Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Cell ; 171(7): 1599-1610.e14, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29245012

RESUMO

Eukaryotic 60S ribosomal subunits are comprised of three rRNAs and ∼50 ribosomal proteins. The initial steps of their formation take place in the nucleolus, but, owing to a lack of structural information, this process is poorly understood. Using cryo-EM, we solved structures of early 60S biogenesis intermediates at 3.3 Å to 4.5 Å resolution, thereby providing insights into their sequential folding and assembly pathway. Besides revealing distinct immature rRNA conformations, we map 25 assembly factors in six different assembly states. Notably, the Nsa1-Rrp1-Rpf1-Mak16 module stabilizes the solvent side of the 60S subunit, and the Erb1-Ytm1-Nop7 complex organizes and connects through Erb1's meandering N-terminal extension, eight assembly factors, three ribosomal proteins, and three 25S rRNA domains. Our structural snapshots reveal the order of integration and compaction of the six major 60S domains within early nucleolar 60S particles developing stepwise from the solvent side around the exit tunnel to the central protuberance.


Assuntos
Chaetomium/química , Biogênese de Organelas , Subunidades Ribossômicas Maiores de Eucariotos/química , Chaetomium/citologia , Microscopia Crioeletrônica , Redes e Vias Metabólicas , Modelos Moleculares , Dobramento de RNA , Ribonucleoproteínas/química
2.
Cell ; 167(4): 1001-1013.e7, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27881299

RESUMO

RNA-DNA hybrids are a major internal cause of DNA damage within cells, and their degradation by RNase H enzymes is important for maintaining genomic stability. Here, we identified an unexpected role for RNA-DNA hybrids and RNase H enzymes in DNA repair. Using a site-specific DNA double-strand break (DSB) system in Schizosaccharomyces pombe, we showed that RNA-DNA hybrids form as part of the homologous-recombination (HR)-mediated DSB repair process and that RNase H enzymes are essential for their degradation and efficient completion of DNA repair. Deleting RNase H stabilizes RNA-DNA hybrids around DSB sites and strongly impairs recruitment of the ssDNA-binding RPA complex. In contrast, overexpressing RNase H1 destabilizes these hybrids, leading to excessive strand resection and RPA recruitment and to severe loss of repeat regions around DSBs. Our study challenges the existing model of HR-mediated DSB repair and reveals a surprising role for RNA-DNA hybrids in maintaining genomic stability.


Assuntos
Instabilidade Genômica , Reparo de DNA por Recombinação , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , DNA/metabolismo , Dano ao DNA , Expressão Gênica , RNA/metabolismo , RNA Polimerase II/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo , Schizosaccharomyces/enzimologia
3.
Mol Cell ; 80(1): 72-86.e7, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910895

RESUMO

Membrane protein biogenesis faces the challenge of chaperoning hydrophobic transmembrane helices for faithful membrane insertion. The guided entry of tail-anchored proteins (GET) pathway targets and inserts tail-anchored (TA) proteins into the endoplasmic reticulum (ER) membrane with an insertase (yeast Get1/Get2 or mammalian WRB/CAML) that captures the TA from a cytoplasmic chaperone (Get3 or TRC40, respectively). Here, we present cryo-electron microscopy reconstructions, native mass spectrometry, and structure-based mutagenesis of human WRB/CAML/TRC40 and yeast Get1/Get2/Get3 complexes. Get3 binding to the membrane insertase supports heterotetramer formation, and phosphatidylinositol binding at the heterotetramer interface stabilizes the insertase for efficient TA insertion in vivo. We identify a Get2/CAML cytoplasmic helix that forms a "gating" interaction with Get3/TRC40 important for TA insertion. Structural homology with YidC and the ER membrane protein complex (EMC) implicates an evolutionarily conserved insertion mechanism for divergent substrates utilizing a hydrophilic groove. Thus, we provide a detailed structural and mechanistic framework to understand TA membrane insertion.


Assuntos
Proteínas de Membrana/biossíntese , Proteínas de Membrana/química , Complexos Multiproteicos/metabolismo , Linhagem Celular , Sequência Conservada , Evolução Molecular , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosfatidilinositóis/metabolismo , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Plant Physiol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588051

RESUMO

In humans and plants, 40% of the proteome is co-translationally acetylated at the N-terminus by a single Nα-acetyltransferase (Nat) termed NatA. The core NatA complex is comprised of the catalytic subunit Nα- acetyltransferase 10 (NAA10) and the ribosome-anchoring subunit NAA15. The regulatory subunit Huntingtin Yeast Partner K (HYPK) and the acetyltransferase NAA50 join this complex in humans. Even though both are conserved in Arabidopsis (Arabidopsis thaliana), only AtHYPK is known to interact with AtNatA. Here we uncover the AtNAA50 interactome and provide evidence for the association of AtNAA50 with NatA at ribosomes. In agreement with the latter, a split-luciferase approach demonstrated close proximity of AtNAA50 and AtNatA in planta. Despite their interaction, AtNatA/HYPK and AtNAA50 exerted different functions in vivo. Unlike NatA/HYPK, AtNAA50 did not modulate drought-tolerance or promote protein stability. Instead, transcriptome and proteome analyses of a novel AtNAA50-depleted mutant (amiNAA50) implied that AtNAA50 negatively regulates plant immunity. Indeed, amiNAA50 plants exhibited enhanced resistance to oomycetes and bacterial pathogens. In contrast to what was observed in NatA-depleted mutants, this resistance was independent of an accumulation of salicylic acid prior to pathogen exposure. Our study dissects the in vivo function of the NatA interactors HYPK and NAA50 and uncovers NatA-independent roles for NAA50 in plants.

5.
J Biol Chem ; 298(8): 102202, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35768046

RESUMO

The ring-forming AAA+ hexamer ClpC1 associates with the peptidase ClpP1P2 to form a central ATP-driven protease in Mycobacterium tuberculosis (Mtb). ClpC1 is essential for Mtb viability and has been identified as the target of antibacterial peptides like CyclomarinA (CymA) that exhibit strong toxicity toward Mtb. The mechanistic actions of these drugs are poorly understood. Here, we dissected how ClpC1 activity is controlled and how this control is deregulated by CymA. We show that ClpC1 exists in diverse activity states correlating with its assembly. The basal activity of ClpC1 is low, as it predominantly exists in an inactive nonhexameric resting state. We show that CymA stimulates ClpC1 activity by promoting formation of supercomplexes composed of multiple ClpC1 hexameric rings, enhancing ClpC1-ClpP1P2 degradation activity toward various substrates. Both the ClpC1 resting state and the CymA-induced alternative assembly state rely on interactions between the ClpC1 coiled-coil middle domains (MDs). Accordingly, we found that mutation of the conserved aromatic F444 residue located at the MD tip blocks MD interactions and prevents assembly into higher order complexes, thereby leading to constitutive ClpC1 hexamer formation. We demonstrate that this assembly state exhibits the highest ATPase and proteolytic activities, yet its heterologous expression in Escherichia coli is toxic, indicating that the formation of such a state must be tightly controlled. Taken together, these findings define the basis of control of ClpC1 activity and show how ClpC1 overactivation by an antibacterial drug generates toxicity.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Proteínas de Choque Térmico/metabolismo , Mycobacterium tuberculosis , Oligopeptídeos/farmacologia , Proteínas de Bactérias/química , Endopeptidase Clp/química , Endopeptidases/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo
6.
Blood ; 137(10): 1340-1352, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33227812

RESUMO

Heterozygous de novo missense variants of SRP54 were recently identified in patients with congenital neutropenia (CN) who display symptoms that overlap with Shwachman-Diamond syndrome (SDS). Here, we investigate srp54 knockout zebrafish as the first in vivo model of SRP54 deficiency. srp54-/- zebrafish experience embryonic lethality and display multisystemic developmental defects along with severe neutropenia. In contrast, srp54+/- zebrafish are viable, fertile, and show only mild neutropenia. Interestingly, injection of human SRP54 messenger RNAs (mRNAs) that carry mutations observed in patients (T115A, T117Δ, and G226E) aggravated neutropenia and induced pancreatic defects in srp54+/- fish, mimicking the corresponding human clinical phenotypes. These data suggest that the various phenotypes observed in patients may be a result of mutation-specific dominant-negative effects on the functionality of the residual wild-type SRP54 protein. Overexpression of mutated SRP54 also consistently induced neutropenia in wild-type fish and impaired the granulocytic maturation of human promyelocytic HL-60 cells and healthy cord blood-derived CD34+ hematopoietic stem and progenitor cells. Mechanistically, srp54-mutant fish and human cells show impaired unconventional splicing of the transcription factor X-box binding protein 1 (Xbp1). Moreover, xbp1 morphants recapitulate phenotypes observed in srp54 deficiency and, importantly, injection of spliced, but not unspliced, xbp1 mRNA rescues neutropenia in srp54+/- zebrafish. Together, these data indicate that SRP54 is critical for the development of various tissues, with neutrophils reacting most sensitively to the loss of SRP54. The heterogenic phenotypes observed in patients that range from mild CN to SDS-like disease may be the result of different dominant-negative effects of mutated SRP54 proteins on downstream XBP1 splicing, which represents a potential therapeutic target.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Neutropenia/congênito , Partícula de Reconhecimento de Sinal/genética , Proteína 1 de Ligação a X-Box/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Modelos Animais de Doenças , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Células HL-60 , Humanos , Modelos Moleculares , Mutação , Neutropenia/genética , Splicing de RNA , RNA Mensageiro/genética
7.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142717

RESUMO

Most eukaryotic proteins are N-terminally acetylated by a set of Nα acetyltransferases (NATs). This ancient and ubiquitous modification plays a fundamental role in protein homeostasis, while mutations are linked to human diseases and phenotypic defects. In particular, Naa50 features species-specific differences, as it is inactive in yeast but active in higher eukaryotes. Together with NatA, it engages in NatE complex formation for cotranslational acetylation. Here, we report Naa50 homologs from the filamentous fungi Chaetomium thermophilum and Neurospora crassa with significant N- and C-terminal extensions to the conserved GNAT domain. Structural and biochemical analyses show that CtNaa50 shares the GNAT structure and substrate specificity with other homologs. However, in contrast to previously analyzed Naa50 proteins, it does not form NatE. The elongated N-terminus increases Naa50 thermostability and binds to dynein light chain protein 1, while our data suggest that conserved positive patches in the C-terminus allow for ribosome binding independent of NatA. Our study provides new insights into the many facets of Naa50 and highlights the diversification of NATs during evolution.


Assuntos
Acetiltransferase N-Terminal E , Acetiltransferases N-Terminal , Acetilação , Acetiltransferases/metabolismo , Dineínas/metabolismo , Humanos , Acetiltransferase N-Terminal E/química , Acetiltransferases N-Terminal/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Plant Physiol ; 183(4): 1502-1516, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32461302

RESUMO

Nα-terminal acetylation (NTA) is a prevalent protein modification in eukaryotes. In plants, the biological function of NTA remains enigmatic. The dominant N-acetyltransferase (Nat) in Arabidopsis (Arabidopsis thaliana) is NatA, which cotranslationally catalyzes acetylation of ∼40% of the proteome. The core NatA complex consists of the catalytic subunit NAA10 and the ribosome-anchoring subunit NAA15. In human (Homo sapiens), fruit fly (Drosophila melanogaster), and yeast (Saccharomyces cerevisiae), this core NatA complex interacts with NAA50 to form the NatE complex. While in metazoa, NAA50 has N-acetyltransferase activity, yeast NAA50 is catalytically inactive and positions NatA at the ribosome tunnel exit. Here, we report the identification and characterization of Arabidopsis NAA50 (AT5G11340). Consistent with its putative function as a cotranslationally acting Nat, AtNAA50-EYFP localized to the cytosol and the endoplasmic reticulum but also to the nuclei. We demonstrate that purified AtNAA50 displays Nα-terminal acetyltransferase and lysine-ε-autoacetyltransferase activity in vitro. Global N-acetylome profiling of Escherichia coli cells expressing AtNAA50 revealed conservation of NatE substrate specificity between plants and humans. Unlike the embryo-lethal phenotype caused by the absence of AtNAA10 and AtNAA15, loss of NAA50 expression resulted in severe growth retardation and infertility in two Arabidopsis transfer DNA insertion lines (naa50-1 and naa50-2). The phenotype of naa50-2 was rescued by the expression of HsNAA50 or AtNAA50. In contrast, the inactive ScNAA50 failed to complement naa50-2 Remarkably, loss of NAA50 expression did not affect NTA of known NatA substrates and caused the accumulation of proteins involved in stress responses. Overall, our results emphasize a relevant role of AtNAA50 in plant defense and development, which is independent of the essential NatA activity.


Assuntos
Acetiltransferases/metabolismo , Acetiltransferases/genética , Animais , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
9.
Plant Physiol ; 182(2): 792-806, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31744933

RESUMO

N∝-terminal acetylation (NTA) is one of the most abundant protein modifications in eukaryotes. In humans, NTA is catalyzed by seven Nα-acetyltransferases (NatA-F and NatH). Remarkably, the plant Nat machinery and its biological relevance remain poorly understood, although NTA has gained recognition as a key regulator of crucial processes such as protein turnover, protein-protein interaction, and protein targeting. In this study, we combined in vitro assays, reverse genetics, quantitative N-terminomics, transcriptomics, and physiological assays to characterize the Arabidopsis (Arabidopsis thaliana) NatB complex. We show that the plant NatB catalytic (NAA20) and auxiliary subunit (NAA25) form a stable heterodimeric complex that accepts canonical NatB-type substrates in vitro. In planta, NatB complex formation was essential for enzymatic activity. Depletion of NatB subunits to 30% of the wild-type level in three Arabidopsis T-DNA insertion mutants (naa20-1, naa20-2, and naa25-1) caused a 50% decrease in plant growth. A complementation approach revealed functional conservation between plant and human catalytic NatB subunits, whereas yeast NAA20 failed to complement naa20-1 Quantitative N-terminomics of approximately 1000 peptides identified 32 bona fide substrates of the plant NatB complex. In vivo, NatB was seen to preferentially acetylate N termini starting with the initiator Met followed by acidic amino acids and contributed 20% of the acetylation marks in the detected plant proteome. Global transcriptome and proteome analyses of NatB-depleted mutants suggested a function of NatB in multiple stress responses. Indeed, loss of NatB function, but not NatA, increased plant sensitivity toward osmotic and high-salt stress, indicating that NatB is required for tolerance of these abiotic stressors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Acetiltransferase N-Terminal B/metabolismo , Plântula/metabolismo , Estresse Fisiológico/genética , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Domínio Catalítico/genética , Biologia Computacional , Perfilação da Expressão Gênica , Ontologia Genética , Técnicas In Vitro , Mutagênese Insercional , Acetiltransferase N-Terminal B/genética , Pressão Osmótica , Proteoma/genética , Proteoma/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/efeitos da radiação
10.
PLoS Biol ; 16(6): e2005160, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29889857

RESUMO

The succession of molecular events leading to eukaryotic translation reinitiation-whereby ribosomes terminate translation of a short open reading frame (ORF), resume scanning, and then translate a second ORF on the same mRNA-is not well understood. Density-regulated reinitiation and release factor (DENR) and multiple copies in T-cell lymphoma-1 (MCTS1) are implicated in promoting translation reinitiation both in vitro in translation extracts and in vivo. We present here the crystal structure of MCTS1 bound to a fragment of DENR. Based on this structure, we identify and experimentally validate that DENR residues Glu42, Tyr43, and Tyr46 are important for MCTS1 binding and that MCTS1 residue Phe104 is important for tRNA binding. Mutation of these residues reveals that DENR-MCTS1 dimerization and tRNA binding are both necessary for DENR and MCTS1 to promote translation reinitiation in human cells. These findings thereby link individual residues of DENR and MCTS1 to specific molecular functions of the complex. Since DENR-MCTS1 can bind tRNA in the absence of the ribosome, this suggests the DENR-MCTS1 complex could recruit tRNA to the ribosome during reinitiation analogously to the eukaryotic initiation factor 2 (eIF2) complex in cap-dependent translation.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , RNA de Transferência/metabolismo , Substituição de Aminoácidos , Proteínas de Ciclo Celular/genética , Cristalografia por Raios X , Fator de Iniciação 2 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , Células HeLa , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Oncogênicas/genética , Fases de Leitura Aberta , Iniciação Traducional da Cadeia Peptídica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , RNA de Transferência/genética , Ribossomos/metabolismo
11.
Nat Rev Mol Cell Biol ; 10(4): 255-64, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19305415

RESUMO

Correct protein function depends on delivery to the appropriate cellular or subcellular compartment. Following the initiation of protein synthesis in the cytosol, many bacterial and eukaryotic proteins must be integrated into or transported across a membrane to reach their site of function. Whereas in the post-translational delivery pathway ATP-dependent factors bind to completed polypeptides and chaperone them until membrane translocation is initiated, a GTP-dependent co-translational pathway operates to couple ongoing protein synthesis to membrane transport. These distinct pathways provide different solutions for the maintenance of proteins in a state that is competent for membrane translocation and their delivery for export from the cytosol.


Assuntos
Citosol/metabolismo , Células Procarióticas/metabolismo , Transporte Proteico , Animais , Células Eucarióticas/metabolismo , Biossíntese de Proteínas , Partícula de Reconhecimento de Sinal/metabolismo
12.
Nucleic Acids Res ; 47(6): 3184-3196, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30649417

RESUMO

Co-translational protein targeting to membranes depends on the regulated interaction of two ribonucleoprotein particles (RNPs): the ribosome and the signal recognition particle (SRP). Human SRP is composed of an SRP RNA and six proteins with the SRP GTPase SRP54 forming the targeting complex with the heterodimeric SRP receptor (SRαß) at the endoplasmic reticulum membrane. While detailed structural and functional data are available especially for the bacterial homologs, the analysis of human SRP was impeded by the unavailability of recombinant SRP. Here, we describe the large-scale production of all human SRP components and the reconstitution of homogeneous SRP and SR complexes. Binding to human ribosomes is determined by microscale thermophoresis for individual components, assembly intermediates and entire SRP, and binding affinities are correlated with structural information available for all ribosomal contacts. We show that SRP RNA does not bind to the ribosome, while SRP binds with nanomolar affinity involving a two-step mechanism of the key-player SRP54. Ultrasensitive binding of SRP68/72 indicates avidity by multiple binding sites that are dominated by the C-terminus of SRP72. Our data extend the experimental basis to understand the mechanistic principles of co-translational targeting in mammals and may guide analyses of complex RNP-RNP interactions in general.


Assuntos
Ribossomos/genética , Partícula de Reconhecimento de Sinal/genética , Sítios de Ligação , Retículo Endoplasmático/genética , Humanos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Peptídeos/genética
13.
J Biol Chem ; 294(52): 19967-19977, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31740579

RESUMO

RNA degradation is one of several ways for organisms to regulate gene expression. In bacteria, the removal of two terminal phosphate moieties as orthophosphate (Bacillus subtilis) or pyrophosphate (Escherichia coli) triggers ribonucleolytic decay of primary transcripts by 5'-monophosphate-dependent ribonucleases. In the soil-dwelling firmicute species B. subtilis, the RNA pyrophosphohydrolase BsRppH, a member of the Nudix family, triggers RNA turnover by converting primary transcripts to 5'-monophospate RNA. In addition to BsRppH, a source of redundant activity in B. subtilis has been proposed. Here, using recombinant protein expression and in vitro enzyme assays, we provide evidence for several additional RNA pyrophosphohydrolases, among them MutT, NudF, YmaB, and YvcI in B. subtilis We found that in vitro, YvcI converts RNA 5'-di- and triphosphates into monophosphates in the presence of manganese at neutral to slightly acidic pH. It preferred G-initiating RNAs and required at least one unpaired nucleotide at the 5'-end of its substrates, with the 5'-terminal nucleotide determining whether primarily ortho- or pyrophosphate is released. Exchanges of catalytically important glutamate residues in the Nudix motif impaired or abolished the enzymatic activity of YvcI. In summary, the results of our extensive in vitro biochemical characterization raise the possibility that YvcI is an additional RNA pyrophosphohydrolase in B. subtilis.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Pirofosfatases/metabolismo , RNA Bacteriano/metabolismo , Proteínas de Bactérias/genética , Biocatálise , Difosfatos/metabolismo , Concentração de Íons de Hidrogênio , Manganês/química , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Pirofosfatases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Especificidade por Substrato
14.
New Phytol ; 228(2): 554-569, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32548857

RESUMO

In humans and plants, N-terminal acetylation plays a central role in protein homeostasis, affects 80% of proteins in the cytoplasm and is catalyzed by five ribosome-associated N-acetyltransferases (NatA-E). Humans also possess a Golgi-associated NatF (HsNAA60) that is essential for Golgi integrity. Remarkably, NAA60 is absent in fungi and has not been identified in plants. Here we identify and characterize the first plasma membrane-anchored post-translationally acting N-acetyltransferase AtNAA60 in the reference plant Arabidopsis thaliana by the combined application of reverse genetics, global proteomics, live-cell imaging, microscale thermophoresis, circular dichroism spectroscopy, nano-differential scanning fluorometry, intrinsic tryptophan fluorescence and X-ray crystallography. We demonstrate that AtNAA60, like HsNAA60, is membrane-localized in vivo by an α-helical membrane anchor at its C-terminus, but in contrast to HsNAA60, AtNAA60 localizes to the plasma membrane. The AtNAA60 crystal structure provides insights into substrate-binding, the broad substrate specificity and the catalytic mechanism probed by structure-based mutagenesis. Characterization of the NAA60 loss-of-function mutants (naa60-1 and naa60-2) uncovers a plasma membrane-localized substrate of AtNAA60 and the importance of NAA60 during high salt stress. Our findings provide evidence for the plant-specific evolution of a plasma membrane-anchored N-acetyltransferase that is vital for adaptation to stress.


Assuntos
Arabidopsis , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Estresse Salino
15.
Mol Cell ; 48(6): 863-74, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23123194

RESUMO

Central to the chaperone function of Hsp70s is the transition between open and closed conformations of their polypeptide substrate binding domain (SBD), which is regulated through an allosteric mechanism via ATP binding and hydrolysis in their nucleotide binding domain (NBD). Although the structure of the closed conformation of Hsp70s is well studied, the open conformation has remained elusive. Here, we report on the 2.4 Å crystal structure of the ATP-bound open conformation of the Escherichia coli Hsp70 homolog DnaK. In the open DnaK structure, the ß sheet and α-helical lid subdomains of the SBD are detached from one another and docked to different faces of the NBD. The contacts between the ß sheet subdomain and the NBD reveal the mechanism of allosteric regulation. In addition, we demonstrate that docking of the ß sheet and α-helical lid subdomains to the NBD is a sequential process influenced by peptide and protein substrates.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Choque Térmico HSP70/química , Substituição de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico HSP70/genética , Ligação de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
16.
Hum Mutat ; 40(7): 938-951, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067009

RESUMO

ALG3-CDG is one of the very rare types of congenital disorder of glycosylation (CDG) caused by variants in the ER-mannosyltransferase ALG3. Here, we summarize the clinical, biochemical, and genetic data of four new ALG3-CDG patients, who were identified by a type I pattern of serum transferrin and the accumulation of Man5 GlcNAc2 -PP-dolichol in LLO analysis. Additional clinical symptoms observed in our patients comprise sensorineural hearing loss, right-descending aorta, obstructive cardiomyopathy, macroglossia, and muscular hypertonia. We add four new biochemically confirmed variants to the list of ALG3-CDG inducing variants: c.350G>C (p.R117P), c.1263G>A (p.W421*), c.1037A>G (p.N346S), and the intron variant c.296+4A>G. Furthermore, in Patient 1 an additional open-reading frame of 141 bp (AAGRP) in the coding region of ALG3 was identified. Additionally, we show that control cells synthesize, to a minor degree, a hybrid protein composed of the polypeptide AAGRP and ALG3 (AAGRP-ALG3), while in Patient 1 expression of this hybrid protein is significantly increased due to the homozygous variant c.160_196del (g.165C>T). By reviewing the literature and combining our findings with previously published data, we further expand the knowledge of this rare glycosylation defect.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Manosiltransferases/genética , Mutação , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Animais , Células COS , Células Cultivadas , Pré-Escolar , Chlorocebus aethiops , Feminino , Humanos , Lactente , Masculino , Fases de Leitura Aberta , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Polimorfismo de Nucleotídeo Único
17.
Biol Chem ; 401(1): 63-80, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31408431

RESUMO

Co-translational protein targeting to membranes relies on the signal recognition particle (SRP) system consisting of a cytosolic ribonucleoprotein complex and its membrane-associated receptor. SRP recognizes N-terminal cleavable signals or signal anchor sequences, retards translation, and delivers ribosome-nascent chain complexes (RNCs) to vacant translocation channels in the target membrane. While our mechanistic understanding is well advanced for the small bacterial systems it lags behind for the large bacterial, archaeal and eukaryotic SRP variants including an Alu and an S domain. Here we describe recent advances on structural and functional insights in domain architecture, particle dynamics and interplay with RNCs and translocon and GTP-dependent regulation of co-translational protein targeting stimulated by SRP RNA.


Assuntos
Membrana Celular/genética , Proteínas de Membrana/genética , Transporte Proteico/genética , Partícula de Reconhecimento de Sinal/genética , Elementos Alu/genética , Archaea/genética , Bactérias/genética , Membrana Celular/ultraestrutura , Células Eucarióticas/metabolismo , Proteínas de Membrana/ultraestrutura , Domínios Proteicos/genética , Modificação Traducional de Proteínas/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Partícula de Reconhecimento de Sinal/ultraestrutura
18.
Nat Chem Biol ; 13(3): 290-294, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28092359

RESUMO

Substrate channeling has emerged as a common mechanism for enzymatic intermediate transfer. A conspicuous gap in knowledge concerns the use of covalent lysine imines in the transfer of carbonyl-group-containing intermediates, despite their wideuse in enzymatic catalysis. Here we show how imine chemistry operates in the transfer of covalent intermediates in pyridoxal 5'-phosphate biosynthesis by the Arabidopsis thaliana enzyme Pdx1. An initial ribose 5-phosphate lysine imine is converted to the chromophoric I320 intermediate, simultaneously bound to two lysine residues and partially vacating the active site, which creates space for glyceraldehyde 3-phosphate to bind. Crystal structures show how substrate binding, catalysis and shuttling are coupled to conformational changes around strand ß6 of the Pdx1 (ßα)8-barrel. The dual-specificity active site and imine relay mechanism for migration of carbonyl intermediates provide elegant solutions to the challenge of coordinating a complex sequence of reactions that follow a path of over 20 Å between substrate- and product-binding sites.


Assuntos
Lisina/metabolismo , Vitamina B 6/biossíntese , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Carbono-Nitrogênio Liases , Lisina/química , Modelos Moleculares , Estrutura Molecular , Transferases de Grupos Nitrogenados/química , Transferases de Grupos Nitrogenados/metabolismo , Vitamina B 6/química
19.
Nucleic Acids Res ; 45(1): 470-481, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-27899666

RESUMO

Co-translational protein targeting and membrane protein insertion is a fundamental process and depends on the signal recognition particle (SRP). In mammals, SRP is composed of the SRP RNA crucial for SRP assembly and function and six proteins. The two largest proteins SRP68 and SRP72 form a heterodimer and bind to a regulatory site of the SRP RNA. Despite their essential roles in the SRP pathway, structural information has been available only for the SRP68 RNA-binding domain (RBD). Here we present the crystal structures of the SRP68 protein-binding domain (PBD) in complex with SRP72-PBD and of the SRP72-RBD bound to the SRP S domain (SRP RNA, SRP19 and SRP68) detailing all interactions of SRP72 within SRP. The SRP72-PBD is a tetratricopeptide repeat, which binds an extended linear motif of SRP68 with high affinity. The SRP72-RBD is a flexible peptide crawling along the 5e- and 5f-loops of SRP RNA. A conserved tryptophan inserts into the 5e-loop forming a novel type of RNA kink-turn stabilized by a potassium ion, which we define as K+-turn. In addition, SRP72-RBD remodels the 5f-loop involved in ribosome binding and visualizes SRP RNA plasticity. Docking of the S domain structure into cryo-electron microscopy density maps reveals multiple contact sites between SRP68/72 and the ribosome, and explains the role of SRP72 in the SRP pathway.


Assuntos
RNA/química , Proteínas Recombinantes de Fusão/química , Ribossomos/química , Partícula de Reconhecimento de Sinal/química , Sequência de Bases , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Potássio/química , Potássio/metabolismo , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , RNA/genética , RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo , Técnicas do Sistema de Duplo-Híbrido
20.
Nucleic Acids Res ; 44(2): 926-39, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26657628

RESUMO

The complicated process of eukaryotic ribosome biogenesis involves about 200 assembly factors that transiently associate with the nascent pre-ribosome in a spatiotemporally ordered way. During the early steps of 60S subunit formation, several proteins, collectively called A3 cluster factors, participate in the removal of the internal transcribed spacer 1 (ITS1) from 27SA3 pre-rRNA. Among these factors is the conserved hetero-trimeric Nop7-Erb1-Ytm1 complex (or human Pes1-Bop1-Wdr12), which is removed from the evolving pre-60S particle by the AAA ATPase Rea1 to allow progression in the pathway. Here, we clarify how Ytm1 and Erb1 interact, which has implications for the release mechanism of both factors from the pre-ribosome. Biochemical studies show that Ytm1 and Erb1 bind each other via their ß-propeller domains. The crystal structure of the Erb1-Ytm1 heterodimer determined at 2.67Å resolution reveals an extended interaction surface between the propellers in a rarely observed binding mode. Structure-based mutations in the interface that impair the Erb1-Ytm1 interaction do not support growth, with specific defects in 60S subunit synthesis. Under these mutant conditions, it becomes clear that an intact Erb1-Ytm1 complex is required for 60S maturation and that loss of this stable interaction prevents ribosome production.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Chaetomium/genética , Chaetomium/crescimento & desenvolvimento , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Modelos Moleculares , Complexos Multiproteicos , Mutação , Biogênese de Organelas , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa