Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 134(10): 1306-1326, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38533639

RESUMO

BACKGROUND: Ventricular arrhythmias (VAs) demonstrate a prominent day-night rhythm, commonly presenting in the morning. Transcriptional rhythms in cardiac ion channels accompany this phenomenon, but their role in the morning vulnerability to VAs and the underlying mechanisms are not understood. We investigated the recruitment of transcription factors that underpins transcriptional rhythms in ion channels and assessed whether this mechanism was pertinent to the heart's intrinsic diurnal susceptibility to VA. METHODS AND RESULTS: Assay for transposase-accessible chromatin with sequencing performed in mouse ventricular myocyte nuclei at the beginning of the animals' inactive (ZT0) and active (ZT12) periods revealed differentially accessible chromatin sites annotating to rhythmically transcribed ion channels and distinct transcription factor binding motifs in these regions. Notably, motif enrichment for the glucocorticoid receptor (GR; transcriptional effector of corticosteroid signaling) in open chromatin profiles at ZT12 was observed, in line with the well-recognized ZT12 peak in circulating corticosteroids. Molecular, electrophysiological, and in silico biophysically-detailed modeling approaches demonstrated GR-mediated transcriptional control of ion channels (including Scn5a underlying the cardiac Na+ current, Kcnh2 underlying the rapid delayed rectifier K+ current, and Gja1 responsible for electrical coupling) and their contribution to the day-night rhythm in the vulnerability to VA. Strikingly, both pharmacological block of GR and cardiomyocyte-specific genetic knockout of GR blunted or abolished ion channel expression rhythms and abolished the ZT12 susceptibility to pacing-induced VA in isolated hearts. CONCLUSIONS: Our study registers a day-night rhythm in chromatin accessibility that accompanies diurnal cycles in ventricular myocytes. Our approaches directly implicate the cardiac GR in the myocyte excitability rhythm and mechanistically link the ZT12 surge in glucocorticoids to intrinsic VA propensity at this time.


Assuntos
Ritmo Circadiano , Miócitos Cardíacos , Receptores de Glucocorticoides , Animais , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Camundongos , Miócitos Cardíacos/metabolismo , Masculino , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/genética , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Conexina 43/metabolismo , Conexina 43/genética , Camundongos Knockout , Potenciais de Ação
2.
J Exp Biol ; 226(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823524

RESUMO

Adrenaline and noradrenaline, released as hormones and/or neurotransmitters, exert diverse physiological functions in vertebrates, and teleost fishes are widely used as model organisms to study adrenergic regulation; however, such investigations often rely on receptor subtype-specific pharmacological agents (agonists and antagonists; see Glossary) developed and validated in mammals. Meanwhile, evolutionary (phylogenetic and comparative genomic) studies have begun to unravel the diversification of adrenergic receptors (ARs) and reveal that whole-genome duplications and pseudogenization events in fishes results in notable distinctions from mammals in their genomic repertoire of ARs, while lineage-specific gene losses within teleosts have generated significant interspecific variability. In this Review, we visit the evolutionary history of ARs (including α1-, α2- and ß-ARs) to highlight the prominent interspecific differences in teleosts, as well as between teleosts and other vertebrates. We also show that structural modelling of teleost ARs predicts differences in ligand binding affinity compared with mammalian orthologs. To emphasize the difficulty of studying the roles of different AR subtypes in fish, we collate examples from the literature of fish ARs behaving atypically compared with standard mammalian pharmacology. Thereafter, we focus on specific case studies of the liver, heart and red blood cells, where our understanding of AR expression has benefited from combining pharmacological approaches with molecular genetics. Finally, we briefly discuss the ongoing advances in 'omics' technologies that, alongside classical pharmacology, will provide abundant opportunities to further explore adrenergic signalling in teleosts.


Assuntos
Peixes , Vertebrados , Animais , Filogenia , Peixes/genética , Peixes/metabolismo , Receptores Adrenérgicos/genética , Receptores Adrenérgicos/metabolismo , Mamíferos/metabolismo , Adrenérgicos , Evolução Molecular
3.
Artigo em Inglês | MEDLINE | ID: mdl-36529208

RESUMO

The Alaska blackfish (Dallia pectoralis) is the only air-breathing fish in the Arctic. In the summer, a modified esophagus allows the fish to extract oxygen from the air, but this behavior is not possible in the winter because of ice and snow cover. The lack of oxygen (hypoxia) and near freezing temperatures in winter is expected to severely compromise metabolism, and yet remarkably, overwintering Alaska blackfish remain active. To maintain energy balance in the brain and limit the accumulation of reactive oxygen species (ROS), we hypothesized that cold hypoxic conditions would trigger brain mitochondrial remodeling in the Alaska blackfish. To address this hypothesis, fish were acclimated to warm (15 °C) normoxia, cold (5 °C) normoxia or cold hypoxia (5 °C, 2.1-4.2 kPa; no air access) for 5-8 weeks. Mitochondrial respiration, ADP affinity and H202 production were measured at 10 °C in isolated brain homogenates with an Oroboros respirometer. Cold acclimation and chronic hypoxia had no effects on mitochondrial aerobic capacity or ADP affinity. However, cold acclimation in normoxia led to a suppression of brain mitochondrial H202 production, which persisted and became more pronounced in the cold hypoxic fish. Overall, our study suggests cold acclimation supresses ROS production in Alaska blackfish, which may protect the fish from oxidative stress when oxygen becomes limited during winter.


Assuntos
Temperatura Baixa , Hipóxia , Animais , Espécies Reativas de Oxigênio/metabolismo , Alaska , Oxigênio/metabolismo , Peixes/fisiologia , Aclimatação , Encéfalo/metabolismo
4.
J Exp Biol ; 225(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36305307

RESUMO

Warming is predicted to have negative consequences for fishes by causing a mismatch between oxygen demand and supply, and a consequent reduction in aerobic scope (AS) and performance. This oxygen and capacity limited thermal tolerance (OCLTT) hypothesis features prominently in the literature but remains controversial. Within the OCLTT framework, we hypothesised that fish would select temperatures that maximise their AS, and thus their performance. We tested this hypothesis using intermittent flow respirometry to measure AS at, above (+2.5°C) and below (-2.5°C) the self-selected, preferred temperature (Tpref) of individual zebrafish (Danio rerio). AS was greatest 2.5°C above Tpref, which was driven by an increase in maximal metabolic rate. This mismatch between Tpref and the optimal temperature for AS suggests that factor(s) aside from AS maximisation influence the thermal preference of zebrafish.


Assuntos
Consumo de Oxigênio , Peixe-Zebra , Animais , Temperatura , Oxigênio , Aclimatação
5.
J Exp Biol ; 225(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36196639

RESUMO

Contraction of atrial smooth muscle in the hearts of semi-aquatic emydid turtles regulates ventricular filling, and it has been proposed that it could regulate stroke volume during characteristic rapid transitions in cardiac output associated with diving. For this hypothesis to be supported, atrial smooth muscle should be widely distributed in diving Testudines. To further understand the putative function and evolutionary significance of endocardial smooth muscle in Testudines, we studied the hearts of loggerhead sea turtles, Caretta caretta (n=7), using immunohistochemistry and histology. Surprisingly, we found no evidence of prominent atrial smooth muscle in C. caretta. However, smooth muscle was readily identified in the sinus venosus. Our results suggest that atrial smooth muscle does not contribute to the diving capabilities of C. caretta, indicating that the possible roles of smooth muscle in emydid turtle hearts require a re-evaluation. In sea turtles, the sinus venosus may instead contribute to regulate cardiac filling.


Assuntos
Mergulho , Tartarugas , Animais , Tartarugas/fisiologia , Músculo Liso , Débito Cardíaco , Átrios do Coração
6.
Cell Mol Life Sci ; 78(23): 7899-7914, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34727194

RESUMO

The lipophilic polycyclic aromatic hydrocarbon (PAH) phenanthrene is relatively abundant in polluted air and water and can access and accumulate in human tissue. Phenanthrene has been reported to interact with cardiac ion channels in several fish species. This study was undertaken to investigate the ability of phenanthrene to interact with hERG (human Ether-à-go-go-Related Gene) encoded Kv11.1 K+ channels, which play a central role in human ventricular repolarization. Pharmacological inhibition of hERG can be proarrhythmic. Whole-cell patch clamp recordings of hERG current (IhERG) were made from HEK293 cells expressing wild-type (WT) and mutant hERG channels. WT IhERG1a was inhibited by phenanthrene with an IC50 of 17.6 ± 1.7 µM, whilst IhERG1a/1b exhibited an IC50 of 1.8 ± 0.3 µM. WT IhERG block showed marked voltage and time dependence, indicative of dependence of inhibition on channel gating. The inhibitory effect of phenanthrene was markedly impaired by the attenuated inactivation N588K mutation. Remarkably, mutations of S6 domain aromatic amino acids (Y652, F656) in the canonical drug binding site did not impair the inhibitory action of phenanthrene; the Y652A mutation augmented IhERG block. In contrast, the F557L (S5) and M651A (S6) mutations impaired the ability of phenanthrene to inhibit IhERG, as did the S624A mutation below the selectivity filter region. Computational docking using a cryo-EM derived hERG structure supported the mutagenesis data. Thus, phenanthrene acts as an inhibitor of the hERG K+ channel by directly interacting with the channel, binding to a distinct site in the channel pore domain.


Assuntos
Canal de Potássio ERG1/antagonistas & inibidores , Fenômenos Eletrofisiológicos , Simulação de Acoplamento Molecular , Mutação , Fenantrenos/farmacologia , Relação Dose-Resposta a Droga , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida
7.
Artigo em Inglês | MEDLINE | ID: mdl-35143950

RESUMO

Catecholamines mediate the 'fight or flight' response in a wide variety of vertebrates. The endogenous catecholamine adrenaline increases heart rate and contractile strength to raise cardiac output. The increase in contractile force is driven in large part by an increase in myocyte Ca2+ influx on the L-type Ca current (ICaL) during the cardiac action potential (AP). Here, we report a K+- based mechanism that prolongs AP duration (APD) in fish hearts following adrenergic stimulation. We show that adrenergic stimulation inhibits the delayed rectifier K+ current (IKr) in rainbow trout (Oncorhynchus mykiss) cardiomyocytes. This slows repolarization and prolongs APD which may contribute to positive inotropy following adrenergic stimulation in fish hearts. The endogenous ligand, adrenaline (1 µM), which activates both α- and ß-ARs reduced maximal IKr tail current to 61.4 ± 3.9% of control in atrial and ventricular myocytes resulting in an APD prolongation of ~20% at both 50 and 90% repolarization. This effect was reproduced by the α-specific adrenergic agonist, phenylephrine (1 µM), but not the ß-specific adrenergic agonist isoproterenol (1 µM). Adrenaline (1 µM) in the presence of ß1 and ß2-blockers (1 µM atenolol and 1 µM ICI-118551, respectively) also inhibited IKr. Thus, IKr suppression following α-adrenergic stimulation leads to APD prolongation in the rainbow trout heart. This is the first time this mechanism has been identified in fish and may act in unison with the well-known enhancement of ICaL following adrenergic stimulation to prolong APD and increase cardiac inotropy.


Assuntos
Oncorhynchus mykiss , Potássio , Potenciais de Ação/fisiologia , Adrenérgicos/farmacologia , Agonistas Adrenérgicos/farmacologia , Animais , Epinefrina/farmacologia , Miocárdio , Miócitos Cardíacos/fisiologia
8.
J Exp Biol ; 223(Pt 19)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32843363

RESUMO

Birds occupy a unique position in the evolution of cardiac design. Their hearts are capable of cardiac performance on par with, or exceeding that of mammals, and yet the structure of their cardiomyocytes resembles those of reptiles. It has been suggested that birds use intracellular Ca2+ stored within the sarcoplasmic reticulum (SR) to power contractile function, but neither SR Ca2+ content nor the cross-talk between channels underlying Ca2+-induced Ca2+ release (CICR) have been studied in adult birds. Here we used voltage clamp to investigate the Ca2+ storage and refilling capacities of the SR and the degree of trans-sarcolemmal and intracellular Ca2+ channel interplay in freshly isolated atrial and ventricular myocytes from the heart of the Japanese quail (Coturnix japonica). A trans-sarcolemmal Ca2+ current (ICa) was detectable in both quail atrial and ventricular myocytes, and was mediated only by L-type Ca2+ channels. The peak density of ICa was larger in ventricular cells than in atrial cells, and exceeded that reported for mammalian myocardium recorded under similar conditions. Steady-state SR Ca2+ content of quail myocardium was also larger than that reported for mammals, and reached 750.6±128.2 µmol l-1 in atrial cells and 423.3±47.2 µmol l-1 in ventricular cells at 24°C. We observed SR Ca2+-dependent inactivation of ICa in ventricular myocytes, indicating cross-talk between sarcolemmal Ca2+ channels and ryanodine receptors in the SR. However, this phenomenon was not observed in atrial myocytes. Taken together, these findings help to explain the high-efficiency avian myocyte excitation-contraction coupling with regard to their reptilian-like cellular ultrastructure.


Assuntos
Cálcio , Coturnix , Animais , Cálcio/metabolismo , Coturnix/metabolismo , Ventrículos do Coração/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina , Retículo Sarcoplasmático/metabolismo
9.
J Fish Biol ; 97(1): 257-264, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32383486

RESUMO

Elasmobranchs are key to a healthy marine ecosystem but are under threat from human activities, such as destructive fisheries and shark finning. Embryos of oviparous elasmobranchs may be further challenged during development by rising temperatures and falling dissolved oxygen concentrations in their intertidal environment. However, the impact of climate change on survival and growth of oviparous elasmobranchs is still poorly understood. Here, we investigate the effects of temperature and hypoxia on the growth and survival of small-spotted catshark (Scyliorhinus canicula) embryos by incubating eggs in normoxia 15°C, normoxia 20°C, hypoxia 15°C, or hypoxia 20°C. Incubation under the elevated temperature increased the embryonic growth rate, yolk consumption rate and Fulton's condition factor at hatching, whilst decreasing the total length and body mass of newly hatched sharks. Under low oxygen conditions (50% air saturation) the survival rate of S. canicula embryos dropped significantly and the temperature-induced increase in Fulton's condition factor was reversed. Together, these data demonstrate both the individual and compound effects of elevated temperature and hypoxia on the survival and growth during early ontogeny of a ubiquitous, coastal elasmobranch, S. canicula.


Assuntos
Mudança Climática , Ecossistema , Oceanos e Mares , Tubarões/embriologia , Tubarões/fisiologia , Animais , Hipóxia
10.
Proc Biol Sci ; 286(1905): 20191072, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31238852

RESUMO

For some species of ectothermic vertebrates, early exposure to hypoxia during embryonic development improves hypoxia-tolerance later in life. However, the cellular mechanisms underlying this phenomenon are largely unknown. Given that hypoxic survival is critically dependent on the maintenance of cardiac function, we tested the hypothesis that developmental hypoxia alters cardiomyocyte physiology in a manner that protects the heart from hypoxic stress. To test this hypothesis, we studied the common snapping turtle, which routinely experiences chronic developmental hypoxia and exploits hypoxic environments in adulthood. We isolated cardiomyocytes from juvenile turtles that embryonically developed in either normoxia (21% O2) or hypoxia (10% O2), and subjected them to simulated anoxia and reoxygenation, while simultaneously measuring intracellular Ca2+, pH and reactive oxygen species (ROS) production. Our results suggest developmental hypoxia improves cardiomyocyte anoxia-tolerance of juvenile turtles, which is supported by enhanced myofilament Ca2+-sensitivity and a superior ability to suppress ROS production. Maintenance of low ROS levels during anoxia might limit oxidative damage and a greater sensitivity to Ca2+ could provide a mechanism to maintain contractile force. Our study suggests developmental hypoxia has long-lasting effects on turtle cardiomyocyte function, which might prime their physiology for exploiting hypoxic environments.


Assuntos
Tartarugas/fisiologia , Animais , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Hipóxia , Oxigênio/análise , Répteis , Estresse Fisiológico , Tartarugas/crescimento & desenvolvimento
11.
J Exp Biol ; 222(Pt 16)2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31315933

RESUMO

Seasonal thermal remodelling (acclimatization) and laboratory thermal remodelling (acclimation) can induce different physiological changes in ectothermic animals. As global temperatures are changing at an increasing rate, there is urgency to understand the compensatory abilities of key organs such as the heart to adjust under natural conditions. Thus, the aim of the present study was to directly compare the acclimatization and acclimatory response within a single eurythermal fish species, the European shorthorn sculpin (Myoxocephalus scorpio). We used current- and voltage-clamp to measure ionic current densities in both isolated atrial and ventricular myocytes from three groups of fish: (1) summer-caught fish kept at 12°C ('summer-acclimated'); (2) summer-caught fish kept at 3°C ('cold acclimated'); and (3) fish caught in March ('winter-acclimatized'). At a common test temperature of 7.5°C, action potential (AP) was shortened by both winter acclimatization and cold acclimation compared with summer acclimation; however, winter acclimatization caused a greater shortening than did cold acclimation. Shortening of AP was achieved mostly by a significant increase in repolarizing current density (IKr and IK1) following winter acclimatization, with cold acclimation having only minor effects. Compared with summer acclimation, the depolarizing L-type calcium current (ICa) was larger following winter acclimatization, but again, there was no effect of cold acclimation on ICa Interestingly, the other depolarizing current, INa, was downregulated at low temperatures. Our further analysis shows that ionic current remodelling is primarily due to changes in ion channel density rather than current kinetics. In summary, acclimatization profoundly modified the electrical activity of the sculpin heart while acclimation to the same temperature for >1.5 months produced very limited remodelling effects.


Assuntos
Aclimatação , Potenciais de Ação/fisiologia , Peixes/fisiologia , Miócitos Cardíacos/fisiologia , Termotolerância , Animais , Temperatura Alta , Estações do Ano
12.
J Exp Biol ; 222(Pt 7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30814295

RESUMO

Excitation-contraction coupling in vertebrate hearts is underpinned by calcium (Ca2+) release from Ca2+ release units (CRUs). CRUs are formed by clusters of channels called ryanodine receptors on the sarcoplasmic reticulum (SR) within the cardiomyocyte. Distances between CRUs influence the diffusion of Ca2+, thus influencing the rate and strength of excitation-contraction coupling. Avian myocytes lack T-tubules, so Ca2+ from surface CRUs (peripheral couplings, PCs) must diffuse to internal CRU sites of the corbular SR (cSR) during centripetal propagation. Despite this, avian hearts achieve higher contractile rates and develop greater contractile strength than many mammalian hearts, which have T-tubules to provide simultaneous activation of the Ca2+ signal through the myocyte. We used 3D electron tomography to test the hypothesis that the intracellular distribution of CRUs in the avian heart permits faster and stronger contractions despite the absence of T-tubules. Nearest edge-edge distances between PCs and cSR, and geometric information including surface area and volume of individual cSR, were obtained for each cardiac chamber of the white leghorn chicken. Computational modelling was then used to establish a relationship between CRU distance and cell activation time in the avian heart. Our data suggest that cSR clustered close together along the Z-line is vital for rapid propagation of the Ca2+ signal from the cell periphery to the cell centre, which would aid in the strong and fast contractions of the avian heart.


Assuntos
Cálcio/metabolismo , Acoplamento Excitação-Contração/fisiologia , Miócitos Cardíacos/citologia , Retículo Sarcoplasmático/ultraestrutura , Animais , Galinhas , Simulação por Computador , Tomografia com Microscopia Eletrônica , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo
13.
Environ Sci Technol ; 53(16): 9895-9904, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31343865

RESUMO

Deepwater Horizon crude oil is comprised of polycyclic aromatic hydrocarbons that cause a number of cardiotoxic effects in marine fishes across all levels of biological organization and at different life stages. Although cardiotoxic impacts have been widely reported, the mechanisms underlying these impairments in adult fish remain understudied. In this study, we examined the impacts of crude oil on cardiomyocyte contractility and electrophysiological parameters in freshly isolated ventricular cardiomyocytes from adult mahi-mahi (Coryphaena hippurus). Cardiomyocytes directly exposed to oil exhibited reduced contractility over a range of environmentally relevant concentrations (2.8-12.9 µg l-1∑PAH). This reduction in contractility was most pronounced at higher stimulation frequencies, corresponding to the upper limits of previously measured in situ mahi heart rates. To better understand the mechanisms underlying impaired contractile function, electrophysiological studies were performed, which revealed oil exposure prolonged cardiomyocyte action potentials and disrupted potassium cycling (9.9-30.4 µg l-1∑PAH). This study is the first to measure cellular contractility in oil-exposed cardiomyocytes from a pelagic fish. Results from this study contribute to previously observed impairments to heart function and whole-animal exercise performance in mahi, underscoring the advantages of using an integrative approach in examining mechanisms of oil-induced cardiotoxicity in marine fish.


Assuntos
Perciformes , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais
14.
J Fish Biol ; 95(6): 1465-1470, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31621079

RESUMO

Eighteen captive small-spotted catsharks Scyliorhinus canicula were successfully identified from hatching to 1 year of age using the free computer recognition software, I3 S classic. The effect of increasing the time interval between recognition attempts on the accuracy of the software was investigated, revealing that recognition fiedelity decreases with increasing time intervals for younger (0 to 15 weeks), but not older (15 weeks onwards) sharks. Identification by I3 S was validated using genetic analyses of seven microsatellite markers, revealing a 100% success rate. Thus, this non-invasive recognition method can be used as an inexpensive and effective alternative to invasive tagging, improving animal welfare and complementing ex-situ conservation methods.


Assuntos
Sistemas de Identificação Animal , Interpretação de Imagem Assistida por Computador , Tubarões , Software , Animais , Repetições de Microssatélites , Fotografação
15.
Circulation ; 135(7): 683-699, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-27899394

RESUMO

BACKGROUND: Ventricular arrhythmia is a leading cause of cardiac mortality. Most antiarrhythmics present paradoxical proarrhythmic side effects, culminating in a greater risk of sudden death. METHODS: We describe a new regulatory mechanism linking mitogen-activated kinase kinase-7 deficiency with increased arrhythmia vulnerability in hypertrophied and failing hearts using mouse models harboring mitogen-activated kinase kinase-7 knockout or overexpression. The human relevance of this arrhythmogenic mechanism is evaluated in human-induced pluripotent stem cell-derived cardiomyocytes. Therapeutic potentials by targeting this mechanism are explored in the mouse models and human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Mechanistically, hypertrophic stress dampens expression and phosphorylation of mitogen-activated kinase kinase-7. Such mitogen-activated kinase kinase-7 deficiency leaves histone deacetylase-2 unphosphorylated and filamin-A accumulated in the nucleus to form a complex with Krüppel-like factor-4. This complex leads to Krüppel-like factor-4 disassociation from the promoter regions of multiple key potassium channel genes (Kv4.2, KChIP2, Kv1.5, ERG1, and Kir6.2) and reduction of their transcript levels. Consequent repolarization delays result in ventricular arrhythmias. Therapeutically, targeting the repressive function of the Krüppel-like factor-4/histone deacetylase-2/filamin-A complex with the histone deacetylase-2 inhibitor valproic acid restores K+ channel expression and alleviates ventricular arrhythmias in pathologically remodeled hearts. CONCLUSIONS: Our findings unveil this new gene regulatory avenue as a new antiarrhythmic target where repurposing of the antiepileptic drug valproic acid as an antiarrhythmic is supported.


Assuntos
Arritmias Cardíacas/prevenção & controle , MAP Quinase Quinase 7/metabolismo , Animais , Arritmias Cardíacas/fisiopatologia , Epigênese Genética , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Miócitos Cardíacos/metabolismo , Ratos
16.
Pflugers Arch ; 470(8): 1205-1219, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29594338

RESUMO

Numerous pathologies lead to remodelling of the mammalian ventricle, often associated with fibrosis. Recent work in fish has shown that fibrotic remodelling of the ventricle is 'reversible', changing seasonally as temperature-induced changes in blood viscosity alter haemodynamic load on the heart. The atrial response to varying haemodynamic load is less understood in mammals and completely unexplored in non-mammalian vertebrates. To investigate atrial remodelling, rainbow trout were chronically cooled (from 10 ± 1 to 5 ± 1 °C) and chronically warmed (from 10 ± 1 to 18 ± 1 °C) for a minimum of 8 weeks. We assessed the functional effects on compliance using ex vivo heart preparations and atomic force microscopy nano-indentation and found chronic cold increased passive stiffness of the whole atrium and micromechanical stiffness of tissue sections. We then performed histological, biochemical and molecular assays to probe the mechanisms underlying functional remodelling of the atrial tissue. We found cooling resulted in collagen deposition which was associated with an upregulation of collagen-promoting genes, including the fish-specific collagen I alpha 3 chain, and a reduction in gelatinase activity of collagen-degrading matrix metalloproteinases (MMPs). Finally, we found that cooling reduced mRNA expression of cardiac growth factors and hypertrophic markers. Following long-term warming, there was an opposing response to that seen with cooling; however, these changes were more moderate. Our findings suggest that chronic cooling causes atrial dilation and increased myocardial stiffness in trout atria analogous to pathological states defined by changes in preload or afterload of the mammalian atria. The reversal of this phenotype following chronic warming is particularly interesting as it suggests that typically pathological features of mammalian atrial remodelling may oscillate seasonally in the fish, revealing a more dynamic and plastic atrial remodelling response.


Assuntos
Colágeno/metabolismo , Oncorhynchus mykiss/metabolismo , Aclimatação/fisiologia , Animais , Temperatura Baixa , Feminino , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Metaloproteinases da Matriz/metabolismo , Miocárdio/metabolismo , Temperatura
18.
J Fish Biol ; 93(2): 360-369, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30069890

RESUMO

Domesticated brown trout Salmo trutta parr were subjected to increased, variable flow under controlled experimental conditions. Using geometric morphometric analyses, K¯ (a mass-length index) and caudal fin area-body length ratio, this study assessed morphological responses in lateral body depth, growth and robustness and propulsive potential, respectively, of parr over the course of 32 weeks. Geometric morphometric analyses did not reveal an effect of exercise on either lateral body depth or caudal fin area. However, improved overall robustness and growth trajectories in exercised parr showed a positive adaptive response to the enriched habitat. Exercise and habitat heterogeneity thus have the potential to improve survivability of domesticated salmonids in the wild.


Assuntos
Natação , Truta/crescimento & desenvolvimento , Adaptação Fisiológica , Animais , Biometria , Ecossistema , Feminino , Truta/anatomia & histologia , Movimentos da Água
19.
J Exp Biol ; 220(Pt 14): 2513-2520, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28455440

RESUMO

Climate change alters the thermal habitat of aquatic species on a global scale, generating novel environmental challenges during all life stages, including reproduction. Changes in water temperature profoundly influence the performance of ectothermic aquatic organisms. This is an especially crucial issue for migratory fish, because they traverse multiple environments in order to reproduce. In externally fertilizing migratory fish, gametes are affected by water temperature indirectly, within the reproductive organ in which they are produced during migration, as well as directly, upon release into the surrounding medium at the spawning grounds. Both direct (after release) and indirect (during production) thermal impacts on gamete quality have been investigated, but never in conjunction. Here, we assessed the cumulative influence of temperature on brown trout, Salmo trutta, sperm quality during sperm production (male acclimation temperature) as well as upon release (sperm activation water temperature) on two consecutive dates during the brown trout spawning season. Early in the season, warm acclimation of males reduced their fertilization probability (lower sperm velocity) when compared with cold-acclimated males, especially when the activation water temperature was also increased beyond the thermal optimum (resulting in a lower proportion of motile sperm with lower velocity). Later in the season, sperm quality was unaffected by acclimation temperature and thermal sensitivity of sperm was reduced. These results give novel insights into the complex impacts of climate change on fish sperm, with implications for the reproduction and management of hatchery and wild trout populations in future climate scenarios.


Assuntos
Espermatozoides/fisiologia , Temperatura , Truta/fisiologia , Aclimatação/fisiologia , Animais , Masculino , Estações do Ano , Motilidade dos Espermatozoides/fisiologia
20.
J Exp Biol ; 220(Pt 2): 147-160, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852752

RESUMO

Thermal acclimation causes the heart of some fish species to undergo significant remodelling. This includes changes in electrical activity, energy utilization and structural properties at the gross and molecular level of organization. The purpose of this Review is to summarize the current state of knowledge of temperature-induced structural remodelling in the fish ventricle across different levels of biological organization, and to examine how such changes result in the modification of the functional properties of the heart. The structural remodelling response is thought to be responsible for changes in cardiac stiffness, the Ca2+ sensitivity of force generation and the rate of force generation by the heart. Such changes to both active and passive properties help to compensate for the loss of cardiac function caused by a decrease in physiological temperature. Hence, temperature-induced cardiac remodelling is common in fish that remain active following seasonal decreases in temperature. This Review is organized around the ventricular phases of the cardiac cycle - specifically diastolic filling, isovolumic pressure generation and ejection - so that the consequences of remodelling can be fully described. We also compare the thermal acclimation-associated modifications of the fish ventricle with those seen in the mammalian ventricle in response to cardiac pathologies and exercise. Finally, we consider how the plasticity of the fish heart may be relevant to survival in a climate change context, where seasonal temperature changes could become more extreme and variable.


Assuntos
Aclimatação , Mudança Climática , Peixes/fisiologia , Coração/fisiologia , Temperatura , Remodelação Ventricular , Animais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa