Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Hum Mol Genet ; 31(15): 2571-2581, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35262690

RESUMO

The transmembrane domain recognition complex (TRC) pathway is required for the insertion of C-terminal tail-anchored (TA) proteins into the lipid bilayer of specific intracellular organelles such as the endoplasmic reticulum (ER) membrane. In order to facilitate correct insertion, the recognition complex (consisting of BAG6, GET4 and UBL4A) must first bind to TA proteins and then to GET3 (TRC40, ASNA1), which chaperones the protein to the ER membrane. Subsequently, GET1 (WRB) and CAML form a receptor that enables integration of the TA protein within the lipid bilayer. We report an individual with the homozygous c.633 + 4A>G splice variant in CAMLG, encoding CAML. This variant leads to aberrant splicing and lack of functional protein in patient-derived fibroblasts. The patient displays a predominantly neurological phenotype with psychomotor disability, hypotonia, epilepsy and structural brain abnormalities. Biochemically, a combined O-linked and type II N-linked glycosylation defect was found. Mislocalization of syntaxin-5 in patient fibroblasts and in siCAMLG deleted Hela cells confirms this as a consistent cellular marker of TRC dysfunction. Interestingly, the level of the v-SNARE Bet1L is also drastically reduced in both of these models, indicating a fundamental role of the TRC complex in the assembly of Golgi SNARE complexes. It also points towards a possible mechanism behind the hyposialylation of N and O-glycans. This is the first reported patient with pathogenic variants in CAMLG. CAMLG-CDG is the third disorder, after GET4 and GET3 deficiencies, caused by pathogenic variants in a member of the TRC pathway, further expanding this novel group of disorders.


Assuntos
Retículo Endoplasmático , Bicamadas Lipídicas , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Glicosilação , Células HeLa , Humanos , Bicamadas Lipídicas/análise , Bicamadas Lipídicas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Qc-SNARE/análise , Proteínas Qc-SNARE/metabolismo , Ubiquitinas/metabolismo
2.
Am J Hum Genet ; 108(11): 2130-2144, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34653363

RESUMO

Congenital disorders of glycosylation (CDGs) form a group of rare diseases characterized by hypoglycosylation. We here report the identification of 16 individuals from nine families who have either inherited or de novo heterozygous missense variants in STT3A, leading to an autosomal-dominant CDG. STT3A encodes the catalytic subunit of the STT3A-containing oligosaccharyltransferase (OST) complex, essential for protein N-glycosylation. Affected individuals presented with variable skeletal anomalies, short stature, macrocephaly, and dysmorphic features; half had intellectual disability. Additional features included increased muscle tone and muscle cramps. Modeling of the variants in the 3D structure of the OST complex indicated that all variants are located in the catalytic site of STT3A, suggesting a direct mechanistic link to the transfer of oligosaccharides onto nascent glycoproteins. Indeed, expression of STT3A at mRNA and steady-state protein level in fibroblasts was normal, while glycosylation was abnormal. In S. cerevisiae, expression of STT3 containing variants homologous to those in affected individuals induced defective glycosylation of carboxypeptidase Y in a wild-type yeast strain and expression of the same mutants in the STT3 hypomorphic stt3-7 yeast strain worsened the already observed glycosylation defect. These data support a dominant pathomechanism underlying the glycosylation defect. Recessive mutations in STT3A have previously been described to lead to a CDG. We present here a dominant form of STT3A-CDG that, because of the presence of abnormal transferrin glycoforms, is unusual among dominant type I CDGs.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Genes Dominantes , Hexosiltransferases/genética , Proteínas de Membrana/genética , Doenças Musculoesqueléticas/genética , Doenças do Sistema Nervoso/genética , Adolescente , Adulto , Sequência de Aminoácidos , Domínio Catalítico , Pré-Escolar , Feminino , Heterozigoto , Hexosiltransferases/química , Humanos , Masculino , Proteínas de Membrana/química , Pessoa de Meia-Idade , Linhagem , Homologia de Sequência de Aminoácidos
3.
Genet Med ; 24(12): 2464-2474, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36214804

RESUMO

PURPOSE: KLHL20 is part of a CUL3-RING E3 ubiquitin ligase involved in protein ubiquitination. KLHL20 functions as the substrate adaptor that recognizes substrates and mediates the transfer of ubiquitin to the substrates. Although KLHL20 regulates neurite outgrowth and synaptic development in animal models, a role in human neurodevelopment has not yet been described. We report on a neurodevelopmental disorder caused by de novo missense variants in KLHL20. METHODS: Patients were ascertained by the investigators through Matchmaker Exchange. Phenotyping of patients with de novo missense variants in KLHL20 was performed. RESULTS: We studied 14 patients with de novo missense variants in KLHL20, delineating a genetic syndrome with patients having mild to severe intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, hyperactivity, and subtle dysmorphic facial features. We observed a recurrent de novo missense variant in 11 patients (NM_014458.4:c.1069G>A p.[Gly357Arg]). The recurrent missense and the 3 other missense variants all clustered in the Kelch-type ß-propeller domain of the KLHL20 protein, which shapes the substrate binding surface. CONCLUSION: Our findings implicate KLHL20 in a neurodevelopmental disorder characterized by intellectual disability, febrile seizures or epilepsy, autism spectrum disorder, and hyperactivity.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Convulsões Febris , Criança , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento , Epilepsia/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Ubiquitina-Proteína Ligases/genética
4.
Proc Natl Acad Sci U S A ; 116(20): 9865-9870, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31036665

RESUMO

Congenital disorders of glycosylation (CDG) are a group of rare metabolic diseases, due to impaired protein and lipid glycosylation. We identified two patients with defective serum transferrin glycosylation and mutations in the MAGT1 gene. These patients present with a phenotype that is mainly characterized by intellectual and developmental disability. MAGT1 has been described to be a subunit of the oligosaccharyltransferase (OST) complex and more specifically of the STT3B complex. However, it was also claimed that MAGT1 is a magnesium (Mg2+) transporter. So far, patients with mutations in MAGT1 were linked to a primary immunodeficiency, characterized by chronic EBV infections attributed to a Mg2+ homeostasis defect (XMEN). We compared the clinical and cellular phenotype of our two patients to that of an XMEN patient that we recently identified. All three patients have an N-glycosylation defect, as was shown by the study of different substrates, such as GLUT1 and SHBG, demonstrating that the posttranslational glycosylation carried out by the STT3B complex is dysfunctional in all three patients. Moreover, MAGT1 deficiency is associated with an enhanced expression of TUSC3, the homolog protein of MAGT1, pointing toward a compensatory mechanism. Hence, we delineate MAGT1-CDG as a disorder associated with two different clinical phenotypes caused by defects in glycosylation.


Assuntos
Proteínas de Transporte de Cátions/genética , Defeitos Congênitos da Glicosilação/genética , Adolescente , Criança , Defeitos Congênitos da Glicosilação/metabolismo , Análise Mutacional de DNA , Hexosiltransferases/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Proteínas Supressoras de Tumor/metabolismo
5.
Eur J Nucl Med Mol Imaging ; 46(10): 2051-2064, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31243495

RESUMO

PURPOSE: The P2X7 receptor (P2X7R) is an ATP-gated ion channel predominantly expressed on activated microglia and is important in neurodegenerative diseases including Parkinson's disease (PD). In this first-in-human study, we investigated [11C]JNJ54173717 ([11C]JNJ717), a selective P2X7R tracer, in healthy volunteers (HV) and PD patients. Biodistribution, dosimetry, kinetic modelling and short-term test-retest variation (TRV), as well as possible genotype effects, were investigated. METHODS: Biodistribution and radiation dosimetry studies were performed in three HV (mean age 30 ± 2 years, two women) using whole-body PET/CT. The most appropriate kinetic model was determined in 11 HV (mean age 62 ± 10 years, six women) and 10 PD patients (mean age 64 ± 8 years, three women; mean UPDRS motor score 21 ± 8) using 90-min dynamic simultaneous PET/MR scans. The total volume of distribution (VT) was calculated using a one-tissue and a two-tissue compartment model (1TCM, 2TCM) and Logan graphical analysis, and its time stability was assessed. Seven subjects underwent retest scans (mean age 60 ± 13 years, four HV, one woman). A group analysis was performed to compare PD patients and HV. Finally, 13 exons of P2X7R were genotyped in all subjects included in the second part of the study. RESULTS: The mean effective dose was 4.47 ± 0.32 µSv/MBq, with the highest absorbed doses to the gallbladder, liver and small intestine. A reversible 2TCM was the most appropriate kinetic model with relatively homogeneous VT values in the grey and white matter. Average VT values were 3.4 ± 0.8 in HV and 3.3 ± 0.7 in PD patients, with no significant difference between the groups, but a possible genotype effect (rs3751143) was identified which can affect VT. Average TRV was 10-15%. The stability of VT over time allowed a reduction in scan time to 70 min. CONCLUSION: [11C]JNJ717 is safe and suitable for quantifying P2X7R expression in human brain. In this pilot study, no significant differences in P2X7R binding were found between HV and PD patients. The results also suggest that genotype effects need to be incorporated in future P2X7R PET analyses.


Assuntos
Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/farmacocinética , Receptores Purinérgicos P2X7/metabolismo , Adulto , Idoso , Variação Biológica da População , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Polimorfismo de Nucleotídeo Único , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/normas , Ligação Proteica , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Receptores Purinérgicos P2X7/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
6.
Prenat Diagn ; 38(9): 654-663, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29966037

RESUMO

BACKGROUND: Congenital diaphragmatic hernia (CDH) is characterized by a defective closure of the diaphragm occurring as an isolated defect in 60% of cases. Lung size, liver herniation, and pulmonary circulation are major prognostic indices. Isolated CDH genetics is heterogeneous and poorly understood. Whether genetic lesions are also outcome determinants has never been explored. OBJECTIVES: To identify isolated CDH genetic causes, to fine map the mutational burden, and to search for a correlation between the genotype and the disease severity and outcome. METHODS: Targeted massively parallel sequencing of 143 human and mouse CDH causative and candidate genes in a cohort of 120 fetuses with isolated CDH and detailed outcome measures. RESULTS: Pathogenic and likely pathogenic variants were identified in 10% of the cohort. These variants affect both known CDH causative genes, namely, ZFPM2, GATA4, and NR2F2, and new genes, namely, TBX1, TBX5, GATA5, and PBX1. In addition, mutation burden analysis identified LBR, CTBP2, NSD1, MMP14, MYOD1, and EYA1 as candidate genes with enrichment in rare but predicted deleterious variants. No obvious correlation between the genotype and the phenotype or short-term outcome has been found. CONCLUSION: Targeted resequencing identifies a genetic cause in 10% of isolated CDH and identifies new candidate genes.


Assuntos
Perfil Genético , Hérnias Diafragmáticas Congênitas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Variações do Número de Cópias de DNA , Feminino , Genótipo , Hérnias Diafragmáticas Congênitas/patologia , Humanos , Pulmão/patologia , Camundongos , Mutação , Fenótipo , Gravidez , Prognóstico
7.
PLoS Genet ; 10(11): e1004578, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25375121

RESUMO

The human sex chromosomes differ in sequence, except for the pseudoautosomal regions (PAR) at the terminus of the short and the long arms, denoted as PAR1 and PAR2. The boundary between PAR1 and the unique X and Y sequences was established during the divergence of the great apes. During a copy number variation screen, we noted a paternally inherited chromosome X duplication in 15 independent families. Subsequent genomic analysis demonstrated that an insertional translocation of X chromosomal sequence into the Y chromosome generates an extended PAR [corrected].The insertion is generated by non-allelic homologous recombination between a 548 bp LTR6B repeat within the Y chromosome PAR1 and a second LTR6B repeat located 105 kb from the PAR boundary on the X chromosome. The identification of the reciprocal deletion on the X chromosome in one family and the occurrence of the variant in different chromosome Y haplogroups demonstrate this is a recurrent genomic rearrangement in the human population. This finding represents a novel mechanism shaping sex chromosomal evolution.


Assuntos
Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Evolução Molecular , Animais , Cromossomos/genética , Haplótipos , Hominidae/genética , Recombinação Homóloga/genética , Humanos , Polimorfismo Genético , Sequências Repetitivas de Ácido Nucleico/genética , Translocação Genética
8.
Hum Mutat ; 37(7): 653-60, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26931382

RESUMO

Congenital disorders of glycosylation (CDG) arise from pathogenic mutations in over 100 genes leading to impaired protein or lipid glycosylation. ALG1 encodes a ß1,4 mannosyltransferase that catalyzes the addition of the first of nine mannose moieties to form a dolichol-lipid linked oligosaccharide intermediate required for proper N-linked glycosylation. ALG1 mutations cause a rare autosomal recessive disorder termed ALG1-CDG. To date 13 mutations in 18 patients from 14 families have been described with varying degrees of clinical severity. We identified and characterized 39 previously unreported cases of ALG1-CDG from 32 families and add 26 new mutations. Pathogenicity of each mutation was confirmed based on its inability to rescue impaired growth or hypoglycosylation of a standard biomarker in an alg1-deficient yeast strain. Using this approach we could not establish a rank order comparison of biomarker glycosylation and patient phenotype, but we identified mutations with a lethal outcome in the first two years of life. The recently identified protein-linked xeno-tetrasaccharide biomarker, NeuAc-Gal-GlcNAc2 , was seen in all 27 patients tested. Our study triples the number of known patients and expands the molecular and clinical correlates of this disorder.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Manosiltransferases/genética , Mutação , Polissacarídeos/metabolismo , Biomarcadores/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Feminino , Genes Letais , Glicosilação , Humanos , Masculino , Análise de Sequência de DNA , Análise de Sobrevida
9.
Am J Med Genet A ; 167A(8): 1822-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25931334

RESUMO

To determine the diagnostic value of massive parallel sequencing of a panel of known cardiac genes in familial nonsyndromic congenital heart defects (CHD), targeted sequencing of the coding regions of 57 genes previously implicated in CHD was performed in 36 patients from 13 nonsyndromic CHD families with probable autosomal dominant inheritance. Following variant analysis and Sanger validation, we identified six potential disease causing variants in three genes (MYH6, NOTCH1, and TBX5), which may explain the defects in six families. Several problematic situations were encountered when performing genotype-phenotype correlations in the families to confirm the causality of these variants. In conclusion, by screening known CHD-associated genes in well-selected nonsyndromic CHD families and cautious variant interpretation, potential causative variants were identified in less than half of the families (6 out of 13; 46%). Variant interpretation remains a major challenge reflecting the complex genetic cause of CHD.


Assuntos
Cardiopatias Congênitas/diagnóstico , Feminino , Cardiopatias Congênitas/genética , Humanos , Masculino , Linhagem
10.
Genes (Basel) ; 15(1)2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275609

RESUMO

Gollop-Wolfgang complex (GWC) is a rare congenital limb anomaly characterized by tibial aplasia with femur bifurcation, ipsilateral bifurcation of the thigh bone, and split hand and monodactyly of the feet, resulting in severe and complex limb deformities. The genetic basis of GWC, however, has remained elusive. We studied a three-generation family with four GWC-affected family members. An analysis of whole-genome sequencing results using a custom pipeline identified the WNT11 c.1015G>A missense variant associated with the phenotype. In silico modelling and an in vitro reporter assay further supported the link between the variant and GWC. This finding further contributes to mapping the genetic heterogeneity underlying split hand/foot malformations in general and in GWC specifically.


Assuntos
Anormalidades Múltiplas , Deformidades Congênitas da Mão , Humanos , Anormalidades Múltiplas/genética , Fêmur , Tíbia
11.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562770

RESUMO

The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion disorder. Why the incidence of 22q11.2DS is much greater than that of other genomic disorders remains unknown. Short read sequencing cannot resolve the complex segmental duplicon structure to provide direct confirmation of the hypothesis that the rearrangements are caused by non-allelic homologous recombination between the low copy repeats on chromosome 22 (LCR22s). To enable haplotype-specific assembly and rearrangement mapping in LCR22 regions, we combined fiber-FISH optical mapping with whole genome (ultra-)long read sequencing or rearrangement-specific long-range PCR on 24 duos (22q11.2DS patient and parent-of-origin) comprising several different LCR22-mediated rearrangements. Unexpectedly, we demonstrate that not only different paralogous segmental duplicon but also palindromic AT-rich repeats (PATRR) are driving 22q11.2 rearrangements. In addition, we show the existence of two different inversion polymorphisms preceding rearrangement, and somatic mosaicism. The existence of different recombination sites and mechanisms in paralogues and PATRRs which are copy number expanding in the human population are a likely explanation for the high 22q11.2DS incidence.

12.
bioRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38948797

RESUMO

Glycosylation-deficient Chinese hamster ovary (CHO) cell lines have been instrumental in the discovery of N-glycosylation machinery. Yet, the molecular causes of the glycosylation defects in the Lec5 and Lec9 mutants have been elusive, even though for both cell lines a defect in dolichol formation from polyprenol was previously established. We recently found that dolichol synthesis from polyprenol occurs in three steps consisting of the conversion of polyprenol to polyprenal by DHRSX, the reduction of polyprenal to dolichal by SRD5A3 and the reduction of dolichal to dolichol, again by DHRSX. This led us to investigate defective dolichol synthesis in Lec5 and Lec9 cells. Both cell lines showed increased levels of polyprenol and its derivatives, concomitant with decreased levels of dolichol and derivatives, but no change in polyprenal levels, suggesting DHRSX deficiency. Accordingly, N-glycan synthesis and changes in polyisoprenoid levels were corrected by complementation with human DHRSX but not with SRD5A3. Furthermore, the typical polyprenol dehydrogenase and dolichal reductase activities of DHRSX were absent in membrane preparations derived from Lec5 and Lec9 cells, while the reduction of polyprenal to dolichal, catalyzed by SRD5A3, was unaffected. Long-read whole genome sequencing of Lec5 and Lec9 cells did not reveal mutations in the ORF of SRD5A3, but the genomic region containing DHRSX was absent. Lastly, we established the sequence of Chinese hamster DHRSX and validated that this protein has similar kinetic properties to the human enzyme. Our work therefore identifies the basis of the dolichol synthesis defect in CHO Lec5 and Lec9 cells.

13.
BMC Bioinformatics ; 14: 277, 2013 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-24053737

RESUMO

BACKGROUND: Dynamic visualisation interfaces are required to explore the multiple microbial genome data now available, especially those obtained by high-throughput sequencing - a.k.a. "Next-Generation Sequencing" (NGS) - technologies; they would also be useful for "standard" annotated genomes whose chromosome organizations may be compared. Although various software systems are available, few offer an optimal combination of feature-rich capabilities, non-static user interfaces and multi-genome data handling. RESULTS: We developed SynTView, a comparative and interactive viewer for microbial genomes, designed to run as either a web-based tool (Flash technology) or a desktop application (AIR environment). The basis of the program is a generic genome browser with sub-maps holding information about genomic objects (annotations). The software is characterised by the presentation of syntenic organisations of microbial genomes and the visualisation of polymorphism data (typically Single Nucleotide Polymorphisms - SNPs) along these genomes; these features are accessible to the user in an integrated way. A variety of specialised views are available and are all dynamically inter-connected (including linear and circular multi-genome representations, dot plots, phylogenetic profiles, SNP density maps, and more). SynTView is not linked to any particular database, allowing the user to plug his own data into the system seamlessly, and use external web services for added functionalities. SynTView has now been used in several genome sequencing projects to help biologists make sense out of huge data sets. CONCLUSIONS: The most important assets of SynTView are: (i) the interactivity due to the Flash technology; (ii) the capabilities for dynamic interaction between many specialised views; and (iii) the flexibility allowing various user data sets to be integrated. It can thus be used to investigate massive amounts of information efficiently at the chromosome level. This innovative approach to data exploration could not be achieved with most existing genome browsers, which are more static and/or do not offer multiple views of multiple genomes. Documentation, tutorials and demonstration sites are available at the URL: http://genopole.pasteur.fr/SynTView.


Assuntos
Genômica/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Internet , Interface Usuário-Computador , Navegador , Animais , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
14.
Glycoconj J ; 30(1): 67-76, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22983704

RESUMO

In the past decade, the identification of most genes involved in Congenital Disorders of Glycosylation (CDG) (type I) was achieved by a combination of biochemical, cell biological and glycobiological investigations. This has been truly successful for CDG-I, because the candidate genes could be selected on the basis of the homology of the synthetic pathway of the dolichol linked oligosaccharide in human and yeast. On the contrary, only a few CDG-II defects were elucidated, be it that some of the discoveries represent wonderful breakthroughs, like e.g, the identification of the COG defects. In general, many rare genetic defects have been identified by positional cloning. However, only a few types of CDG have effectively been elucidated by linkage analysis and so-called reverse genetics. The reason is that the families were relatively small and could-except for CDG-PMM2-not be pooled for analysis. Hence, a large number of CDG cases has long remained unsolved because the search for the culprit gene was very laborious, due to the heterogeneous phenotype and the myriad of candidate defects. This has changed when homozygosity mapping came of age, because it could be applied to small (consanguineous) families. Many novel CDG genes have been discovered in this way. But the best has yet to come: what we are currently witnessing, is an explosion of novel CDG defects, thanks to exome sequencing: seven novel types were published over a period of only two years. It is expected that exome sequencing will soon become a diagnostic tool, that will continuously uncover new facets of this fascinating group of diseases.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos , Defeitos Congênitos da Glicosilação , Dolicóis , Exoma/genética , Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Erros Inatos do Metabolismo dos Carboidratos/genética , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Dolicóis/genética , Dolicóis/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicosilação , Homozigoto , Humanos , Oligossacarídeos/metabolismo , Análise de Sequência de DNA
15.
Eur J Hum Genet ; 30(9): 1017-1021, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35577938

RESUMO

In 2016, guidelines for diagnostic Next Generation Sequencing (NGS) have been published by EuroGentest in order to assist laboratories in the implementation and accreditation of NGS in a diagnostic setting. These guidelines mainly focused on Whole Exome Sequencing (WES) and targeted (gene panels) sequencing detecting small germline variants (Single Nucleotide Variants (SNVs) and insertions/deletions (indels)). Since then, Whole Genome Sequencing (WGS) has been increasingly introduced in the diagnosis of rare diseases as WGS allows the simultaneous detection of SNVs, Structural Variants (SVs) and other types of variants such as repeat expansions. The use of WGS in diagnostics warrants the re-evaluation and update of previously published guidelines. This work was jointly initiated by EuroGentest and the Horizon2020 project Solve-RD. Statements from the 2016 guidelines have been reviewed in the context of WGS and updated where necessary. The aim of these recommendations is primarily to list the points to consider for clinical (laboratory) geneticists, bioinformaticians, and (non-)geneticists, to provide technical advice, aid clinical decision-making and the reporting of the results.


Assuntos
Exoma , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma
16.
BMC Genomics ; 12: 309, 2011 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-21668940

RESUMO

BACKGROUND: Daphnia (Crustacea: Cladocera) plays a central role in standing aquatic ecosystems, has a well known ecology and is widely used in population studies and environmental risk assessments. Daphnia magna is, especially in Europe, intensively used to study stress responses of natural populations to pollutants, climate change, and antagonistic interactions with predators and parasites, which have all been demonstrated to induce micro-evolutionary and adaptive responses. Although its ecology and evolutionary biology is intensively studied, little is known on the functional genomics underpinning of phenotypic responses to environmental stressors. The aim of the present study was to find genes expressed in presence of environmental stressors, and target such genes for single nucleotide polymorphic (SNP) marker development. RESULTS: We developed three expressed sequence tag (EST) libraries using clonal lineages of D. magna exposed to ecological stressors, namely fish predation, parasite infection and pesticide exposure. We used these newly developed ESTs and other Daphnia ESTs retrieved from NCBI GeneBank to mine for SNP markers targeting synonymous as well as non synonymous genetic variation. We validate the developed SNPs in six natural populations of D. magna distributed at regional scale. CONCLUSIONS: A large proportion (47%) of the produced ESTs are Daphnia lineage specific genes, which are potentially involved in responses to environmental stress rather than to general cellular functions and metabolic activities, or reflect the arthropod's aquatic lifestyle. The characterization of genes expressed under stress and the validation of their SNPs for population genetic study is important for identifying ecologically responsive genes in D. magna.


Assuntos
Daphnia/genética , Etiquetas de Sequências Expressas , Polimorfismo de Nucleotídeo Único , Animais , Bases de Dados Genéticas , Regulação da Expressão Gênica , Praguicidas/toxicidade , Análise de Sequência de DNA , Estresse Fisiológico
17.
JIMD Rep ; 58(1): 122-128, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33728255

RESUMO

Recently, a disorder caused by the heterozygous de novo c.1267C>T (p.R423*) substitution in SLC37A4 has been described. This causes mislocalization of the glucose-6-phosphate transporter to the Golgi leading to a congenital disorder of glycosylation type II (SLC37A4-CDG). Only one patient has been reported showing liver disease that improved with age and mild dysmorphism. Here we report the second patient with a type II CDG caused by the same heterozygous de novo c.1267C>T (p.R423*) mutation thereby confirming the pathogenicity of this variant and expanding the clinical picture with type 1 diabetes, severe scoliosis, and membranoproliferative glomerulonephritis. Additional clinical and biochemical data provide further insight into the mechanism and prognosis of SLC37A4-CDG.

18.
Reprod Sci ; 25(12): 1637-1648, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29439620

RESUMO

OBJECTIVE: A pilot study was conducted to establish a human placental xenograft, which could serve as a model to evaluate the effect of toxic exposures during pregnancy. STUDY DESIGN: The protocol consisted of engraftment of third-trimester human placental tissue in immunocompromised mice, after induction of a pseudo-pregnancy state by ovariectomy and progesterone supplementation. To validate the model, the placental tissue before and after engraftment was examined by immunohistochemistry, fluorescence-activated cell sorting (FACS), single-nucleotide polymorphism (SNP) genotyping, and whole transcriptome sequencing (WTSS). The human chorion gonadotropin (hCG) production in serum and urine was examined by enzyme-linked immunosorbent assay. RESULTS: Microscopic evaluation of the placental tissue before and after engraftment revealed a stable morphology and preserved histological structure of the human tissue. Viable trophoblast was present after engraftment and remained stable over time. Vascularization and hormonal secretion (hCG) were present till 3 weeks after engraftment. Thirty-one SNPs were equally present, and there was a stable expression level for 56 451 genes evaluated by whole transcriptome sequencing. CONCLUSION: Although this human placental xenograft model cannot copy the unique uterine environment in which the placenta develops and interacts between the mother and the fetus, it could be a suitable tool to evaluate the acute impact and adaptive processes of the placental tissue to environmental changes.


Assuntos
Xenoenxertos , Placenta/metabolismo , Polimorfismo de Nucleotídeo Único , Transcriptoma , Animais , Gonadotropina Coriônica/metabolismo , Feminino , Humanos , Camundongos , Gravidez , Progesterona/metabolismo , Pseudogravidez
19.
Med Clin (Barc) ; 151(2): 80.e1-80.e10, 2018 07 23.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-29439875

RESUMO

Genetic diagnosis of hereditary cancer syndromes offers the opportunity to establish more effective predictive and preventive measures for the patient and their families. The ultimate objective is to decrease cancer morbidity and mortality in high genetic risk families. Next Generation Sequencing (NGS) offers an important improvement in the efficiency of genetic diagnosis, allowing an increase in diagnostic yield with a substantial reduction in response times and economic costs. Consequently, the implementation of this new technology is a great opportunity for improvement in the clinical management of affected families. The aim of these guidelines is to establish a framework of useful recommendations for planned and controlled implementation of NGS in the context of hereditary cancer. These will help to consolidate the strengths and opportunities offered by this technology, and minimise the weaknesses and threats which may derive from its use. The recommendations of international societies have been adapted to our environment, taking the Spanish context into account at organisational and juridical levels. Forty-one statements are grouped under six headings: clinical and diagnostic utility, informed consent and genetic counselling pre-test and post-test, validation of analytical procedures, results report, management of information and distinction between research and clinical context. This guide has been developed by the Spanish Association of Human Genetics (AEGH), the Spanish Society of Laboratory Medicine (SEQC-ML) and the Spanish Society of Medical Oncology (SEOM).


Assuntos
Consenso , Predisposição Genética para Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Aconselhamento Genético , Testes Genéticos , Humanos , Consentimento Livre e Esclarecido , Reprodutibilidade dos Testes , Sociedades Médicas , Espanha
20.
Artigo em Inglês | MEDLINE | ID: mdl-28679690

RESUMO

Troyer syndrome (MIM#275900) is an autosomal recessive form of complicated hereditary spastic paraplegia. It is characterized by progressive lower extremity spasticity and weakness, dysarthria, distal amyotrophy, developmental delay, short stature, and subtle skeletal abnormalities. It is caused by deleterious mutations in the SPG20 gene, encoding spartin, on Chromosome 13q13. Until now, six unrelated families with a genetically confirmed diagnosis have been reported. Here we report the clinical findings in three brothers of a consanguineous Moroccan family, aged 24, 17, and 7 yr old, with spastic paraplegia, short stature, motor and cognitive delay, and severe intellectual disability. Targeted exon capture and sequencing showed a homozygous nonsense mutation in the SPG20 gene, c.1369C>T (p.Arg457*), in the three affected boys.


Assuntos
Proteínas/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Proteínas de Ciclo Celular , Criança , Códon sem Sentido/genética , Éxons , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Mutação , Linhagem , Proteínas/metabolismo , Irmãos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa