RESUMO
The present work used water-soluble protein concentrates from the microalga Tetradesmus obliquus to stabilize sunflower oil emulsions. Microalgal cells were disrupted by sonication, and proteins were separated from the biomass using two methods, isoelectric and solvent precipitations. The protein extracts were concentrated by lyophilization, and the concentrates were used to produce emulsions with three amounts of Tetradesmus obliquus protein concentrate (TobPC) (0.1, 0.5, and 1.0% w/v). Emulsions were homogenized through sonication and characterized for creaming index, optical microscopy, size distribution, ζ-potential, and rheology. Isoelectric precipitation resulted in TobPC with a high protein content (51.46 ± 2.37%) and a better dispersibility profile. Emulsion stability was higher for both the isoelectric TobPC and control systems than for the TobPC solvent. Solvent TobPC does not efficiently stabilize emulsions at low protein concentrations that showed microscopically larger oil droplets and flocculation spots. A high phase separation velocity was observed for solvent TobPC, probably due to the higher hydrodynamic droplet diameters. The increase in TobPC content in the emulsions resulted in more stable emulsions for all samples. Therefore, Tetradesmus obliquus protein concentrates are a potential emulsifying agent.
RESUMO
Hops' (Humulus lupulus L.) phytochemicals are well known for their bioactivity. In the present study, the functional properties of hop extract rich in ß-acids, as potassium-salts structures (KBA), were investigated to develop a sustainable active food packaging. Polylactic acid (PLA)-based sheets were incorporated with increasing concentrations of hop extract (0.1-5 % w/w in terms of KBA) and characterized through performance and bioactive properties. KBA-added sheets presented decreased crystallinity and affected mechanical and thermal properties, especially with higher KBA amounts. The sheets' surface hydrophobicity gradually decreased by KBA-extract addition, while the water vapor permeability was not affected. A Fickian diffuse behavior and a better fit to application in fatty foods were observed during release tests. UV-blocking and antioxidant properties were improved by KBA incorporation. Furthermore, results from antibacterial assays revealed great susceptibility of Staphylococcus aureus and Listeria monocytogenes towards sheets added with 5 % of KBA. Moreover, the atomic force microscopy (AFM) observations revealed that KBA led to strong effects on the cell membranes of both bacteria, including disruption of membrane integrity and cell death. Therefore, this study is a sign of great prospects of hop ß-acids use, as KBA compound, in the production of sustainable active packaging for safe food shelf-life extension.
Assuntos
Embalagem de Alimentos , Humulus , Embalagem de Alimentos/métodos , Humulus/química , Antibacterianos/farmacologia , Poliésteres , ÁcidosRESUMO
Inclusion complexes (ICs) of 2-hydroxypropyl-ß-cyclodextrin with the essential oil (EO) from Seculo XXI cultivar of Psidium guajava were prepared using kneading (KN) and freeze-drying (FD) methods. The resulting ICs clusters have a nanometric size, with a diameter of approximately 80 and 40 nm for KN and FD, respectively. Complexation efficiency was 80.3% and 50.8% for KN and FD methods, respectively. The larvicidal activity of the EO in DMSO on A. aegypti had LC50 and LC90 values of 51.49 and 64.51 µg mL-1, respectively. For the KN method, the toxicity corresponded to 77.54 and 107.29 µg mL-1 for LC50 and LC90, respectively. FD method demonstrated toxicity at concentrations above 600 µg mL-1. Thus, ICs enable the use of EO in breeding sites for A. aegypti, thus being potential products to be commercially exploited.
Assuntos
Aedes , Inseticidas , Óleos Voláteis , Psidium , Animais , Óleos Voláteis/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina , Larva , Inseticidas/farmacologiaRESUMO
BACKGROUND: Peanut contamination by fungi is a concern of processors and consumers owing to the association of these micro-organisms with quality deterioration and aflatoxin production. In this study the fungicidal and detoxifying effects of ozone on aflatoxins in peanuts was investigated. Peanut kernels were ozonated at concentrations of 13 and 21 mg L⻹ for periods of 0, 24, 48, 72 and 96 h. RESULTS: Ozone was effective in controlling total fungi and potentially aflatoxigenic species in peanuts, with a reduction in colony-forming units per gram greater than 3 log cycles at the concentration of 21 mg L⻹ after 96 h of exposure. A reduction in the percentage of peanuts with internal fungal populations was also observed, particularly after exposure to ozone at 21 mg L⻹. A reduction in the concentrations of total aflatoxins and aflatoxin B1 of approximately 30 and 25% respectively was observed for kernels exposed to ozone at 21 mg L⻹ for 96 h. CONCLUSION: It was concluded that ozone is an important alternative for peanut detoxification because it is effective in controlling potentially aflatoxigenic fungi and also acts in the reduction of aflatoxin levels in kernels.
Assuntos
Aflatoxinas/análise , Arachis/microbiologia , Aspergillus/efeitos dos fármacos , Contaminação de Alimentos/prevenção & controle , Conservação de Alimentos/métodos , Fungicidas Industriais/farmacologia , Ozônio/farmacologia , Aflatoxina B1/análise , Arachis/química , Aspergillus/crescimento & desenvolvimento , Aspergillus/isolamento & purificação , Aspergillus/metabolismo , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/isolamento & purificação , Aspergillus flavus/metabolismo , Brasil , Contagem de Colônia Microbiana , Doenças Transmitidas por Alimentos/prevenção & controle , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Fungos/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Sementes/química , Sementes/microbiologia , Fatores de TempoRESUMO
Essential oils (EOs) have been considered potential green additives for active food packaging. However, sub-lethal concentrations of EOs may lead to bacterial resistance, which is a concern. In this sense, the effects of 1% (GEO1) and 10% (GEO10) of garlic EO in cellulose acetate-based films regarding homologous resistance in Listeria innocua were investigated after incubation at 37 °C/24 h and 7 °C/10 d. The films were also characterized and tested on sliced mozzarella cheese as interfold packaging for 8-days storage at 7 °C. The EO did not alter the mechanical properties of the films nor their thermal degradation profile. However, GEO10 was less permeable to water vapor than GEO1. When tested against L. innocua, the incubation at 7 °C enhanced the films' antimicrobial effect: log reductions of 4.3 and 5.7 were obtained for GEO1 and GEO10, respectively. Moreover, 86.3% of L. innocua cells were injured at sub-lethal level when exposed to GEO10. Despite this, no occurrence of homologous resistance was found. When the active films were tested on cheese against the natural microbiota, they resulted in slices of mozzarella with fewer contaminants, however the reduction was not significant. Nevertheless, we considered this an important finding to the food industry since this work suggested that GEO is a safe active compound from the point of view of homologous resistance to be used against Listeria.
Assuntos
Alho , Listeria , Óleos Voláteis , Celulose/análogos & derivados , Microbiologia de Alimentos , Óleos Voláteis/farmacologiaRESUMO
The purpose of this study was to encapsulate carvacrol into liposomes in order to promote its application in active food packaging. Response surface methodology was used to evaluate the effect of the concentration of the liposomal components on its characteristics. The optimum formulation for the preparation of liposomes with the highest encapsulation efficiency (59.0 ± 1.99%) was found to be 3000 µg mL-1 of cholesterol and 4000 µg mL-1 of carvacrol. Carvacrol reduced the polydispersity index and increased the zeta potential and the thermal stability of liposomes. Fourier-transform infrared spectroscopy indicated that the interaction of carvacrol with liposomes occurred probably through hydrogen-bonding. The incorporation into liposomes maintained the antibacterial effect of carvacrol, but when in the film, carvacrol liposomes were not effective against the microorganisms tested. Liposomes may offer a viable option for stabilizing carvacrol, however, more studies are necessary to enable its application in food packaging.
Assuntos
Antibacterianos/química , Cimenos/química , Embalagem de Alimentos/métodos , Lipossomos/química , Álcool de Polivinil/química , Antibacterianos/farmacologia , Plásticos Biodegradáveis/química , Cimenos/farmacologia , Escherichia coli/efeitos dos fármacos , Lipossomos/farmacologia , Testes de Sensibilidade Microbiana/métodos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Staphylococcus aureus/efeitos dos fármacosRESUMO
Nanostructures from conjugates of tara gum and α-lactalbumin were obtained via the heat-gelation process with pH adjustment. The conjugates were produced by Maillard reaction using the dry-heating method in lyophilized or spray-dried mixtures of TG and α-la and were characterized by browning index (BI) and percentage of free amino groups (% FAG). Nanostructured systems were characterized by dynamic light scattering, ζ-potential, circular dichroism, and intrinsic fluorescence to evaluate the structures. The most appropriate time of conjugation was 2 days. The spray-dried and lyophilized mixtures presented different values of BI and % FAG (p < 0.05), indicating that the glycosylation was more intense in lyophilized mixtures. Nanostructures with average sizes lower than 300 nm were formed under different conditions of temperature, pH, and heating time. Analyses of circular dichroism and intrinsic fluorescence showed conformational changes in the nanostructures, mainly a decrease in the α-helix content in spray-dried systems. The characteristics presented by the studied systems showed that it is possible to obtain nanostructures from conjugates of tara gum and α-lactalbumin.
Assuntos
Lactalbumina/química , Nanoestruturas/química , Gomas Vegetais/química , Liofilização , Modelos Moleculares , Conformação ProteicaRESUMO
Chitosan is a natural polycationic polysaccharide with several known biotechnological functionalities, but its application in food products as ingredient or additive remains nowadays unusual. Additionally, ultrasonic production of food-grade emulsions is still an open research field, so ultrasound applicability for such purpose must be evaluated case by case. In this study, chitosan was dispersed in acid aqueous media containing acetic, glycolic, propionic or lactic acid (50â¯mmol·L-1), then added of the emulsifier Tween 20, and finally mixed to sunflower oil, through ultrasonic homogenization (20â¯kHz, 500â¯W, 4â¯min), in order to prepare O/W emulsions (oil fractionâ¯=â¯0.25). In all studied systems, oil droplets with average hydrodynamic diameter <â¯600â¯nm were obtained. The increase of chitosan concentration promoted the augment in consistency and the elastic character of the emulsions. Emulsions containing more than 0.500â¯g·(100â¯g)-1 of chitosan presented a minor increase of both oil droplets average hydrodynamic diameter and PDI, during storage for 28 days. Furthermore, such systems showed no phase separation when exposed to centrifugation, freeze-thawing, and freeze-thaw-heating cycles. Two main findings may be highlighted from this study: i) ultrasound processing is a promising approach to produce food-grade emulsified systems containing chitosan, and ii) chitosan is a suitable alternative as thickener/stabilizer for acidic emulsions, being its performance influenced by the biopolymer concentration and not by the organic acid present in the medium.
RESUMO
The production of biodegradable plastic materials using natural resources has aroused increased attention due to environmental concerns. This study aimed to manufacture novel, commercially feasible, biodegradable sheets by flat die extrusion-calendering process produced with thermoplastic starch/plasticized cellulose acetate (TPS/PCA) and thermoplastic starch/plasticized cellulose acetate/poly (butylene adipate-co-terephthalate) (TPS/PCA/PBAT) blends, and to investigate the effects of composition and processing conditions, morphological characteristics, and thermal properties. The results showed that TPS/PCA and TPS/PCA/PBAT biodegradable sheets properties were highly dependent upon both composition and processing temperature. The morphological characteristics and thermal properties of the sheets demonstrated the good compatibility between TPS and PCA in TPS/PCA blends, mainly at higher processing temperatures, whereas TPS/PCA/PBAT sheets present a heterogeneous structure due to the poor compatibility between the components. TPS/PCA biodegradable sheets presented suitable processability and handleability characteristics that allow them to be considered as a novel eco-friendly, economically feasible alternative to conventional plastic materials.
Assuntos
Amido/química , Celulose/análogos & derivados , Poliésteres , TemperaturaRESUMO
Nanocomposites of chitosan (CS) were developed and characterized in a full factorial design with varying levels of montmorillonite (MMTNa) and encapsulated tocopherol (toc-encap). The structural properties (XRD, FTIR), morphology (TEM), hygroscopic properties (water vapour permeability, hydrophobicity, sorption isotherms) and optical properties (haze, CIELab parameters) of the resulting materials were evaluated. Toc-encap contents up to 10% influenced the intercalation of MMTNa in the CS matrix, resulting in films with reduced water vapour permeability (3.48×10(-11)(g/msPa)), increased hydrophobicity (ΔGHydroph |7.93-59.54|mJm(-2)) and lower equilibrium moisture content (EMC), thus showing potential for active food packaging materials. At levels above 10%, toc-encap agglomerates occurred, which deteriorated the properties of the resulting films, as shown with the TEM. As the toc-encap content increased, the films became slightly more yellow, more irregular and less transparent, with a higher haze index.
Assuntos
Quitosana/química , Embalagem de Alimentos/métodos , Nanocompostos/química , alfa-Tocoferol/químicaRESUMO
This work aimed to develop nanocomposite films of methyl cellulose (MC) incorporated with pediocin and zinc oxide nanoparticles (nanoZnO) using the central composite design and response surface methodology. This study evaluated film physical-mechanical properties, including crystallography by X-ray diffraction, mechanical resistance, swelling and color properties, microscopy characterization, thermal stability, as well as antimicrobial activity against Staphylococcus aureus and Listeria monocytogenes. NanoZnO and pediocin affected the crystallinity of MC. Load at break and tensile strength at break did not differ among films. NanoZnO and pediocin significantly affected the elongation at break. Pediocin produced yellowish films, but nano ZnO balanced this effect, resulting in a whitish coloration. Nano ZnO exhibited good intercalation in MC and the addition of pediocin in high concentrations resulted crater-like pits in the film surfaces. Swelling of films diminished significantly compared to control. Higher concentrations of Nano ZnO resulted in enhanced thermal stability. Nanocomposite films presented antimicrobial activity against tested microorganisms.
Assuntos
Antibacterianos/química , Bacteriocinas/química , Nanocompostos/química , Nanopartículas/química , Óxido de Zinco/química , Algoritmos , Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Embalagem de Alimentos , Modelos Lineares , Listeria monocytogenes/efeitos dos fármacos , Metilcelulose/química , Tamanho da Partícula , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Resistência à Tração , Termogravimetria , Difração de Raios X , Óxido de Zinco/farmacologiaRESUMO
A method consisting of multiple headspace solid-phase microextraction followed by gas chromatography-mass spectrometry analysis was developed and used to determine the main volatile radiolysis products formed by γ-irradiation of flexible multilayer food packaging samples. The developed method allows the use of solid-phase microextraction in the quantification of compounds from plastic solid samples. A screening of volatiles in the γ-irradiated and non-irradiated films was performed and 29 compounds were identified in the irradiated packaging, 17 of which were absent in the non-irradiated samples. The main volatile radiolysis products identified were: 1,3-di-tert-butylbenzene; 2,6-di-tert-butyl-1,4-benzoquinone; 4-tert-butyl-phenol and the off-odor compounds butanoic acid and valeric acid. These volatile radiolysis compounds were determined with the proposed method and the results are shown and discussed. Solid-liquid extraction and headspace solid-phase microextraction methods were also studied for comparative purposes. The automated solvent-free multiple HSPME technique here presented can be used to quantify the radiolysis compounds in irradiated plastic solid samples in a simple way with the advantages of being free from matrix influence and environmentally friendly.
Assuntos
Embalagem de Alimentos , Raios gama , Microextração em Fase Sólida/métodos , Esterilização/métodos , Compostos Orgânicos Voláteis/análise , Derivados de Benzeno/análise , Benzoquinonas/análise , Hidroxitolueno Butilado/análogos & derivados , Hidroxitolueno Butilado/análise , Ácido Butírico/análise , Modelos Lineares , Ácidos Pentanoicos/análise , Fenóis/análise , Volatilização/efeitos da radiaçãoRESUMO
Blue polydiacetylene vesicles were studied with regard to their behaviour under variations in storage temperature, heating, potentiometric titration and in the presence of chemical components of milk, to evaluate their application as a sensor in the food industry. Vesicles were prepared using 10,12-pentacosadienoic acid (PCDA)/1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC). Their changes were monitored using UV-Vis absorption. Temperatures not exceeding 25°C did not cause colour change in PCDA/DMPC vesicles for a period of up to 60days of storage. Heating for 10min at 60 and 90°C, exposure to pH higher than 9.0 and the simulant solutions of the whey proteins, ß-lactoglobulin and α-lactalbumin, promoted colour change from blue to red for the vesicles studied. The effects of routine factors on the characteristics and stability of polydiacetylene vesicles is important in defining the parameters related to their application as a sensor for the food industry.
Assuntos
Leite/química , Polímeros/química , Poli-Inos/química , Animais , Bovinos , Temperatura Alta , Concentração de Íons de Hidrogênio , Estrutura Molecular , Polímero PoliacetilênicoRESUMO
Nanotechnologies involve the manipulation of matter at a very small scale, generally between 1 and 100 nanometers. They exploit novel properties and functions that occur in matter at this scale. The application of nanotechnology in the areas of food and food packaging is growing rapidly, and in the area of food security, these applications include the detection of microorganisms, environmental protection, water purification, encapsulation of nutrients and food packing. Nanotechnology is opening up a world of new possibilities for the food industry, but the entry of nanoparticles into the food chain can result in a buildup of toxic contaminants in food and harm human health. This review focuses on the nanoencapsulation of bioactive compounds, nanosensor especially to detect foodborne pathogens, applications of nanotechnology in food packing and highlight some of aspects of toxicology.
A nanotecnologia envolve a manipulação da matéria em uma escala muito pequena, geralmente entre 1 e 100 nanômetros. Ela explora novas propriedades e funções que ocorrem na matéria nesta escala nanometrica. A aplicação da nanotecnologia nas áreas de alimentos, embalagens para alimentos e segurança alimentar têm crescido rapidamente. Estas aplicações incluem a detecção de microrganismos, proteção ambiental, purificação de água, encapsulamento de nutrientes e embalagem para alimentos. A nanotecnologia está abrindo novas possibilidades para a indústria de alimentos, mas, a entrada de nanopartículas na cadeia alimentar pode resultar em um acúmulo de contaminantes que podem ser tóxicos e prejudicar a saúde humana. Esta revisão enfoca a nanoencapsulação de compostos bioativos, nanosensores, especialmente para detecção de patógenos em alimentos, aplicação da nanotecnologia na área de embalagens para alimentos e destaca alguns aspectos sobre toxicologia.
Assuntos
Indústria Alimentícia , Embalagem de Alimentos , Nanotecnologia , NanocompostosRESUMO
The present research aimed to develop an edible coating incorporated with mint essential oil, evaluate its effectiveness in inhibiting in vitro microbial development, and improve both quality and shelf-life of fresh-cut pineapple. Mint essential oil-containing edible coatings showed in vitro antimicrobial efficiency against Escherichia coli and Salmonella Enteritidis. Titratable acidity, pH, and texture were not affected (P>0.05) by coating or storage time. Mass loss was not higher than 1.0% after the 6th day of storage. No effect of storage time and coating on total soluble solids was observed. Mint essential oil-containing coatings inhibited the growth of yeasts and molds in fresh-cut pineapple. Compared to uncoated and control-coated samples, mint essential oil-containing coatings lessened psychrotrophic bacteria counts throughout storage. Counts of thermotolerant coliforms were not higher than 3.0MPN·g-1 in all treatments, whereas no Salmonella sp. was detected during the 6-day storage. Mint essential oil provided a strong flavor to the fruit, as shown by sensory evaluations.
O objetivo deste trabalho foi desenvolver um revestimento comestível incorporado com óleo essencial de hortelã, bem como avaliar sua eficiência antimicrobiana in vitro e em abacaxi minimamente processado. Revestimentos contendo óleo essencial de hortelã mostraram eficiência antimicrobiana in vitro contra Escherichia coli e Salmonella Enteritidis. O pH, a acidez titulável e a textura não foram afetadas (P>0.05) pelos tratamentos durante o armazenamento. A perda de massa dos abacaxis de todos os tratamentos não ultrapassou 1.0% após 6 dias de armazenamento. O tempo e os diferentes revestimentos não afetaram (P>0,05) o teor de sólidos solúveis totais dos abacaxis. Revestimentos contendo óleo essencial de hortelã foram capazes de inibir o crescimento de fungos e leveduras em abacaxi minimamente processado, quando comparado aos frutos sem revestimento e com revestimento controle. Frutos com revestimento contendo óleo essencial de hortelã apresentaram menor contagem de psicrotróficos no final do armazenamento. A contagem de coliformes termotolerantes foi menor que 3.0NMP·g-1 para todos os tratamentos e não foi detectada presença de Salmonella sp. durante o período de armazenamento. A presença de óleo essencial de hortelã conferiu forte sabor aos abacaxis.
RESUMO
A indústria de alimentos, buscando atender à crescente demanda dos consumidores, vem desenvolvendo embalagens ativas para proporcionar qualidade e segurança aos produtos acondicionados. Este trabalho objetivou desenvolver e avaliar a aplicação de filmes ativos aromatizados em contato com a massa de pastel. Os filmes foram preparados pelo método casting, adicionados de ácido sórbico e aroma de pizza e avaliados in vitro frente ao microrganismo Penicillium sp. Também foram estudadas suas propriedades mecânicas, migração de ácido sórbico, avaliação sensorial do produto e análise microbiológica in vivo. Os filmes ativos apresentaram atividade antimicrobiana tanto in vitro como no alimento. A caracterização mecânica mostrou que os filmes ativos aromatizados apresentaram valores de carga máxima na ruptura, inferiores ao filme controle e, durante a migração, a adição de aroma contribuiu para uma maior liberação do ácido sórbico. Além disso, as massas de pastel em contato com os filmes ativos aromatizados apresentaram melhores resultados sensoriais.
The food industry, trying to meet growing consumer demand, is developing active packaging to provide quality and safety for packed food. This research aimed to develop and evaluate the implementation of active flavored films in contact with pastry dough. The active films were evaluated for in vitro antimicrobial activity against Penicillium sp. The mechanical properties of the films, the sorbic acid migration, sensory and in vivo microbiological analyses were also tested. The active films showed better results for in vitro and in vivo microbiological analyses when compared with the film with the sorbic acid incorporated directly on the pastry dough. The incorporation of sorbic acid and flavor affected the mechanical properties of the active films compared to the control film. The flavor addition provided a larger migration of sorbic acid from the film to the pastry dough. Besides the pastry dough packed in the active films showed better sensory results.
RESUMO
A pera é uma das frutas de clima temperado mais consumidas no Brasil, no entanto sua conservação é limitada devido ao seu escurecimento quando sofre danos ou tratamentos físicos. Os revestimentos comestíveis interagem favoravelmente com o alimento, aumentando sua vida de prateleira. Este trabalho objetivou avaliar a ação de revestimento de amido adicionado de lactato de cálcio e L-cisteína na inibição do escurecimento enzimático, na redução do crescimento de psicrotrófilos e enterobactérias e na manutenção da textura. As peras fatiadas foram cobertas com revestimentos comestíveis à base de amido incorporados com cisteína e lactato de cálcio, exceto o controle - sem revestimento (C). Os tratamentos foram: apenas revestimento (T1); 2,0 por cento lactato de cálcio e 1,0 por cento L-cisteína (T2) e 2,0 por cento lactato de cálcio e 1,5 por cento L-cisteína (T3). As amostragens foram feitas nos tempos zero, dois, quatro e seis dias. As amostras foram mantidas sob refrigeração (7°C±2°C). As peras submetidas aos tratamentos T2 e T3 apresentaram-se significativamente mais firmes (P<0,05) que as dos tratamentos C e T1. A ação da cisteína sobre a inibição do escurecimento enzimático foi observada nos tratamentos T2 e T3, que não apresentaram diferença significativa (P≥0,05) entre si para os valores de ∆E, no entanto esses valores foram significativamente menores em relação ao controle. No tempo 6, a redução decimal na contagem de psicrotrófilos chegou a 3,03 e 2,43 para T3 e T2, em comparação com o controle. A contagem de enterobactérias apresentou comportamento semelhante, sendo o valor da redução de 3,16 e 3,05 para T2 e T3 em relação ao controle. Verificou-se que a vida de prateleira de pera minimamente processada pode ser mantida por mais tempo com o uso desse revestimento.
Pear is one of the most consumed temperate fruits in Brazil; however their conservation is limited due to browning when it suffers injuries or physical treatments. The edibles coating interact with the food positively extending its shelf life. This research aimed to evaluate the action of starch edible coating incorporated with calcium lactate and L-cysteine on enzymatic browning inhibition, on psychrotrophs and enterobacteriaceae growing reduction and on firmness maintenance. The sliced pears were coated with starch edible coating incorporated with L-cysteine and calcium lactate, except control, without coating (C). The treatment were: only coating (T1); 2,0 percent calcium lactate and 1,0 percent L-cysteine (T2); 2,0 percent calcium lactate and 1,5 percent L-cysteine (T3). The samples were taken at 0, 2, 4 and 6 days. Pears were keeped under refrigeration (7°C±2°C). Pears submitted to treatments T2 and T3 show significantly more firms (P<0,05) compared to treatments C and T1. Cysteine action over enzymatic browning inhibition was observed in treatments T2 and T3 which do not differed significantly each other (P≥0,05) to ∆E values however these were significantly lower than control (C). At time 6, decimal reduction on psychrotrophs counting reached 3,03 and 2,43 to T3 e T2 compared to control. Enterobacteriaceae counting showed similar behavior where the reduction values were 3,16 and 3,05 to T2 e T3 compared to control. It was verified that using the studied edible coating on fresh cut pear can extend its shelf life.
RESUMO
There is an increasing tendency to add natural antimicrobials of plant origin into food. The objective of this work was to develop a microbial sachet incorporated with allyl isothiocyanate (AIT), a volatile compound of plant origin, and to test its efficiency against growth of yeasts and molds, Staphylococcus sp. and psychrotrophic bacteria on sliced mozzarella cheese. Another objective was to quantify the concentration of AIT in the headspace of cheese packaging. A reduction of 3.6 log cycles was observed in yeasts and molds counts in the mozzarella packed with the antimicrobial sachet over 15-day storage time. The sachet also showed an antibacterial effect on Staphylococcus sp., reducing 2.4 log cycles after 12-day storage. Psychrotrophic bacteria species were the most resistant to the antimicrobial action. The highest concentration of AIT (0.08µg.mL-1) inside the active packaging system was observed at the 6-day of storage at 12 ºC ± 2 ºC. At the end of the storage time, AIT concentration decreased to only 10 percent of the initial concentration. Active packaging containing antimicrobial sachet has a potential use for sliced mozzarella, with molds and yeasts being the most sensitive to the antimicrobial effects.
Assuntos
Conservação de Alimentos/métodos , Análise de Alimentos , Embalagem de Alimentos , Isotiocianatos/análise , Leveduras/crescimento & desenvolvimento , Queijo/análise , Staphylococcus/isolamento & purificação , Amostras de Alimentos , Métodos , MétodosRESUMO
O uso de absorvedores de oxigênio em embalagens de produtos alimentícios acondicionados tem apresentado uma demanda crescente. Assim, o conhecimento da eficiência desses absorvedores em diferentes condições de umidade relativa e temperaturas definidas, são de fundamental importância. Portanto, foram determinadas equações para predizer o volume absorvido de oxigênio para as temperaturas de 10±2 ºC e 25±2 ºC, dependendo da umidade relativa na faixa de 75 por cento a 85 por cento e da taxa de permeabilidade a oxigênio da embalagem. Para a temperatura de 25±2ºC a equação é: V = -32,770+10,440*UR-104,385*ln(TPO2), com um R² = 0,9151. Para a temperatura de 10±2ºC a equação é: V=107,321+6,221*UR-105,166 ln(TPO2) com um R² = 0,8729. Dessa forma, o tempo de atividade do sachê pode ser determinado pela equação T = (V-Vi) / (TPO2*A). Utilizando essas equações e, considerando uma embalagem de área 0,05m² por face, com uma permeabilidade de 8,63 cm3.m-2.dia-1, uma umidade relativa de 80 por cento e o volume de oxigênio inicial dentro da embalagem de 2,5 mL, após o envase, o tempo de atividade do sachê quando armazenado a 10±2ºC foi de 435 dias e a 25±2ºC de 666 dias.
Oxygen absorbers have been presenting a growing demand for application in food packaging. Thus, it is important to know the efficiency of those absorbers in different relative humidity and temperatures. Therefore, equations were developed to predict the volume of absorbed oxygen at 10±2 ºC and 25±2 ºC, according as the relative humidity ranging from 75 percent to 85 percent and the oxygen transmission rate through the package. At 25±2ºC the equation was V = -32,770+10,440*RH-104,385*ln(O2 TR), with R² = 0,9151. At 10±2ºC, V=107,321+6,221*RH-105,166 ln(O2 TR) with R² = 0,8729. As a consequence, activity time for the oxygen absorbers can be calculated with the following equation: T = (V-Vi) / (ln(O2 TR*A). Using these equations and considering a packaging area of 0,05m² for each face, oxygen transmission rate of 8,63 cm³.m-².dia-1, relative humidity of 80 percent and an initial oxygen volume inside the package of 2,5 mL, absorber activity times when stored at 10±2ºC and 25±2ºC were 435 and 666 days, respectively.
RESUMO
The main objective of this work was to evaluate the efficiency of oxygen - absorbing sachets at relative humidity of 75 percent, 80 percent and 85 percent and different temperatures, 10±2 ºC and 25±2 ºC. The experiment consisted in determining the O2 absorption under these conditions. A sachet was placed in desiccators with an internal air homogenization system. Aliquots of air were removed at pre-established time intervals and analyzed for oxygen content. The results showed that oxygen absorption by the sachet increased as the relative humidity increased for both temperature. Therefore the oxygen - absorbing sachets were most active under 25±2ºC and 85 percent relative humidity. At ambient condition (25±2ºC/75 percentRH) the rate of oxygen absorbed was 50 mL/day and 18,5 mL/day for 10±2ºC. It was used a totally casualized design with three replicates.
O objetivo principal deste trabalho foi avaliar a eficiência de sachês absorvedores de oxigênio a 75 por cento, 80 por cento e 85 por cento de umidade relativa e diferentes temperaturas, 10±2 ºC e 25±2 ºC. O experimento consiste em determinar a absorção de O2 sob essas condições. Um sachê foi colocado dentro de um dessecador contendo um sistema de homogeneização do ar interno. Alíquotas de ar são retiradas dos dessecadores em intervalos de tempos pré-estabelecido e seu conteúdo de oxigênio analisado. Os resultados mostraram que a absorção de oxigênio pelos saches aumentaram com o aumento da temperatura para ambas as temperaturas. No entanto, os sachês mostraram uma maior eficiência para 85 por cento de umidade relativa e 25±2ºC de temperatura. Na condição ambiente (25±2ºC/75 por centoRH), a taxa de absorção dos sachês foi de 50 mL/dia e 18,5 mL/dia para 10±2ºC. O experimento foi conduzido com delineamento experimental inteiramente casualizado, com três repetições.