Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Nature ; 589(7843): 586-590, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299183

RESUMO

Legumes, unlike other plants, have the ability to establish symbiosis with nitrogen-fixing rhizobia. It has been theorized that a unique property of legume root cortical cells enabled the initial establishment of rhizobial symbiosis1-3. Here we show that a SHORTROOT-SCARECROW (SHR-SCR) stem cell program in cortical cells of the legume Medicago truncatula specifies their distinct fate. Regulatory elements drive the cortical expression of SCR, and stele-expressed SHR protein accumulates in cortical cells of M. truncatula but not Arabidopsis thaliana. The cortical SHR-SCR network is conserved across legume species, responds to rhizobial signals, and initiates legume-specific cortical cell division for de novo nodule organogenesis and accommodation of rhizobia. Ectopic activation of SHR and SCR in legumes is sufficient to induce root cortical cell division. Our work suggests that acquisition of the cortical SHR-SCR module enabled cell division coupled to rhizobial infection in legumes. We propose that this event was central to the evolution of rhizobial endosymbiosis.


Assuntos
Diferenciação Celular , Linhagem da Célula , Medicago truncatula/citologia , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Nodulação , Arabidopsis/citologia , Arabidopsis/metabolismo , Divisão Celular , Citocininas/metabolismo , Evolução Molecular , Medicago truncatula/embriologia , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Rhizobium/metabolismo , Transdução de Sinais , Simbiose/genética
2.
Plant Cell ; 35(9): 3585-3603, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279565

RESUMO

Ubiquitination modulates protein turnover or activity depending on the number and location of attached ubiquitin (Ub) moieties. Proteins marked by a lysine 48 (K48)-linked polyubiquitin chain are usually targeted to the 26S proteasome for degradation; however, other polyubiquitin chains, such as those attached to K63, usually regulate other protein properties. Here, we show that 2 PLANT U-BOX E3 ligases, PUB25 and PUB26, facilitate both K48- and K63-linked ubiquitination of the transcriptional regulator INDUCER OF C-REPEAT BINDING FACTOR (CBF) EXPRESSION1 (ICE1) during different periods of cold stress in Arabidopsis (Arabidopsis thaliana), thus dynamically modulating ICE1 stability. Moreover, PUB25 and PUB26 attach both K48- and K63-linked Ub chains to MYB15 in response to cold stress. However, the ubiquitination patterns of ICE1 and MYB15 mediated by PUB25 and PUB26 differ, thus modulating their protein stability and abundance during different stages of cold stress. Furthermore, ICE1 interacts with and inhibits the DNA-binding activity of MYB15, resulting in an upregulation of CBF expression. This study unravels a mechanism by which PUB25 and PUB26 add different polyubiquitin chains to ICE1 and MYB15 to modulate their stability, thereby regulating the timing and degree of cold stress responses in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Resposta ao Choque Frio , Poliubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação , Ubiquitina/metabolismo
3.
Plant J ; 119(1): 237-251, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38597817

RESUMO

Plasma membrane (PM)-associated abscisic acid (ABA) signal transduction is an important component of ABA signaling. The C2-domain ABA-related (CAR) proteins have been reported to play a crucial role in recruiting ABA receptor PYR1/PYL/RCAR (PYLs) to the PM. However, the molecular details of the involvement of CAR proteins in membrane-delimited ABA signal transduction remain unclear. For instance, where this response process takes place and whether any additional members besides PYL are taking part in this signaling process. Here, the GUS-tagged materials for all Arabidopsis CAR members were used to comprehensively visualize the extensive expression patterns of the CAR family genes. Based on the representativeness of CAR1 in response to ABA, we determined to use it as a target to study the function of CAR proteins in PM-associated ABA signaling. Single-particle tracking showed that ABA affected the spatiotemporal dynamics of CAR1. The presence of ABA prolonged the dwell time of CAR1 on the membrane and showed faster lateral mobility. Surprisingly, we verified that CAR1 could directly recruit hypersensitive to ABA1 (HAB1) and SNF1-related protein kinase 2.2 (SnRK2.2) to the PM at both the bulk and single-molecule levels. Furthermore, PM localization of CAR1 was demonstrated to be related to membrane microdomains. Collectively, our study revealed that CARs recruited the three main components of ABA signaling to the PM to respond positively to ABA. This study deepens our understanding of ABA signal transduction.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
4.
Plant J ; 118(1): 7-23, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38261530

RESUMO

The cytosol-facing outer membrane (OM) of organelles communicates with other cellular compartments to exchange proteins, metabolites, and signaling molecules. Cellular surveillance systems also target OM-resident proteins to control organellar homeostasis and ensure cell survival under stress. However, the OM proximity proteomes have never been mapped in plant cells since using traditional approaches to discover OM proteins and identify their dynamically interacting partners remains challenging. In this study, we developed an OM proximity labeling (OMPL) system using biotin ligase-mediated proximity biotinylation to identify the proximity proteins of the OMs of mitochondria, chloroplasts, and peroxisomes in living Arabidopsis (Arabidopsis thaliana) cells. Using this approach, we mapped the OM proximity proteome of these three organelles under normal conditions and examined the effects of the ultraviolet-B (UV-B) or high light (HL) stress on the abundances of OM proximity proteins. We demonstrate the power of this system with the discovery of cytosolic factors and OM receptor candidates potentially involved in local protein translation and translocation. The candidate proteins that are involved in mitochondrion-peroxisome, mitochondrion-chloroplast, or peroxisome-chloroplast contacts, and in the organellar quality control system are also proposed based on OMPL analysis. OMPL-generated OM proximity proteomes are valuable sources of candidates for functional validation and suggest directions for further investigation of important questions in cell biology.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Proteoma/metabolismo , Citosol/metabolismo , Biotinilação , Peroxissomos/metabolismo , Proteínas de Membrana/metabolismo
5.
EMBO J ; 40(2): e104559, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33372703

RESUMO

The transient elevation of cytosolic free calcium concentration ([Ca2+ ]cyt ) induced by cold stress is a well-established phenomenon; however, the underlying mechanism remains elusive. Here, we report that the Ca2+ -permeable transporter ANNEXIN1 (AtANN1) mediates cold-triggered Ca2+ influx and freezing tolerance in Arabidopsis thaliana. The loss of function of AtANN1 substantially impaired freezing tolerance, reducing the cold-induced [Ca2+ ]cyt increase and upregulation of the cold-responsive CBF and COR genes. Further analysis showed that the OST1/SnRK2.6 kinase interacted with and phosphorylated AtANN1, which consequently enhanced its Ca2+ transport activity, thereby potentiating Ca2+ signaling. Consistent with these results and freezing sensitivity of ost1 mutants, the cold-induced [Ca2+ ]cyt elevation in the ost1-3 mutant was reduced. Genetic analysis indicated that AtANN1 acts downstream of OST1 in responses to cold stress. Our data thus uncover a cascade linking OST1-AtANN1 to cold-induced Ca2+ signal generation, which activates the cold response and consequently enhances freezing tolerance in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Resposta ao Choque Frio/fisiologia , Membrana Celular/metabolismo , Temperatura Baixa , Congelamento , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo
6.
Plant Physiol ; 194(2): 684-697, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37850874

RESUMO

The molecular mechanisms controlling organ size during plant development ultimately influence crop yield. However, a deep understanding of these mechanisms is still lacking. UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, is an essential factor determining organ size in Arabidopsis (Arabidopsis thaliana). Here, we identified two suppressors of the da3-1 mutant phenotype, namely SUPPRESSOR OF da3-1 1 and 2 (SUD1 and SUD2), which encode the E3 ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B, respectively. The mac3a-1 and mac3b-1 mutations partially suppressed the high ploidy level and organ size phenotypes observed in the da3-1 mutant. Biochemical analysis showed that MAC3A and MAC3B physically interacted with and ubiquitinated UBP14/DA3 to modulate its stability. We previously reported that UBP14/DA3 acts upstream of the B-type cyclin-dependent kinase CDKB1;1 and maintains its stability to inhibit endoreduplication and cell growth. In this work, MAC3A and MAC3B were found to promote the degradation of CDKB1;1 by ubiquitinating UBP14/DA3. Genetic analysis suggests that MAC3A and MAC3B act in a common pathway with UBP14/DA3 to control endoreduplication and organ size. Thus, our findings define a regulatory module, MAC3A/MAC3B-UBP14-CDKB1;1, that plays a critical role in determining organ size and endoreduplication in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ligases/metabolismo , Tamanho do Órgão , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Plant Physiol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38850036

RESUMO

Water transportation to developing tissues relies on the structure and function of plant xylem cells. Plant microtubules govern the direction of cellulose microfibrils and guide secondary cell wall formation and morphogenesis. However, the relevance of microtubule-determined xylem wall thickening patterns in plant hydraulic conductivity remains unclear. In the present study, we identified a maize (Zea mays) semi-dominant mutant, designated drought-overly-sensitive1 (ZmDos1), the upper leaves of which wilted even when exposed to well-watered conditions during growth; the wilting phenotype was aggravated by increased temperatures and decreased humidity. Protoxylem vessels in the stem and leaves of the mutant showed altered thickening patterns of the secondary cell wall (from annular to spiral), decreased inner diameters, and limited water transport efficiency. The causal mutation for this phenotype was found to be a G-to-A mutation in the maize gene α-tubulin4, resulting in a single amino acid substitution at position 196 (E196K). Ectopic expression of the mutant α-tubulin4 in Arabidopsis (Arabidopsis thaliana) changed the orientation of microtubule arrays, suggesting a determinant role of this gene in microtubule assembly and secondary cell wall thickening. Our findings suggest that the spiral wall thickenings triggered by the α-tubulin mutation are stretched during organ elongation, causing a smaller inner diameter of the protoxylem vessels and affecting water transport in maize. This study underscores the importance of tubulin-mediated protoxylem wall thickening in regulating plant hydraulics, improves our understanding of the relationships between protoxylem structural features and functions, and offers candidate genes for the genetic enhancement of maize.

8.
Plant Cell ; 34(1): 477-494, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34850207

RESUMO

Stomatal movement is critical for plant responses to environmental changes and is regulated by the important signaling molecule phosphatidylinositol 3-phosphate (PI3P). However, the molecular mechanism underlying this process is not well understood. In this study, we show that PI3P binds to stomatal closure-related actin-binding protein1 (SCAB1), a plant-specific F-actin-binding and -bundling protein, and inhibits the oligomerization of SCAB1 to regulate its activity on F-actin in guard cells during stomatal closure in Arabidopsis thaliana. SCAB1 binds specifically to PI3P, but not to other phosphoinositides. Treatment with wortmannin, an inhibitor of phosphoinositide kinase that generates PI3P, leads to an increase of the intermolecular interaction and oligomerization of SCAB1, stabilization of F-actin, and retardation of F-actin reorganization during abscisic acid (ABA)-induced stomatal closure. When the binding activity of SCAB1 to PI3P is abolished, the mutated proteins do not rescue the stability and realignment of F-actin regulated by SCAB1 and the stomatal closure in the scab1 mutant. The expression of PI3P biosynthesis genes is consistently induced when the plants are exposed to drought and ABA treatments. Furthermore, the binding of PI3P to SCAB1 is also required for vacuolar remodeling during stomatal closure. Our results illustrate a PI3P-regulated pathway during ABA-induced stomatal closure, which involves the mediation of SCAB1 activity in F-actin reorganization.


Assuntos
Actinas/química , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas dos Microfilamentos/genética , Fosfatos de Fosfatidilinositol/metabolismo , Estômatos de Plantas/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas dos Microfilamentos/metabolismo
9.
Plant Cell ; 34(7): 2708-2729, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35404404

RESUMO

Stomatal opening is largely promoted by light-activated plasma membrane-localized proton ATPases (PM H+-ATPases), while their closure is mainly modulated by abscisic acid (ABA) signaling during drought stress. It is unknown whether PM H+-ATPases participate in ABA-induced stomatal closure. We established that BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) interacts with, phosphorylates and activates the major PM Arabidopsis H+-ATPase isoform 2 (AHA2). Detached leaves from aha2-6 single mutant Arabidopsis thaliana plants lost as much water as bak1-4 single and aha2-6 bak1-4 double mutants, with all three mutants losing more water than the wild-type (Columbia-0 [Col-0]). In agreement with these observations, aha2-6, bak1-4, and aha2-6 bak1-4 mutants were less sensitive to ABA-induced stomatal closure than Col-0, whereas the aha2-6 mutation did not affect ABA-inhibited stomatal opening under light conditions. ABA-activated BAK1 phosphorylated AHA2 at Ser-944 in its C-terminus and activated AHA2, leading to rapid H+ efflux, cytoplasmic alkalinization, and reactive oxygen species (ROS) accumulation, to initiate ABA signal transduction and stomatal closure. The phosphorylation-mimicking mutation AHA2S944D driven by its own promoter could largely compensate for the defective phenotypes of water loss, cytoplasmic alkalinization, and ROS accumulation in both aha2-6 and bak1-4 mutants. Our results uncover a crucial role of AHA2 in cytoplasmic alkalinization and ABA-induced stomatal closure during the plant's response to drought stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Mutação/genética , Fosforilação , Estômatos de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Água/metabolismo
10.
Plant Cell ; 34(4): 1308-1325, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34999895

RESUMO

Endoreduplication, a process in which DNA replication occurs in the absence of mitosis, is found in all eukaryotic kingdoms, especially plants, where it is assumed to be important for cell growth and cell fate maintenance. However, a comprehensive understanding of the mechanism regulating endoreduplication is still lacking. We previously reported that UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, acts upstream of CYCLIN-DEPENDENT KINASE B1;1 (CDKB1;1) to influence endoreduplication and cell growth in Arabidopsis thaliana. The da3-1 mutant possesses large cotyledons with enlarged cells due to high ploidy levels. Here, we identified a suppressor of da3-1 (SUPPRESSOR OF da3-1 6; SUD6), encoding CYCLIN-DEPENDENT KINASE G2 (CDKG2), which promotes endoreduplication and cell growth. CDKG2/SUD6 physically associates with CDKB1;1 in vivo and in vitro. CDKB1;1 directly phosphorylates SUD6 and modulates its stability. Genetic analysis indicated that SUD6 acts downstream of DA3 and CDKB1;1 to control ploidy level and cell growth. Thus, our study establishes a regulatory cascade for UBP14/DA3-CDKB1;1-CDKG2/SUD6-mediated control of endoreduplication and cell growth in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Endorreduplicação/genética , Ubiquitina/genética
11.
Plant Cell ; 34(6): 2286-2308, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35263433

RESUMO

CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), a well-characterized E3 ubiquitin ligase, is a central repressor of seedling photomorphogenic development in darkness. However, whether COP1 is involved in modulating abscisic acid (ABA) signaling in darkness remains largely obscure. Here, we report that COP1 is a positive regulator of ABA signaling during Arabidopsis seedling growth in the dark. COP1 mediates ABA-induced accumulation of ABI5, a transcription factor playing a key role in ABA signaling, through transcriptional and post-translational regulatory mechanisms. We further show that COP1 physically interacts with ABA-hypersensitive DCAF1 (ABD1), a substrate receptor of the CUL4-DDB1 E3 ligase targeting ABI5 for degradation. Accordingly, COP1 directly ubiquitinates ABD1 in vitro, and negatively regulates ABD1 protein abundance in vivo in the dark but not in the light. Therefore, COP1 promotes ABI5 protein stability post-translationally in darkness by destabilizing ABD1 in response to ABA. Interestingly, we reveal that ABA induces the nuclear accumulation of COP1 in darkness, thus enhancing its activity in propagating the ABA signal. Together, our study uncovers that COP1 modulates ABA signaling during seedling growth in darkness by mediating ABA-induced ABI5 accumulation, demonstrating that plants adjust their ABA signaling mechanisms according to their light environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas , Plântula/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
Plant Cell ; 34(5): 1890-1911, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35166333

RESUMO

The unique morphology of grass stomata enables rapid responses to environmental changes. Deciphering the basis for these responses is critical for improving food security. We have developed a planta platform of single-nucleus RNA-sequencing by combined fluorescence-activated nuclei flow sorting, and used it to identify cell types in mature and developing stomata from 33,098 nuclei of the maize epidermis-enriched tissues. Guard cells (GCs) and subsidiary cells (SCs) displayed differential expression of genes, besides those encoding transporters, involved in the abscisic acid, CO2, Ca2+, starch metabolism, and blue light signaling pathways, implicating coordinated signal integration in speedy stomatal responses, and of genes affecting cell wall plasticity, implying a more sophisticated relationship between GCs and SCs in stomatal development and dumbbell-shaped guard cell formation. The trajectory of stomatal development identified in young tissues, and by comparison to the bulk RNA-seq data of the MUTE defective mutant in stomatal development, confirmed known features, and shed light on key participants in stomatal development. Our study provides a valuable, comprehensive, and fundamental foundation for further insights into grass stomatal function.


Assuntos
Estômatos de Plantas , Zea mays , Humanos , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Poaceae/genética , Transcriptoma/genética , Zea mays/genética
13.
EMBO J ; 39(2): e102602, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31802519

RESUMO

Plants establish mutualistic associations with beneficial microbes while deploying the immune system to defend against pathogenic ones. Little is known about the interplay between mutualism and immunity and the mediator molecules enabling such crosstalk. Here, we show that plants respond differentially to a volatile bacterial compound through integral modulation of the immune system and the phosphate-starvation response (PSR) system, resulting in either mutualism or immunity. We found that exposure of Arabidopsis thaliana to a known plant growth-promoting rhizobacterium can unexpectedly have either beneficial or deleterious effects to plants. The beneficial-to-deleterious transition is dependent on availability of phosphate to the plants and is mediated by diacetyl, a bacterial volatile compound. Under phosphate-sufficient conditions, diacetyl partially suppresses plant production of reactive oxygen species (ROS) and enhances symbiont colonization without compromising disease resistance. Under phosphate-deficient conditions, diacetyl enhances phytohormone-mediated immunity and consequently causes plant hyper-sensitivity to phosphate deficiency. Therefore, diacetyl affects the type of relation between plant hosts and certain rhizobacteria in a way that depends on the plant's phosphate-starvation response system and phytohormone-mediated immunity.


Assuntos
Arabidopsis/imunologia , Diacetil/farmacologia , Fosfatos/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Raízes de Plantas/imunologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Bactérias/imunologia , Bactérias/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Rizosfera , Simbiose , Compostos Orgânicos Voláteis/farmacologia
14.
New Phytol ; 241(1): 314-328, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37865884

RESUMO

Gossypol and the related terpenoids are stored in the pigment gland to protect cotton plants from biotic stresses, but little is known about the synthetic sites of these metabolites. Here, we showed that GoPGF, a key gene regulating gland formation, was expressed in gland cells and roots. The chromatin immunoprecipitation sequencing (ChIP-seq) analysis demonstrated that GoPGF targets GhJUB1 to regulate gland morphogenesis. RNA-sequencing (RNA-seq) showed high accumulation of gossypol biosynthetic genes in gland cells. Moreover, integrated analysis of the ChIP-seq and RNA-seq data revealed that GoPGF binds to the promoter of several gossypol biosynthetic genes. The cotton callus overexpressing GoPGF had dramatically increased the gossypol levels, indicating that GoPGF can directly activate the biosynthesis of gossypol. In addition, the gopgf mutant analysis revealed the existence of both GoPGF-dependent and -independent regulation of gossypol production in cotton roots. Our study revealed that the pigment glands are synthetic sites of gossypol in aerial parts of cotton and that GoPGF plays a dual role in regulating gland morphogenesis and gossypol biosynthesis. The study provides new insights for exploring the complex relationship between glands and the metabolites they store in cotton and other plant species.


Assuntos
Gossipol , Gossipol/metabolismo , Gossypium/genética , Gossypium/metabolismo , Terpenos , Componentes Aéreos da Planta
15.
New Phytol ; 243(5): 1758-1775, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992951

RESUMO

Drought, especially terminal drought, severely limits wheat growth and yield. Understanding the complex mechanisms behind the drought response in wheat is essential for developing drought-resistant varieties. This study aimed to dissect the genetic architecture and high-yielding wheat ideotypes under terminal drought. An automated high-throughput phenotyping platform was used to examine 28 392 image-based digital traits (i-traits) under different drought conditions during the flowering stage of a natural wheat population. Of the i-traits examined, 17 073 were identified as drought-related. A genome-wide association study (GWAS) identified 5320 drought-related significant single-nucleotide polymorphisms (SNPs) and 27 SNP clusters. A notable hotspot region controlling wheat drought tolerance was discovered, in which TaPP2C6 was shown to be an important negative regulator of the drought response. The tapp2c6 knockout lines exhibited enhanced drought resistance without a yield penalty. A haplotype analysis revealed a favored allele of TaPP2C6 that was significantly correlated with drought resistance, affirming its potential value in wheat breeding programs. We developed an advanced prediction model for wheat yield and drought resistance using 24 i-traits analyzed by machine learning. In summary, this study provides comprehensive insights into the high-yielding ideotype and an approach for the rapid breeding of drought-resistant wheat.


Assuntos
Secas , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum , Triticum/genética , Triticum/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Haplótipos/genética , Característica Quantitativa Herdável , Adaptação Fisiológica/genética , Resistência à Seca
16.
Plant Cell Rep ; 43(5): 126, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652181

RESUMO

KEY MESSAGE: Innovatively, we consider stomatal detection as rotated object detection and provide an end-to-end, batch, rotated, real-time stomatal density and aperture size intelligent detection and identification system, RotatedeStomataNet. Stomata acts as a pathway for air and water vapor in the course of respiration, transpiration, and other gas metabolism, so the stomata phenotype is important for plant growth and development. Intelligent detection of high-throughput stoma is a key issue. Nevertheless, currently available methods usually suffer from detection errors or cumbersome operations when facing densely and unevenly arranged stomata. The proposed RotatedStomataNet innovatively regards stomata detection as rotated object detection, enabling an end-to-end, real-time, and intelligent phenotype analysis of stomata and apertures. The system is constructed based on the Arabidopsis and maize stomatal data sets acquired destructively, and the maize stomatal data set acquired in a non-destructive way, enabling the one-stop automatic collection of phenotypic, such as the location, density, length, and width of stomata and apertures without step-by-step operations. The accuracy of this system to acquire stomata and apertures has been well demonstrated in monocotyledon and dicotyledon, such as Arabidopsis, soybean, wheat, and maize. The experimental results that the prediction results of the method are consistent with those of manual labeling. The test sets, the system code, and their usage are also given ( https://github.com/AITAhenu/RotatedStomataNet ).


Assuntos
Arabidopsis , Fenótipo , Estômatos de Plantas , Zea mays , Estômatos de Plantas/fisiologia , Zea mays/genética , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/fisiologia
17.
J Integr Plant Biol ; 66(3): 330-367, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38116735

RESUMO

Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.


Assuntos
Estresse Oxidativo , Plantas , Espécies Reativas de Oxigênio/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Antioxidantes/metabolismo
18.
J Integr Plant Biol ; 66(1): 143-159, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37975264

RESUMO

Plants have evolved complex physical and chemical defense systems that allow them to withstand herbivory infestation. Composed of a complex mixture of very-long-chain fatty acids (VLCFAs) and their derivatives, cuticular wax constitutes the first physical line of defense against herbivores. Here, we report the function of Glossy 8 (ZmGL8), which encodes a 3-ketoacyl reductase belonging to the fatty acid elongase complex, in orchestrating wax production and jasmonic acid (JA)-mediated defenses against herbivores in maize (Zea mays). The mutation of GL8 enhanced chemical defenses by activating the JA-dependent pathway. We observed a trade-off between wax accumulation and JA levels across maize glossy mutants and 24 globally collected maize inbred lines. In addition, we demonstrated that mutants defective in cuticular wax biosynthesis in Arabidopsis thaliana and maize exhibit enhanced chemical defenses. Comprehensive transcriptomic and lipidomic analyses indicated that the gl8 mutant confers chemical resistance to herbivores by remodeling VLCFA-related lipid metabolism and subsequent JA biosynthesis and signaling. These results suggest that VLCFA-related lipid metabolism has a critical role in regulating the trade-offs between cuticular wax and JA-mediated chemical defenses.


Assuntos
Arabidopsis , Herbivoria , Zea mays/metabolismo , Proteínas de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo
19.
EMBO J ; 38(1)2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30429206

RESUMO

OST1 (open stomata 1) protein kinase plays a central role in regulating freezing tolerance in Arabidopsis; however, the mechanism underlying cold activation of OST1 remains unknown. Here, we report that a plasma membrane-localized clade-E growth-regulating 2 (EGR2) phosphatase interacts with OST1 and inhibits OST1 activity under normal conditions. EGR2 is N-myristoylated by N-myristoyltransferase NMT1 at 22°C, which is important for its interaction with OST1. Moreover, myristoylation of EGR2 is required for its function in plant freezing tolerance. Under cold stress, the interaction of EGR2 and NMT1 is attenuated, leading to the suppression of EGR2 myristoylation in plants. Plant newly synthesized unmyristoylated EGR2 has decreased binding ability to OST1 and also interferes with the EGR2-OST1 interaction under cold stress. Consequently, the EGR2-mediated inhibition of OST1 activity is released. Consistently, mutations of EGRs cause plant tolerance to freezing, whereas overexpression of EGR2 exhibits decreased freezing tolerance. This study thus unravels a molecular mechanism underlying cold activation of OST1 by membrane-localized EGR2 and suggests that a myristoyl switch on EGR2 helps plants to adapt to cold stress.


Assuntos
Aclimatação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis , Temperatura Baixa/efeitos adversos , Proteínas Quinases/metabolismo , Proteína Fosfatase 2C/fisiologia , Aclimatação/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Ativação Enzimática/genética , Ácidos Graxos Monoinsaturados/metabolismo , Congelamento , Regulação da Expressão Gênica de Plantas , Fosforilação , Plantas Geneticamente Modificadas , Processamento de Proteína Pós-Traducional/genética , Transdução de Sinais
20.
New Phytol ; 237(6): 2104-2117, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36495066

RESUMO

Fatty acid (FA) ß-oxidation provides energy for oil seed germination but also produces massive byproduct reactive oxygen species (ROS), posing potential oxidative damage to plant cells. How plants overcome the contradiction between energy supply and ROS production during seed germination remains unclear. In this study, we identified an Arabidopsis mvs1 (methylviologen-sensitive) mutant that was hypersensitive to ROS and caused by a missense mutation (G1349 substituted as A) of a cytochrome P450 gene, CYP77A4. CYP77A4 was highly expressed in germinating seedling cotyledons, and its protein is localized in the endoplasmic reticulum. As CYP77A4 catalyzes the epoxidation of unsaturated FA, disruption of CYP77A4 resulted in increased unsaturated FA abundance and over accumulated ROS in the mvs1 mutant. Consistently, scavenging excess ROS or blocking FA ß-oxidation could repress the ROS overaccumulation and hypersensitivity in the mvs1 mutant. Furthermore, H2 O2 transcriptionally upregulated CYP77A4 expression and post-translationally modified CYP77A4 by sulfenylating its Cysteine-456, which is necessary for CYP77A4's role in modulating FA abundance and ROS production. Together, our study illustrates that CYP77A4 mediates direct balancing of lipid mobilization and ROS production by the epoxidation of FA during seed germination.


Assuntos
Arabidopsis , Germinação , Espécies Reativas de Oxigênio/metabolismo , Germinação/genética , Ácidos Graxos/metabolismo , Mobilização Lipídica , Sementes/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Catálise , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa