , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Lesões Experimentais por Radiação/patologia , Protetores contra Radiação/uso terapêutico
2.
Nucleic Acids Res ; 46(4): 1847-1859, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29309644

RESUMO

The DNA-dependent protein kinase (DNA-PK), consisting of the DNA binding Ku70/80 heterodimer and the catalytic subunit DNA-PKcs, has been well characterized in the non-homologous end-joining mechanism for DNA double strand break (DSB) repair and radiation resistance. Besides playing a role in DSB repair, DNA-PKcs is required for the cellular response to replication stress and participates in the ATR-Chk1 signaling pathway. However, the mechanism through which DNA-PKcs is recruited to stalled replication forks is still unclear. Here, we report that the apoptosis mediator p53-induced protein with a death domain (PIDD) is required to promote DNA-PKcs activity in response to replication stress. PIDD is known to interact with PCNA upon UV-induced replication stress. Our results demonstrate that PIDD is required to recruit DNA-PKcs to stalled replication forks through direct binding to DNA-PKcs at the N' terminal region. Disruption of the interaction between DNA-PKcs and PIDD not only compromises the ATR association and regulation of DNA-PKcs, but also the ATR signaling pathway, intra-S-phase checkpoint and cellular resistance to replication stress. Taken together, our results indicate that PIDD, but not the Ku heterodimer, mediates the DNA-PKcs activity at stalled replication forks and facilitates the ATR signaling pathway in the cellular response to replication stress.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Replicação do DNA , Proteína Quinase Ativada por DNA/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Proteínas Nucleares/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Cricetinae , Proteína Quinase Ativada por DNA/química , Humanos , Autoantígeno Ku/fisiologia , Proteínas Nucleares/química , Pontos de Checagem da Fase S do Ciclo Celular , Transdução de Sinais , Estresse Fisiológico , Raios Ultravioleta
3.
Cancer Sci ; 109(12): 3783-3793, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30281878

RESUMO

The p53-inducible gene 3 (PIG3) is one of the p53-induced genes at the onset of apoptosis, which plays an important role in cell apoptosis and DNA damage response. Our previous study reported an oncogenic role of PIG3 associated with tumor progression and metastasis in non-small cell lung cancer (NSCLC). In this study, we further analyzed PIG3 mRNA expression in 504 lung adenocarcinoma (LUAD) and 501 lung squamous cell carcinoma (LUSC) tissues from The Cancer Genome Atlas database and we found that PIG3 expression was significantly higher in LUAD with lymph node metastasis than those without, while no difference was observed between samples with and without lymph node metastasis in LUSC. Gain and loss of function experiments were performed to confirm the metastatic role of PIG3 in vitro and to explore the mechanism involved in its oncogenic role in NSCLC metastasis. The results showed that PIG3 knockdown significantly inhibited the migration and invasion ability of NSCLC cells, and decreased paxillin, phospho-focal adhesion kinase (FAK) and phospho-Src kinase expression, while its overexpression resulted in the opposite effects. Blocking FAK with its inhibitor reverses PIG3 overexpression-induced cell motility in NSCLC cells, indicating that PIG3 increased cell metastasis through the FAK/Src/paxillin pathway. Furthermore, PIG3 silencing sensitized NSCLC cells to FAK inhibitor. In conclusion, our data revealed a role for PIG3 in inducing LUAD metastasis, and its role as a new FAK regulator, suggesting that it could be considered as a novel prognostic biomarker or therapeutic target in the treatment of LUAD metastasis.


Assuntos
Adenocarcinoma de Pulmão/genética , Carcinoma de Células Escamosas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Regulação para Cima , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adulto , Idoso , Animais , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Feminino , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Metástase Linfática , Masculino , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Transplante de Neoplasias , Fosforilação , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo
4.
Toxicol Appl Pharmacol ; 348: 76-84, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29679654

RESUMO

Esophageal squamous cell carcinoma (ESCC) is the most common form of esophageal cancer in China. Since chemotherapy is the standard clinical intervention for advanced ESCC, the development of highly effective and minimal/non-toxic drugs is essential to improve the clinical outcome and prognosis of the patients. A novel derivative of vanillin, 6-bromine-5-hydroxy-4-methoxybenzaldehyde (BVAN08), has been recently reported to activate different cell death pathways in cancer cells. In this study, we demonstrate that BVAN08 exhibits a potent anti-proliferation effect on ESCC cells (TE-1 and ECA-109) by inhibiting the expression of PLK1, an important mitotic kinase. Consistent with this, BVAN08 induces mitotic arrest and chromosomal misalignment in ESCC cells. The disruption of microtubule nucleation around centrosomes is also observed in BVAN08 treated ESCC cells. Furthermore, BVAN08 enhances radio-sensitivity of ESCC cells by prolonging DNA damage repair. These findings underscore the potential value of BVAN08 in cancer therapeutics and demonstrate the underlying mechanism by which BVAN08 induces mitotic catastrophe and enhances radio-sensitivity in ESCC cells.


Assuntos
Antineoplásicos/farmacologia , Benzaldeídos/farmacologia , Carcinoma de Células Escamosas/terapia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Quimiorradioterapia , Neoplasias Esofágicas/terapia , Mitose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Tolerância a Radiação/efeitos dos fármacos , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Centrossomo/efeitos dos fármacos , Centrossomo/patologia , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Neoplasias Esofágicas/enzimologia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Quinase 1 Polo-Like
5.
Nucleic Acids Res ; 44(18): 8842-8854, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27568005

RESUMO

Defects in kinetochore-microtubule (KT-MT) attachment and the spindle assembly checkpoint (SAC) during cell division are strongly associated with chromosomal instability (CIN). CIN has been linked to carcinogenesis, metastasis, poor prognosis and resistance to cancer therapy. We previously reported that the DAB2IP is a tumor suppressor, and that loss of DAB2IP is often detected in advanced prostate cancer (PCa) and is indicative of poor prognosis. Here, we report that the loss of DAB2IP results in impaired KT-MT attachment, compromised SAC and aberrant chromosomal segregation. We discovered that DAB2IP directly interacts with Plk1 and its loss inhibits Plk1 kinase activity, thereby impairing Plk1-mediated BubR1 phosphorylation. Loss of DAB2IP decreases the localization of BubR1 at the kinetochore during mitosis progression. In addition, the reconstitution of DAB2IP enhances the sensitivity of PCa cells to microtubule stabilizing drugs (paclitaxel, docetaxel) and Plk1 inhibitor (BI2536). Our findings demonstrate a novel function of DAB2IP in the maintenance of KT-MT structure and SAC regulation during mitosis which is essential for chromosomal stability.


Assuntos
Pontos de Checagem do Ciclo Celular , Instabilidade Cromossômica , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Aberrações Cromossômicas , Segregação de Cromossomos , Técnicas de Inativação de Genes , Humanos , Camundongos , Mitose/efeitos dos fármacos , Mitose/genética , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Moduladores de Tubulina/farmacologia , Proteínas Ativadoras de ras GTPase/genética , Quinase 1 Polo-Like
6.
Cancer Sci ; 108(12): 2503-2510, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28905458

RESUMO

An aberrantly elevated expression of DNA polymerase ι (Pol ι) is significantly associated with poor prognosis of patients with esophageal squamous cell carcinoma (ESCC), yet the mechanisms behind this phenomenon remain obscure. Based on the RNA-Seq transcriptome and real-time PCR analysis, we identified ETS-1 as a candidate gene involved in Pol ι-mediated progression of ESCC. Wound-healing and transwell assay indicated that downregulation of ETS-1 attenuates Pol ι-mediated invasiveness of ESCC. Signaling pathway analysis showed that Pol ι enhances ETS-1 phosphorylation at threonine-38 through the Erk signaling pathway in ESCC cells. Kaplan-Meier analysis, based on 93 clinical tissue samples, revealed that ETS-1 phosphorylation at threonine-38 is associated with poor prognosis of ESCC patients. The present study thus demonstrates that phosphorylation of ETS-1 is a critical event in the Pol ι-induced invasion and metastasis of ESCC.


Assuntos
Carcinoma de Células Escamosas/patologia , DNA Polimerase Dirigida por DNA/metabolismo , Neoplasias Esofágicas/patologia , Proteína Proto-Oncogênica c-ets-1/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Movimento Celular , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Carcinoma de Células Escamosas do Esôfago , Humanos , Estimativa de Kaplan-Meier , Invasividade Neoplásica/patologia , Fosforilação , DNA Polimerase iota
7.
Int J Med Sci ; 14(5): 452-461, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28539821

RESUMO

Objectives: 4E-BP1 is a family member of eIF4E binding proteins (4E-BPs) which act as the suppressors of cap-dependent translation of RNA via competitively associating with cap-bound eIF4E. RNA translation regulation is an important manner to control the cellular responses to a series of stress conditions such as ionizing radiation (IR)-induced DNA damage response and cell cycle controlling. This study aimed to determine the mechanism of 4E-BP1 stabilization and its potential downstream target(s) in the response to IR. Methods: PI3Ks kinase inhibitors were used to determine the signaling control of 4E-BP1 phosphorylation and protein stability. shRNA strategy was employed to silence the expression of 4E-BP1 in HeLa and HepG2 cells, and determine its effect on the irradiation-induced CHK2 phosphorylation. The protein degradation/stability was investigated by western blotting on the condition of blocking novel protein synthesis by cycloheximide (CHX). Results: The phosphorylation of 4E-BP1 at Thr37/46 was significantly increased in both HepG2 and HeLa cells by ionizing radiation. Depression of 4E-BP1 by shRNA strategy resulted in an incomplete G2 arrest at the early stage of 2 hours post-irradiation, as well as a higher accumulation of mitotic cells at 10 and 12 hours post-irradiation as compared to the control cells. Consistently, the CHK2 phosphorylation at Thr68 induced by IR was also attenuated by silencing 4E-BP1 expression. Both PI3K and DNA-PKcs kinase inhibitors significantly decreased the protein level of 4E-BP1, which was associated with the accelerated degradation mediated by ubiquitination-proteasome pathway. Conclusion: PI3K kinase activity is necessary for maintaining 4E-BP1 stability. Our results also suggest 4E-BP1 a novel biological role of regulating cell cycle G2 checkpoint in responding to IR stress in association with controlling CHK2 phosphorylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Quinase do Ponto de Checagem 2/genética , Fosfatidilinositol 3-Quinases/genética , Fosfoproteínas/genética , Biossíntese de Proteínas/genética , Proteínas de Ciclo Celular , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Células HeLa , Células Hep G2 , Humanos , Fosforilação/efeitos da radiação , Biossíntese de Proteínas/efeitos da radiação , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/genética , Radiação Ionizante , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
8.
J Cell Biochem ; 115(6): 1077-88, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24166892

RESUMO

Accurate mitotic regulation is as important as intrinsic DNA repair for maintaining genomic stability. It is believed that these two cellular mechanisms are interconnected with DNA damage. DNA-PKcs is a critical component of the non-homologous end-joining pathway of DNA double-stranded break repair, and it was recently discovered to be involved in mitotic processing. However, the underlying mechanism of DNA-PKcs action in mitotic control is unknown. Here, we demonstrated that depletion of DNA-PKcs led to the dysregulation of mitotic progression in response to DNA damage, which eventually resulted in multiple failures, including failure to segregate sister chromatids and failure to complete cytokinesis, with daughter cells becoming fused again. The depletion of DNA-PKcs resulted in a notable failure of cytokinesis, with a high incidence of multinucleated cells. There were also cytoplasmic bridges containing DNA that continuously connected the daughter cells after DNA damage was induced. Phosphorylated DNA-PKcs (T2609) colocalizes with PLK1 throughout mitosis, including at the centrosomes from prophase to anaphase and at the kinetochores from prometaphase to metaphase, with accumulation at the midbody during cytokinesis. Importantly, DNA-PKcs was found to associate with PLK1 in the mitotic phase, and the depletion of DNA-PKcs resulted in the overexpression of PLK1 due to increased protein stability. However, deficiency in DNA-PKcs attenuated the recruitment of phosphorylated PLK1 to the midbody but not to the kinetochores and centrosomes. Our results demonstrate the functional association of DNA-PKcs with PLK1, especially in chromosomal segregation and cytokinesis control.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Citocinese , Proteína Quinase Ativada por DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Domínio Catalítico , Ciclo Celular , Proteínas de Ciclo Celular/genética , Centrossomo/metabolismo , Dano ao DNA , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Citometria de Fluxo , Células HeLa , Humanos , Immunoblotting , Cinetocoros/metabolismo , Microscopia Confocal , Mitose , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , Imagem com Lapso de Tempo/métodos , Quinase 1 Polo-Like
9.
Exploration (Beijing) ; 3(2): 20220119, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37324033

RESUMO

Ionizing radiation (IR) poses a growing threat to human health, and thus ideal radioprotectors with high efficacy and low toxicity still receive widespread attention in radiation medicine. Despite significant progress made in conventional radioprotectants, high toxicity, and low bioavailability still discourage their application. Fortunately, the rapidly evolving nanomaterial technology furnishes reliable tools to address these bottlenecks, opening up the cutting-edge nano-radioprotective medicine, among which the intrinsic nano-radioprotectants characterized by high efficacy, low toxicity, and prolonged blood retention duration, represent the most extensively studied class in this area. Herein, we made the systematic review on this topic, and discussed more specific types of radioprotective nanomaterials and more general clusters of the extensive nano-radioprotectants. In this review, we mainly focused on the development, design innovations, applications, challenges, and prospects of the intrinsic antiradiation nanomedicines, and presented a comprehensive overview, in-depth analysis as well as an updated understanding of the latest advances in this topic. We hope that this review will promote the interdisciplinarity across radiation medicine and nanotechnology and stimulate further valuable studies in this promising field.

10.
Cell Death Discov ; 9(1): 291, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558683

RESUMO

Radiotherapy resistance is an important and urgent challenge in the clinical management of esophageal squamous carcinoma (ESCC). However, the factors mediating the ESCC resistance to radiotherapy and its underlying molecular mechanisms are not fully clarified. Our previous studies have demonstrated the critical role of DNA polymerase iota (POLI) in ESCC development and progression, here, we aimed to investigate the involvement of POLI in ESCC radiotherapy resistance and elucidate the underlying molecular mechanism. We found that highly expressed POLI was correlated with shorter overall survival of ESCC patients received radiotherapy. Down-regulation of POLI sensitized ESCC to IR, prolonged γH2AX foci in nuclei and comet tails after IR. HR but not NHEJ repair is inhibited in POLI-deficient ESCC cells. POLI stabilizes RAD51 protein via competitively binding with and blocking the interaction between RAD51 and E3 ligase XIAP and XIAP-mediated ubiquitination. Furthermore, loss of POLI leads to the activation of GAS signaling. Our findings provide novel insight into the role of POLI in the development of radioresistance mediated by stabilizing RAD51 protein in ESCC.

11.
Cells ; 11(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35626687

RESUMO

Renal cell carcinoma (RCC) is one of the most aggressive urological malignancies and has a poor prognosis, especially in patients with metastasis. Although RCC is traditionally considered to be radioresistant, radiotherapy (RT) is still a common treatment for palliative management of metastatic RCC. Novel approaches are urgently needed to overcome radioresistance of RCC. Black phosphorus quantum dots (BPQDs) have recently received great attention due to their unique physicochemical properties and good biocompatibility. In the present study, we found that BPQDs enhance ionizing radiation (IR)-induced apoptotic cell death of RCC cells. BPQDs treatment significantly increases IR-induced DNA double-strand breaks (DSBs), as indicated by the neutral comet assay and the DSBs biomarkers γH2AX and 53BP1. Mechanistically, BPQDs can interact with purified DNA-protein kinase catalytic subunit (DNA-PKcs) and promote its kinase activity in vitro. BPQDs impair the autophosphorylation of DNA-PKcs at S2056, and this site phosphorylation is essential for efficient DNA DSBs repair and the release of DNA-PKcs from the damage sites. Consistent with this, BPQDs suppress nonhomologous end-joining (NHEJ) repair and lead to sustained high levels of autophosphorylated DNA-PKcs on the damaged sites. Moreover, animal experiments indicate that the combined approach with both BPQDs and IR displays better efficacy than monotreatment. These findings demonstrate that BPQDs have potential applications in radiosensitizing RCC cells.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Pontos Quânticos , Animais , Carcinoma de Células Renais/radioterapia , DNA/metabolismo , Reparo do DNA , Humanos , Neoplasias Renais/radioterapia , Fósforo , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Tolerância a Radiação
12.
Oncogene ; 41(4): 489-501, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34775484

RESUMO

Chromosomal instability (CIN) is a driving force for cancer development. The most common causes of CIN include the dysregulation of the spindle assembly checkpoint (SAC), which is a surveillance mechanism that prevents premature chromosome separation during mitosis by targeting anaphase-promoting complex/cyclosome (APC/C). DAB2IP is frequently silenced in advanced prostate cancer (PCa) and is associated with aggressive phenotypes of PCa. Our previous study showed that DAB2IP activates PLK1 and functions in mitotic regulation. Here, we report the novel mitotic phosphorylation of DAB2IP by Cdks, which mediates DAB2IP's interaction with PLK1 and the activation of the PLK1-Mps1 pathway. DAB2IP interacts with Cdc20 in a phosphorylation-independent manner. However, the phosphorylation of DAB2IP inhibits the ubiquitylation of Cdc20 in response to SAC, and blocks the premature release of the APC/C-MCC. The PLK1-Mps1 pathway plays an important role in mitotic checkpoint complex (MCC) assembly. It is likely that DAB2IP acts as a scaffold to aid PLK1-Mps1 in targeting Cdc20. Depletion or loss of the Cdks-mediated phosphorylation of DAB2IP destabilizes the MCC, impairs the SAC, and increases chromosome missegregation and subsequent CIN, thus contributing to tumorigenesis. Collectively, these results demonstrate the mechanism of DAB2IP in SAC regulation and provide a rationale for targeting the SAC to cause lethal CIN against DAB2IP-deficient aggressive PCa, which exhibits a weak SAC.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Instabilidade Cromossômica/genética , Mitose/genética , Oncogenes/genética , Fuso Acromático/metabolismo , Humanos , Fosforilação , Transdução de Sinais , Transfecção
13.
Toxicol Appl Pharmacol ; 252(3): 307-17, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21419150

RESUMO

Mitotic catastrophe, a form of cell death resulting from abnormal mitosis, is a cytotoxic death pathway as well as an appealing mechanistic strategy for the development of anti-cancer drugs. In this study, 6-bromine-5-hydroxy-4-methoxybenzaldehyde was demonstrated to induce DNA double-strand break, multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human hepatoma HepG2 cells. We used proteomic profiling to identify the differentially expressed proteins underlying mitotic catastrophe. A total of 137 differentially expressed proteins (76 upregulated and 61 downregulated proteins) were identified. Some of the changed proteins have previously been associated with mitotic catastrophe, such as DNA-PKcs, FoxM1, RCC1, cyclin E, PLK1-pT210, 14-3-3σ and HSP70. Multiple isoforms of 14-3-3, heat-shock proteins and tubulin were upregulated. Analysis of functional significance revealed that the 14-3-3-mediated signaling network was the most significantly enriched for the differentially expressed proteins. The modulated proteins were found to be involved in macromolecule complex assembly, cell death, cell cycle, chromatin remodeling and DNA repair, tubulin and cytoskeletal organization. These findings revealed the overall molecular events and functional signaling networks associated with spindle disruption and mitotic catastrophe.


Assuntos
Benzaldeídos/farmacologia , Neoplasias Hepáticas/metabolismo , Proteômica/métodos , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA , Citometria de Fluxo , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Mitose/efeitos dos fármacos
14.
Cell Cycle ; 20(2): 211-224, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404279

RESUMO

Combining targeted therapeutic agents is an attractive cancer treatment strategy associated with high efficacy and low toxicity. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is an essential factor in DNA damage repair. Studies from us and others have revealed that DNA-PKcs also plays an important role in normal mitosis progression. Histone deacetylase (HDACs) inhibitors commonly lead to mitotic aberration and have been approved for treating various cancers in the clinic. We showed that DNA-PKcs depletion or kinase activity inhibition increases cancer cells' sensitivity to HDACs inhibitors in vitro and in vivo. DNA-PKcs deficiency significantly enhances HDACs inhibitors (HDACi)-induced mitotic arrest and is followed by apoptotic cell death. Mechanistically, we found that DNA-PKcs binds to HDAC6 and facilitates its acetylase activity. HDACi is more likely to impair HDAC6-induced deacetylation of HSP90 and abrogate HSP90's chaperone function on Aurora A, a critical mitotic kinase that regulates centrosome separation and mitotic spindle assembly in DNA-PKcs-deficient cells. Our current work indicates crosstalk between DNA-PKcs and HDACs signaling pathways, and highlights that the combined targeting of DNA-PKcs and HDACs can be used in cancer therapy. Abbreviations: DNA-PKcs, DNA-dependent protein kinase catalytic subunit, HDACs, Histone deacetylases, DSBs, DNA double-strand breaks, ATM, ataxia telangiectasia mutated, ATR, ATM-Rad3-related.


Assuntos
Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Desacetilase 6 de Histona/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão do Núcleo Celular/genética , Divisão do Núcleo Celular/fisiologia , Dano ao DNA/genética , Reparo do DNA/genética , Desacetilase 6 de Histona/genética , Humanos , Proteínas Supressoras de Tumor/metabolismo
15.
Oncogenesis ; 10(1): 8, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33431808

RESUMO

The PI3K/AKT/mTOR signaling pathway is constitutively active in PTEN-deficient cancer cells, and its targeted inhibition has significant anti-tumor effects. However, the efficacy of targeted therapies is often limited due to drug resistance. The relevant signaling pathways in PTEN-deficient cancer cells treated with the PI3K/mTOR inhibitor BEZ235 were screened using a phosphokinase array, and further validated following treatment with multiple PI3K/AKT/mTOR inhibitors or AKT knockdown. The correlation between PTEN expression levels and STAT3 kinase phosphorylation in the tissue microarrays of gastric cancer patients was analyzed by immunohistochemistry. Cell proliferation and clonogenic assays were performed on the suitably treated PTEN-deficient cancer cells. Cytokine arrays, small molecule inhibition and knockdown assays were performed to identify related factors. PTEN-deficient tumor xenografts were established in nude mice that were treated with PI3K/AKT/mTOR and/or STAT3 inhibitors. PTEN deficiency was positively correlated with low STAT3 activity. PI3K/mTOR inhibitors increased the expression and secretion of macrophage migration inhibitory factor (MIF) and activated the JAK1/STAT3 signaling pathway. Both cancer cells and in vivo tumor xenografts showed that the combined inhibition of PI3K/AKT/mTOR and STAT3 activity enhanced the inhibitory effect of BEZ235 on the proliferation of PTEN-deficient cancer cells. Our findings provide a scientific basis for a novel treatment strategy in cancer patients with PTEN deficiency.

16.
BMC Mol Biol ; 11: 18, 2010 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-20205745

RESUMO

BACKGROUND: When DNA double-strand breaks (DSB) are induced by ionizing radiation (IR) in cells, histone H2AX is quickly phosphorylated into gamma-H2AX (p-S139) around the DSB site. The necessity of DNA-PKcs in regulating the phosphorylation of H2AX in response to DNA damage and cell cycle progression was investigated. RESULTS: The level of gamma H2AX in HeLa cells increased rapidly with a peak level at 0.25 - 1.0 h after 4 Gy gamma irradiation. SiRNA-mediated depression of DNA-PKcs resulted in a strikingly decreased level of gamma H2AX. An increased gamma H2AX was also induced in the ATM deficient cell line AT5BIVA at 0.5 - 1.0 h after 4 Gy gamma rays, and this IR-increased gamma H2AX in ATM deficient cells was dramatically abolished by the PIKK inhibitor wortmannin and the DNA-PKcs specific inhibitor NU7026. A high level of constitutive expression of gamma H2AX was observed in another ATM deficient cell line ATS4. The alteration of gamma H2AX level associated with cell cycle progression was also observed. HeLa cells with siRNA-depressed DNA-PKcs (HeLa-H1) or normal level DNA-PKcs (HeLa-NC) were synchronized at the G1 phase with the thymidine double-blocking method. At approximately 5 h after the synchronized cells were released from the G1 block, the S phase cells were dominant (80%) for both HeLa-H1 and HeLa-NC cells. At 8 - 9 h after the synchronized cells released from the G1 block, the proportion of G2/M population reached 56 - 60% for HeLa-NC cells, which was higher than that for HeLa H1 cells (33 - 40%). Consistently, the proportion of S phase for HeLa-NC cells decreased to approximately 15%; while a higher level (26 - 33%) was still maintained for the DNA-PKcs depleted HeLa-H1 cells during this period. In HeLa-NC cells, the gamma H2AX level increased gradually as the cells were released from the G1 block and entered the G2/M phase. However, this gamma H2AX alteration associated with cell cycle progressing was remarkably suppressed in the DNA-PKcs depleted HeLa-H1 cells, while wortmannin and NU7026 could also suppress this cell cycle related phosphorylation of H2AX. Furthermore, inhibition of GSK3 beta activity with LiCl or specific siRNA could up-regulate the gamma H2AX level and prolong the time of increased gamma H2AX to 10 h or more after 4 Gy. GSK3 beta is a negative regulation target of DNA-PKcs/Akt signaling via phosphorylation on Ser9, which leads to its inactivation. Depression of DNA-PKcs in HeLa cells leads to a decreased phosphorylation of Akt on Ser473 and its target GSK3 beta on Ser9, which, in other words, results in an increased activation of GSK3 beta. In addition, inhibition of PDK (another up-stream regulator of Akt/GSK3 beta) by siRNA can also decrease the induction of gamma H2AX in response to both DNA damage and cell cycle progression. CONCLUSION: DNA-PKcs plays a dominant role in regulating the phosphorylation of H2AX in response to both DNA damage and cell cycle progression. It can directly phosphorylate H2AX independent of ATM and indirectly modulate the phosphorylation level of gamma H2AX via the Akt/GSK3 beta signal pathway.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteína Quinase Ativada por DNA/metabolismo , Histonas/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Ensaio Cometa , DNA/metabolismo , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HeLa , Histonas/genética , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Radiação Ionizante , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
17.
Nanotoxicology ; 13(10): 1409-1421, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31589482

RESUMO

Graphene quantum dots (GQDs) have gained significant attention in various biomedical applications. The physicochemical properties of these nanoparticles, including toxic effects, are largely determined by their surface modifications. Previous studies have demonstrated high in vitro cytotoxicity of the hydroxylated GQDs (OH-GQDs). The focus of this study was on the intestinal toxicity of OH-GQDs. Briefly, C57BL/6J mice were given daily oral gavage of 0.05, 0.5 or 5 mg/kg OH-GQD for 7 days, and the indices of intestinal damage were evaluated. Higher doses of the OH-GQDs caused significant intestinal injuries, such as enhanced intestinal permeability, shortened villi and crypt loss. The number of Lgr5+ intestinal stem cells also decreased dramatically upon OH-GQDs exposure, which also inhibited the Ki67+ proliferative progenitor cells. In addition, an increased number of crypt cells harboring the oxidized DNA base 8-OHdG and γH2AX foci were also detected in the intestines of OH-GQD-treated mice. Mechanistically, the OH-GQDs up-regulated both total and phosphorylated p53. Consistent with this, the average number of TUNEL+ and cleaved caspase-3+ apoptotic intestinal epithelial cells were significantly increased after OH-GQDs treatment. Finally, a 3-dimensional organoid culture was established using isolated crypts, and OH-GQDs treatment significantly reduced the size of the surviving intestinal organoids. Taken together, the intestinal toxicity of the OH-GQDs should be taken into account during biomedical applications.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Grafite/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Pontos Quânticos/toxicidade , Células-Tronco/efeitos dos fármacos , Administração Oral , Animais , Apoptose/genética , Proliferação de Células/genética , Dano ao DNA , Grafite/química , Hidroxilação , Mucosa Intestinal/patologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade , Pontos Quânticos/química , Células-Tronco/patologia , Propriedades de Superfície , Proteína Supressora de Tumor p53/genética
18.
Free Radic Biol Med ; 145: 223-236, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31580946

RESUMO

The intestine is a highly radiosensitive tissue that is susceptible to structural and functional damage due to systemic as well as localized radiation exposure. Unfortunately, no effective prophylactic or therapeutic agents are available at present to manage radiation-induced intestinal injuries. We observed that the vanillin derivative VND3207 improved the survival of lethally irradiated mice by promoting intestinal regeneration and increasing the number of surviving crypts. Pre-treatment with VND3207 significantly increased the number of Lgr5+ intestinal stem cells (ISCs) and their daughter cells, the transient Ki67+ proliferating cells. Mechanistically, VND3207 decreased oxidative DNA damage and lipid peroxidation and maintained endogenous antioxidant status by increasing the level of superoxide dismutase and total antioxidant capacity. In addition, VND3207 maintained appropriate levels of activated p53 that triggered cell cycle arrest but were not sufficient to induce NOXA-mediated apoptosis, thus ensuring DNA damage repair in the irradiated small intestinal crypt cells. Furthermore, VND3207 treatment restores the intestinal bacterial flora structures altered by TBI exposure. In conclusion, VND3207 promoted intestinal repair following radiation injury by reducing reactive oxygen species-induced DNA damage and modulating appropriate levels of activated p53 in intestinal epithelial cells.


Assuntos
Benzaldeídos/farmacologia , Microbioma Gastrointestinal/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores Acoplados a Proteínas G/genética , Proteína Supressora de Tumor p53/genética , Animais , Antioxidantes/farmacologia , Benzaldeídos/química , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/efeitos da radiação , Microbioma Gastrointestinal/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Intestinos/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Exposição à Radiação/efeitos adversos , Lesões por Radiação/genética , Lesões por Radiação/prevenção & controle , Tolerância a Radiação/genética , Transdução de Sinais/efeitos da radiação , Células-Tronco/efeitos dos fármacos
20.
Mol Cancer ; 7: 32, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18426604

RESUMO

BACKGROUND: C-Myc is a short-lived oncoprotein that is destroyed by ubiquitin-mediated proteolysis. Dysregulated accumulation of c-Myc commonly occurs in human cancers. Some of those cases with the dysregulated c-Myc protein accumulation are attributed to gene amplification or increased mRNA expression. However, the abnormal accumulation of c-Myc protein is also a common finding in human cancers with normal copy number and transcription level of c-Myc gene. It seems that the mechanistic dysregulation in the control of c-Myc protein stabilization is another important hallmark associated with c-Myc accumulation in cancer cells. Here we report a novel mechanistic pathway through which DNA-dependent protein kinase catalytic subunit (DNA-PKcs) modulates the stability of c-Myc protein. RESULTS: Firstly, siRNA-mediated silencing of DNA-PKcs strikingly downregulated c-Myc protein levels in HeLa and HepG2 cells, and simultaneously decreased cell proliferation. The c-Myc protein level in DNA-PKcs deficient human glioma M059J cells was also found much lower than that in DNA-PKcs efficient M059K cells. ATM deficiency does not affect c-Myc expression level. Silencing of DNA-PKcs in HeLa cells resulted in a decreased stability of c-Myc protein, which was associated the increasing of c-Myc phosphorylation on Thr58/Ser62 and ubiquitination level. Phosphorylation of Akt on Ser473, a substrate of DNA-PKcs was found decreased in DNA-PKcs deficient cells. As the consequence, the phosphorylation of GSK3 beta on Ser9, a negatively regulated target of Akt, was also decreased, and which led to activation of GSK 3beta and in turn phosphorylation of c-Myc on Thr58. Moreover, inhibition of GSK3 activity by LiCl or specific siRNA molecules rescued the downregulation of c-Myc mediated by silencing DNA-PKcs. Consistent with this depressed DNA-PKcs cell model, overexpressing DNA-PKcs in normal human liver L02 cells, by sub-chronically exposing to very low dose of carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), increased c-Myc protein level, the phosphorylation of Akt and GSK3 beta, as well as cell proliferation. siRNA-mediated silencing of DNA-PKcs in this cell model reversed above alterations to the original levels of L02 cells. CONCLUSION: A suitable DNA-PKcs level in cells is necessary for maintaining genomic stability, while abnormal overexpression of DNA-PKcs may contribute to cell proliferation and even oncogenic transformation by stabilizing the c-Myc oncoprotein via at least the Akt/GSK3 pathway. Our results suggest DNA-PKcs a novel biological role beyond its DNA repair function.


Assuntos
Proteína Quinase Ativada por DNA/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Proto-Oncogênicas c-myc/genética , Proliferação de Células , Proteína Quinase Ativada por DNA/fisiologia , Regulação para Baixo , Instabilidade Genômica , Quinase 3 da Glicogênio Sintase/metabolismo , Células HeLa , Humanos , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa