Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
BMC Plant Biol ; 22(1): 542, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418954

RESUMO

BACKGROUND: Maize lethal necrosis (MLN) disease is a significant constraint for maize producers in sub-Saharan Africa (SSA). The disease decimates the maize crop, in some cases, causing total crop failure with far-reaching impacts on regional food security. RESULTS: In this review, we analyze the impacts of MLN in Africa, finding that resource-poor farmers and consumers are the most vulnerable populations. We examine the molecular mechanism of MLN virus transmission, role of vectors and host plant resistance identifying a range of potential opportunities for genetic and phytosanitary interventions to control MLN. We discuss the likely exacerbating effects of climate change on the MLN menace and describe a sobering example of negative genetic association between tolerance to heat/drought and susceptibility to viral infection. We also review role of microRNAs in host plant response to MLN causing viruses as well as heat/drought stress that can be carefully engineered to develop resistant varieties using novel molecular techniques. CONCLUSIONS: With the dual drivers of increased crop loss due to MLN and increased demand of maize for food, the development and deployment of simple and safe technologies, like resistant cultivars developed through accelerated breeding or emerging gene editing technologies, will have substantial positive impact on livelihoods in the region. We have summarized the available genetic resources and identified a few large-effect QTLs that can be further exploited to accelerate conversion of existing farmer-preferred varieties into resistant cultivars.


Assuntos
Melhoramento Vegetal , Zea mays , Zea mays/fisiologia , África Subsaariana , Necrose , Fatores Socioeconômicos
2.
J Exp Bot ; 72(14): 5134-5157, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34139769

RESUMO

Despite being the world's most widely grown crop, research investments in wheat (Triticum aestivum and Triticum durum) fall behind those in other staple crops. Current yield gains will not meet 2050 needs, and climate stresses compound this challenge. However, there is good evidence that heat and drought resilience can be boosted through translating promising ideas into novel breeding technologies using powerful new tools in genetics and remote sensing, for example. Such technologies can also be applied to identify climate resilience traits from among the vast and largely untapped reserve of wheat genetic resources in collections worldwide. This review describes multi-pronged research opportunities at the focus of the Heat and Drought Wheat Improvement Consortium (coordinated by CIMMYT), which together create a pipeline to boost heat and drought resilience, specifically: improving crop design targets using big data approaches; developing phenomic tools for field-based screening and research; applying genomic technologies to elucidate the bases of climate resilience traits; and applying these outputs in developing next-generation breeding methods. The global impact of these outputs will be validated through the International Wheat Improvement Network, a global germplasm development and testing system that contributes key productivity traits to approximately half of the global wheat-growing area.


Assuntos
Melhoramento Vegetal , Triticum , Clima , Secas , Pesquisa Translacional Biomédica , Triticum/genética
3.
Mol Ecol ; 28(15): 3544-3560, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31287919

RESUMO

Understanding the genomic basis of adaptation in maize is important for gene discovery and the improvement of breeding germplasm, but much remains a mystery in spite of significant population genetics and archaeological research. Identifying the signals underpinning adaptation are challenging as adaptation often coincided with genetic drift, and the base genomic diversity of the species in massive. In this study, tGBS technology was used to genotype 1,143 diverse maize accessions including landraces collected from 20 countries and elite breeding lines of tropical lowland, highland, subtropical/midaltitude and temperate ecological zones. Based on 355,442 high-quality single nucleotide polymorphisms, 13 genomic regions were detected as being under selection using the bottom-up searching strategy, EigenGWAS. Of the 13 selection regions, 10 were first reported, two were associated with environmental parameters via EnvGWAS, and 146 genes were enriched. Combining large-scale genomic and ecological data in this diverse maize panel, our study supports a polygenic adaptation model of maize and offers a framework to enhance our understanding of both the mechanistic basis and the evolutionary consequences of maize domestication and adaptation. The regions identified here are promising candidates for further, targeted exploration to identify beneficial alleles and haplotypes for deployment in maize breeding.


Assuntos
Adaptação Fisiológica/genética , Cruzamento , Meio Ambiente , Loci Gênicos , Estudo de Associação Genômica Ampla , Bases de Dados Genéticas , Ecótipo , Genótipo , Geografia , Modelos Genéticos , Anotação de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Análise de Sequência de DNA , Zea mays/genética
4.
Crop Prot ; 123: 45-58, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31481821

RESUMO

The first occurrence of wheat blast in 2016 threatened Bangladesh's already precarious food security situation. The Bangladesh Agricultural Research Institute (BARI), together with the International Maize and Wheat Improvement Center (CIMMYT) developed and released the wheat variety BARI Gom 33 that is resistant to wheat blast and other common diseases. The new variety provides a 5-8% yield gain over the available popular varieties, as well as being zinc enriched. This study examines the potential economic benefits of BARI Gom 33 in Bangladesh. First, applying a climate analogue model, this study identified that more than 55% of the total wheat-growing area in Bangladesh (across 45 districts) is vulnerable to wheat blast. Second, applying an ex-ante impact assessment framework, this study shows that with an assumed cumulative adoption starting from 2019-20 and increasing to 30% by 2027-28, the potential economic benefits of the newly developed wheat variety far exceeds its dissemination cost by 2029-30. Even if dissemination of the new wheat variety is limited to only the ten currently blast-affected districts, the yearly average net benefits could amount to USD 0.23-1.6 million. Based on the findings, international funder agencies are urged to support the national system in scaling out the new wheat variety and wheat research in general to ensure overall food security in Bangladesh and South Asia.

5.
Land use policy ; 88: 104091, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31853160

RESUMO

Weather variability is an important source of production risk for rainfed agriculture in developing countries. This paper evaluates the impacts of the adoption of drought-tolerant maize varieties on average maize yield, yield stability, risk exposure and resource use in rainfed smallholder maize farming. The study uses cross-sectional farm household-level data, collected from a sample of 840 farm households in Uganda. The adoption of drought-tolerant maize varieties increased yield by 15% and reduced the probability of crop failure by 30%. We further show that the adoption of these varieties increased investments in maize production at the extensive margin through maize area increase and to a more limited extent at the intensive margin through mechanization. The findings show promise for further uptake and scaling of drought-tolerant maize varieties for increased productivity, reduced risk, and the transformation of the maize sector.

6.
Glob Chang Biol ; 23(6): 2464-2472, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27860004

RESUMO

Many of the irrigated spring wheat regions in the world are also regions with high poverty. The impacts of temperature increase on wheat yield in regions of high poverty are uncertain. A grain yield-temperature response function combined with a quantification of model uncertainty was constructed using a multimodel ensemble from two key irrigated spring wheat areas (India and Sudan) and applied to all irrigated spring wheat regions in the world. Southern Indian and southern Pakistani wheat-growing regions with large yield reductions from increasing temperatures coincided with high poverty headcounts, indicating these areas as future food security 'hot spots'. The multimodel simulations produced a linear absolute decline of yields with increasing temperature, with uncertainty varying with reference temperature at a location. As a consequence of the linear absolute yield decline, the relative yield reductions are larger in low-yielding environments (e.g., high reference temperature areas in southern India, southern Pakistan and all Sudan wheat-growing regions) and farmers in these regions will be hit hardest by increasing temperatures. However, as absolute yield declines are about the same in low- and high-yielding regions, the contributed deficit to national production caused by increasing temperatures is higher in high-yielding environments (e.g., northern India) because these environments contribute more to national wheat production. Although Sudan could potentially grow more wheat if irrigation is available, grain yields would be low due to high reference temperatures, with future increases in temperature further limiting production.


Assuntos
Temperatura Alta , Triticum/crescimento & desenvolvimento , Agricultura , Grão Comestível , Índia , Temperatura
7.
Mitig Adapt Strateg Glob Chang ; 22(5): 743-760, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30093820

RESUMO

Drybeans (Phaseolus vulgaris L.) are an important subsistence crop in Central America. Future climate change may threaten drybean production and jeopardize smallholder farmers' food security. We estimated yield changes in drybeans due to changing climate in these countries using downscaled data from global circulation models (GCMs) in El Salvador, Guatemala, Honduras, and Nicaragua. We generated daily weather data, which we used in the Decision Support System for Agrotechnology Transfer (DSSAT) drybean submodel. We compared different cultivars, soils, and fertilizer options in three planting seasons. We analyzed the simulated yields to spatially classify high-impact spots of climate change across the four countries. The results show a corridor of reduced yields from Lake Nicaragua to central Honduras (10-38 % decrease). Yields increased in the Guatemalan highlands, towards the Atlantic coast, and in southern Nicaragua (10-41 % increase). Some farmers will be able to adapt to climate change, but others will have to change crops, which will require external support. Research institutions will need to devise technologies that allow farmers to adapt and provide policy makers with feasible strategies to implement them.

8.
Glob Food Sec ; 37: 100684, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37351552

RESUMO

A growing urban population and dietary changes increased wheat import bills in Africa to 9% per year. Though wheat production in the continent has been increasing over the past decades, to varying degrees depending on regions, this has not been commensurate with the rapidly increasing demand for wheat. Analyses of wheat yield gaps show that there is ample opportunity to increase wheat production in Africa through improved genetics and agronomic practices. Doing so would reduce import dependency and increase wheat self-sufficiency at national level in many African countries. In view of the uncertainties revealed by the global COVID-19 pandemic, extreme weather events, and world security issues, national policies in Africa should re-consider the value of self-sufficiency in production of staple food crops, specifically wheat. This is particularly so for areas where water-limited wheat yield gaps can be narrowed through intensification on existing cropland and judicious expansion of rainfed and irrigated wheat areas. Increasing the production of other sources of calories (and proteins) should also be considered to reduce dependency on wheat imports.

9.
J Exp Bot ; 63(1): 1-12, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21926090

RESUMO

To ensure future food security, there is an urgent need for improved co-ordination of agricultural research. While advances in biotechnology hold considerable promise, significant technology gaps exist that may reduce their impact. Examples include an incomplete knowledge of target breeding environments, a limited understanding and/or application of optimal crop management practices, and underfunded extension services. A better co-ordinated and more globalized approach to agricultural research through the implementation of Global Crop Improvement Networks (GCIN) is proposed. Such networks could underpin agricultural research and development by providing the following types of services: (i) increased resolution and precision of environmental information, including meteorological data, soil characteristics, hydrological data, and the identification of environmental 'hotspots' for a range of biotic, abiotic, and socio-economic constraints; (ii) augmented research capacity, including network-based variety and crop management trials, faster and more comprehensive diagnosis of emerging constraints, timely sharing of new technologies, opportunities to focus research efforts better by linking groups with similar productivity constraints and complementary skills, and greater control of experimental variables in field-based phenotyping; and (iii) increased communication and impacts via more effective dissemination of new ideas and products, the integration of information globally to elicit well-timed local responses to productivity threats, an increased profile, and the publicity of threats to food security. Such outputs would help target the translation of research from the laboratory into the field while bringing the constraints of rural communities closer to the scientific community. The GCIN could provide a lens which academia, science councils, and development agencies could use to focus in on themes of common interest, and working platforms to integrate novel research approaches on crop adaptation and rural development.


Assuntos
Produtos Agrícolas , Abastecimento de Alimentos , Internacionalidade , Medidas de Segurança
10.
J Integr Plant Biol ; 54(4): 238-49, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22443263

RESUMO

The ability to quickly develop germplasm having tolerance to several complex polygenic inherited abiotic and biotic stresses combined is critical to the resilience of cropping systems in the face of climate change. Molecular breeding offers the tools to accelerate cereal breeding; however, suitable phenotyping protocols are essential to ensure that the much-anticipated benefits of molecular breeding can be realized. To facilitate the full potential of molecular tools, greater emphasis needs to be given to reducing the within-experimental site variability, application of stress and characterization of the environment and appropriate phenotyping tools. Yield is a function of many processes throughout the plant cycle, and thus integrative traits that encompass crop performance over time or organization level (i.e. canopy level) will provide a better alternative to instantaneous measurements which provide only a snapshot of a given plant process. Many new phenotyping tools based on remote sensing are now available including non-destructive measurements of growth-related parameters based on spectral reflectance and infrared thermometry to estimate plant water status. Here we describe key field phenotyping protocols for maize with emphasis on tolerance to drought and low nitrogen.


Assuntos
Secas , Nitrogênio/metabolismo , Fenótipo , Estresse Fisiológico , Zea mays/fisiologia , Adaptação Fisiológica , Solo
11.
Front Nutr ; 9: 1077443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36778970

RESUMO

Introduction: The combined populations of China and India were 2.78 billion in 2020, representing 36% of the world population (7.75 billion). Wheat is the second most important staple grain in both China and India. In 2019, the aggregate wheat consumption in China was 96.4 million ton and in India it was 82.5 million ton, together it was more than 35% of the world's wheat that year. In China, in 2050, the projected population will be 1294-1515 million, and in India, it is projected to be 14.89-1793 million, under the low and high-fertility rate assumptions. A question arises as to, what will be aggregate demand for wheat in China and India in 2030 and 2050? Methods: Applying the Vector Error Correction model estimation process in the time series econometric estimation setting, this study projected the per capita and annual aggregate wheat consumptions of China and India during 2019-2050. In the process, this study relies on agricultural data sourced from the Food and Agriculture Organization of the United States (FAO) database (FAOSTAT), as well as the World Bank's World Development Indicators (WDI) data catalog. The presence of unit root in the data series are tested by applying the augmented Dickey-Fuller test; Philips-Perron unit root test; Kwiatkowski-Phillips-Schmidt-Shin test, and Zivot-Andrews Unit Root test allowing for a single break in intercept and/or trend. The test statistics suggest that a natural log transformation and with the first difference of the variables provides stationarity of the data series for both China and India. The Zivot-Andrews Unit Root test, however, suggested that there is a structural break in urban population share and GDP per capita. To tackle the issue, we have included a year dummy and two multiplicative dummies in our model. Furthermore, the Johansen cointegration test suggests that at least one variable in both data series were cointegrated. These tests enable us to apply Vector Error Correction (VEC) model estimation procedure. In estimation the model, the appropriate number of lags of the variables is confirmed by applying the "varsoc" command in Stata 17 software interface. The estimated yearly per capita wheat consumption in 2030 and 2050 from the VEC model, are multiplied by the projected population in 2030 and 2050 to calculate the projected aggregate wheat demand in China and India in 2030 and 2050. After projecting the yearly per capita wheat consumption (KG), we multiply with the projected population to get the expected consumption demand. Results: This study found that the yearly per capita wheat consumption of China will increase from 65.8 kg in 2019 to 76 kg in 2030, and 95 kg in 2050. In India, the yearly per capita wheat consumption will increase to 74 kg in 2030 and 94 kg in 2050 from 60.4 kg in 2019. Considering the projected population growth rates under low-fertility assumptions, aggregate wheat consumption of China will increase by more than 13% in 2030 and by 28% in 2050. Under the high-fertility rate assumption, however the aggregate wheat consumption of China will increase by 18% in 2030 and nearly 50% in 2050. In the case of India, under both low and high-fertility rate assumptions, aggregate wheat demand in India will increase by 32-38% in 2030 and by 70-104% in 2050 compared to 2019 level of consumption. Discussions: Our results underline the importance of wheat in both countries, which are the world's top wheat producers and consumers, and suggest the importance of research and development investments to maintain sufficient national wheat grain production levels to meet China and India's domestic demand. This is critical both to ensure the food security of this large segment of the world populace, which also includes 23% of the total population of the world who live on less than US $1.90/day, as well as to avoid potential grain market destabilization and price hikes that arise in the event of large import demands.

12.
Nat Plants ; 7(9): 1207-1212, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34462575

RESUMO

The International Maize and Wheat Improvement Center develops and annually distributes elite wheat lines to public and private breeders worldwide. Trials have been created in multiple sites over many years to assess the lines' performance for use in breeding and release as varieties, and to provide iterative feedback on refining breeding strategies1. The collaborator test sites are experiencing climate change, with new implications for how wheat genotypes are bred and selected2. Using a standard quantitative genetic model to analyse four International Maize and Wheat Improvement Center global spring wheat trial datasets, we examine how genotype-environment interactions have changed over recent decades. Notably, crossover interactions-a critical indicator of changes in the ranking of cultivar performance in different environments-have increased over time. Climatic factors explained over 70% of the year-to-year variability in crossover interactions for yield. Yield responses of all lines in trial environments from 1980 to 2018 revealed that climate change has increased the ranking change in breeding targeted to favourable environments by ~15%, while it has maintained or reduced the ranking change in breeding targeted to heat and drought stress by up to 13%. Genetic improvement has generally increased crossover interactions, particularly for wheat targeted to high-yielding environments. However, the latest wheat germplasm developed under heat stress was better adapted and more stable, partly offsetting the increase in ranking changes under the warmer climate.


Assuntos
Adaptação Fisiológica/genética , Mudança Climática , Grão Comestível/genética , Interação Gene-Ambiente , Temperatura Alta , Melhoramento Vegetal/métodos , Triticum/genética , Variação Genética , Genótipo , Fenótipo
13.
Front Plant Sci ; 12: 710707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367228

RESUMO

Wheat blast (WB) caused by Magnaporthe oryzae pathotype Triticum (MoT) is an important fungal disease in tropical and subtropical wheat production regions. The disease was initially identified in Brazil in 1985, and it subsequently spread to some major wheat-producing areas of the country as well as several South American countries such as Bolivia, Paraguay, and Argentina. In recent years, WB has been introduced to Bangladesh and Zambia via international wheat trade, threatening wheat production in South Asia and Southern Africa with the possible further spreading in these two continents. Resistance source is mostly limited to 2NS carriers, which are being eroded by newly emerged MoT isolates, demonstrating an urgent need for identification and utilization of non-2NS resistance sources. Fungicides are also being heavily relied on to manage WB that resulted in increasing fungal resistance, which should be addressed by utilization of new fungicides or rotating different fungicides. Additionally, quarantine measures, cultural practices, non-fungicidal chemical treatment, disease forecasting, biocontrol etc., are also effective components of integrated WB management, which could be used in combination with varietal resistance and fungicides to obtain reasonable management of this disease.

14.
Front Plant Sci ; 12: 691211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630452

RESUMO

Current climate change models predict an increased frequency and intensity of drought for much of the developing world within the next 30 years. These events will negatively affect maize yields, potentially leading to economic and social instability in many smallholder farming communities. Knowledge about the genetic resources available for traits related to drought tolerance has great importance in developing breeding program strategies. The aim of this research was to study a maize landrace introgression panel to identify chromosomal regions associated with a drought tolerance index. For that, we performed Genome-Wide Association Study (GWAS) on 1326 landrace progenies developed by the CIMMYT Genetic Resources Program, originating from 20 landraces populations collected in arid regions. Phenotypic data were obtained from early testcross trials conducted in three sites and two contrasting irrigation environments, full irrigation (well-watered) and reduced irrigation (drought). The populations were genotyped using the DArTSeq® platform, and a final set of 5,695 SNPs markers was used. The genotypic values were estimated using spatial adjustment in a two-stage analysis. First, we performed the individual analysis for each site/irrigation treatment combination. The best linear unbiased estimates (BLUEs) were used to calculate the Harmonic Mean of Relative Performance (HMRP) as a drought tolerance index for each testcross. The second stage was a joint analysis, which was performed using the HMRP to obtain the best linear unbiased predictions (BLUPs) of the index for each genotype. Then, GWAS was performed to determine the marker-index associations and the marker-Grain Yield (GY) associations for the two irrigation treatments. We detected two significant markers associated with the drought-tolerance index, four associated with GY in drought condition, and other four associated with GY in irrigated conditions each. Although each of these markers explained less than 0.1% of the phenotypic variation for the index and GY, we found two genes likely related to the plant response to drought stress. For these markers, alleles from landraces provide a slightly higher yield under drought conditions. Our results indicate that the positive diversity delivered by landraces are still present on the backcrosses and this is a potential breeding strategy for improving maize for drought tolerance and for trait introgression bringing new superior allelic diversity from landraces to breeding populations.

15.
Plant Genome ; 14(3): e20096, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34275212

RESUMO

Characterization of genomic regions underlying adaptation of landraces can reveal a quantitative genetics framework for local wheat (Triticum aestivum L.) adaptability. A collection of 512 wheat landraces from the eastern edge of the Fertile Crescent in Iran and Pakistan were genotyped using genome-wide single nucleotide polymorphism markers generated by genotyping-by-sequencing. The minor allele frequency (MAF) and the heterozygosity (H) of Pakistani wheat landraces (MAF = 0.19, H = 0.008) were slightly higher than the Iranian wheat landraces (MAF = 0.17, H = 0.005), indicating that Pakistani landraces were slightly more genetically diverse. Population structure analysis clearly separated the Pakistani landraces from Iranian landraces, which indicates two separate adaptability trajectories. The large-scale agro-climatic data of seven variables were quite dissimilar between Iran and Pakistan as revealed by the correlation coefficients. Genome-wide association study identified 91 and 58 loci using agroclimatic data, which likely underpin local adaptability of the wheat landraces from Iran and Pakistan, respectively. Selective sweep analysis identified significant hits on chromosomes 4A, 4B, 6B, 7B, 2D, and 6D, which were colocalized with the loci associated with local adaptability and with some known genes related to flowering time and grain size. This study provides insight into the genetic diversity with emphasis on the genetic architecture of loci involved in adaptation to local environments, which has breeding implications.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Irã (Geográfico) , Desequilíbrio de Ligação , Paquistão , Melhoramento Vegetal , Triticum/genética
16.
PLoS One ; 14(2): e0211410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30785905

RESUMO

The emergence of wheat-blast in Bangladesh in the 2015-16 wheat (Triticum aestivum L.) crop threatens the food security of South Asia. A potential spread of the disease from Bangladesh to India could have devastating impacts on India's overall food security as wheat is its second most important staple food crop. West Bengal state in eastern India shares a 2,217 km-long border with Bangladesh and has a similar agro-ecology, enhancing the prospects of the disease entering India via West Bengal. The present study explores the possibility of a 'wheat holiday' policy in the nine border districts of West Bengal. Under the policy, farmers in these districts would stop wheat cultivation for at least two years. The present scoping study assesses the potential economic feasibility of alternative crops to wheat. Of the ten crops considered, maize, gram (chickpea), urad (black gram), rapeseed and mustard, and potatoes are found to be potentially feasible alternative crops. Any crop substitution would need support to ease the transition including addressing the challenges related to the management of alternative crops, ensuring adequate crop combinations and value chain development. Still, as wheat is a major staple, there is some urgency to support further research on disease epidemiology and forecasting, as well as the development and dissemination of blast-resistant wheat varieties across South Asia.


Assuntos
Produtos Agrícolas , Doenças das Plantas/prevenção & controle , Triticum/microbiologia , Agricultura/economia , Agricultura/legislação & jurisprudência , Agricultura/métodos , Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Fazendas/economia , Fazendas/legislação & jurisprudência , Abastecimento de Alimentos/economia , Abastecimento de Alimentos/legislação & jurisprudência , Índia , Magnaporthe/patogenicidade , Doenças das Plantas/economia , Doenças das Plantas/microbiologia , Política Pública , Triticum/crescimento & desenvolvimento
17.
PLoS One ; 13(10): e0204932, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30332438

RESUMO

Wheat yield dynamic in Canada, USA, Russia and Kazakhstan from 1981 till 2015 was related to air temperature and precipitation during wheat season to evaluate the effects of climate change. The study used yield data from the provinces, states and regions and average yield from 19 spring wheat breeding/research sites. Both at production and research sites grain yield in Eurasia was two times lower compared to North America. The yearly variations in grain yield in North America and Eurasia did not correlate suggesting that higher yield in one region was normally associated with lower yield in another region. Minimum and maximum air temperature during the wheat growing season (April-August) had tendency to increase. While precipitation in April-August increased in North American sites from 289 mm in 1981-1990 to 338 mm in 2006-2015 it remained constant and low at Eurasian sites (230 and 238 mm, respectively). High temperature in June and July negatively affected grain yield in most of the sites at both continents. Climatic changes resulted in substantial changes in the dates of planting and harvesting normally leading to extension of growing season. Longer planting-harvesting period was positively associated with the grain yield for most of the locations. The climatic changes since 1981 and spring wheat responses suggest several implications for breeding. Gradual warming extends the wheat growing season and new varieties need to match this to utilize their potential. Higher rainfall during the wheat season, especially in North America, will require varieties with higher yield potential responding to moisture availability. June is a critical month for spring wheat in both regions due to the significant negative correlation of grain yield with maximum temperature and positive correlation with precipitation. Breeding for adaptation to higher temperatures during this period is an important strategy to increase yield.


Assuntos
Mudança Climática , Triticum/crescimento & desenvolvimento , Canadá , Produção Agrícola , Cazaquistão , América do Norte , Chuva , Federação Russa , Estações do Ano , Temperatura
18.
PLoS One ; 13(5): e0197555, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29782528

RESUMO

New biotic stresses have emerged around the globe over the last decades threatening food safety and security. In 2016, scientists confirmed the presence of the devastating wheat-blast disease in Bangladesh, South Asia-its first occurrence outside South America. Severely blast-affected wheat fields had their grain yield wiped out. This poses a severe threat to food security in a densely-populated region with millions of poor inhabitants where wheat is a major staple crop and per capita wheat consumption has been increasing. As an ex ante impact assessment, this study examined potential wheat-blast scenarios in Bangladesh, India, and Pakistan. Based on the agro-climatic conditions in the epicenter, where the disease was first identified in Bangladesh in 2016, this study identified the correspondingly vulnerable areas in India, Pakistan and Bangladesh amounting to 7 million ha. Assuming a conservative scenario of 5-10% for blast-induced wheat production loss, this study estimated the annual potential wheat loss across the sampled countries to be 0.89-1.77 million tons, equivalent to USD 132-264 million. Such losses further threaten an already-precarious national food security, putting pressure on wheat imports and wheat prices. The study is a call for action to tackle the real wheat-blast threat in South Asia.


Assuntos
Abastecimento de Alimentos , Triticum/microbiologia , Bangladesh , Mudança Climática , Grão Comestível/microbiologia , Humanos , Índia , Magnaporthe/patogenicidade , Paquistão , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
19.
Sci Rep ; 8(1): 12527, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30131572

RESUMO

The value of exotic wheat genetic resources for accelerating grain yield gains is largely unproven and unrealized. We used next-generation sequencing, together with multi-environment phenotyping, to study the contribution of exotic genomes to 984 three-way-cross-derived (exotic/elite1//elite2) pre-breeding lines (PBLs). Genomic characterization of these lines with haplotype map-based and SNP marker approaches revealed exotic specific imprints of 16.1 to 25.1%, which compares to theoretical expectation of 25%. A rare and favorable haplotype (GT) with 0.4% frequency in gene bank identified on chromosome 6D minimized grain yield (GY) loss under heat stress without GY penalty under irrigated conditions. More specifically, the 'T' allele of the haplotype GT originated in Aegilops tauschii and was absent in all elite lines used in study. In silico analysis of the SNP showed hits with a candidate gene coding for isoflavone reductase IRL-like protein in Ae. tauschii. Rare haplotypes were also identified on chromosomes 1A, 6A and 2B effective against abiotic/biotic stresses. Results demonstrate positive contributions of exotic germplasm to PBLs derived from crosses of exotics with CIMMYT's best elite lines. This is a major impact-oriented pre-breeding effort at CIMMYT, resulting in large-scale development of PBLs for deployment in breeding programs addressing food security under climate change scenarios.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Grão Comestível/genética , Abastecimento de Alimentos , Frequência do Gene , Haplótipos , Temperatura Alta , Melhoramento Vegetal , Banco de Sementes , Análise de Sequência de DNA , Estresse Fisiológico , Triticum/classificação , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa