Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 221, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418960

RESUMO

BACKGROUND: Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are components of the wheat streak mosaic virus disease complex in the Great Plains region of the U.S.A. and elsewhere. Co-infection of wheat with WSMV and TriMV causes synergistic interaction with more severe disease symptoms compared to single infections. Plants are equipped with multiple antiviral mechanisms, of which regulation of microRNAs (miRNAs) is a potentially effective constituent. In this investigation, we have analyzed the total and relative expression of miRNA transcriptome in two wheat cultivars, Arapahoe (susceptible) and Mace (temperature-sensitive-resistant), that were mock-inoculated or inoculated with WSMV, TriMV, or both at 18 °C and 27 °C. RESULTS: Our results showed that the most abundant miRNA family among all the treatments was miRNA166, followed by 159a and 168a, although the order of the latter two changed depending on the infections. When comparing infected and control groups, twenty miRNAs showed significant upregulation, while eight miRNAs were significantly downregulated. Among them, miRNAs 9670-3p, 397-5p, and 5384-3p exhibited the most significant upregulation, whereas miRNAs 319, 9773, and 9774 were the most downregulated. The comparison of infection versus the control group for the cultivar Mace showed temperature-dependent regulation of these miRNAs. The principal component analysis confirmed that less abundant miRNAs among differentially expressed miRNAs were strongly correlated with the inoculated symptomatic wheat cultivars. Notably, miRNAs 397-5p, 398, and 9670-3p were upregulated in response to WSMV and TriMV infections, an observation not yet reported in this context. The significant upregulation of these three miRNAs was further confirmed with RT-qPCR analysis; in general, the RT-qPCR results were in agreement with our computational analysis. Target prediction analysis showed that the miRNAs standing out in our analysis targeted genes involved in defense response and regulation of transcription. CONCLUSION: Investigation into the roles of these miRNAs and their corresponding targets holds promise for advancing our understanding of the mechanisms of virus infection and possible manipulation of these factors for developing durable virus resistance in crop plants.


Assuntos
MicroRNAs , Potyviridae , MicroRNAs/genética , Doenças das Plantas/genética , Potyviridae/genética
2.
Bioinformatics ; 33(15): 2395-2396, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369166

RESUMO

SUMMARY: Due to their chemical plasticity, Cysteine residues (Cys) can serve many different functions. Identification and classification of reactive Cys isn't a trivial job: currently, no available tool exists for an all-round, comprehensive (inclusive of all different functional types) analysis of Cys; herein we present a computational platform called Cp i pe, dedicated to this task: it implements state-of-the art protocols, elaborating and displaying a wealth of information, sufficiently orthogonal to allow a thorough evaluation of all major aspects of Cys reactivity. AVAILABILITY AND IMPLEMENTATION: Cp i pe is implemented in Python and freely available at http://cpipe.explora-biotech.com/cpipe/start.py . All major browsers are supported. CONTACT: s.marino@explora-biotech.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Conformação Proteica , Análise de Sequência de Proteína/métodos , Software , Cisteína/química , Cisteína/metabolismo , Modelos Químicos , Modelos Moleculares
3.
Proteins ; 84(2): 278-91, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26685111

RESUMO

Cysteine (Cys) is a critically important amino acid, serving a variety of functions within proteins including structural roles, catalysis, and regulation of function through post-translational modifications. Predicting which Cys residues are likely to be reactive is a very sought after feature. Few methods are currently available for the task, either based on evaluation of physicochemical features (e.g., pKa and exposure) or based on similarity with known instances. In this study, we developed an algorithm (named HAL-Cy) which blends previous work with novel implementations to identify reactive Cys from nonreactive. HAL-Cy present two major components: (i) an energy based part, rooted on the evaluation of H-bond network contributions and (ii) a knowledge based part, composed of different profiling approaches (including a newly developed weighting matrix for sequence profiling). In our evaluations, HAL-Cy provided significantly improved performances, as tested in comparisons with existing approaches. We implemented our algorithm in a web service (Cy-preds), the ultimate product of our work; we provided it with a variety of additional features, tools, and options: Cy-preds is capable of performing fully automated calculations for a thorough analysis of Cys reactivity in proteins, ranging from reactivity predictions (e.g., with HAL-Cy) to functional characterization. We believe it represents an original, effective, and very useful addition to the current array of tools available to scientists involved in redox biology, Cys biochemistry, and structural bioinformatics.


Assuntos
Algoritmos , Biologia Computacional/métodos , Cisteína/análise , Cisteína/química , Internet , Sequência de Aminoácidos , Cisteína/metabolismo , Bases de Dados de Proteínas , Modelos Estatísticos , Oxirredução , Alinhamento de Sequência
4.
J Hazard Mater ; 273: 36-43, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24709480

RESUMO

The interactions of dichlorprop (DCP) and diquat dibromide (DQ) herbicides with human serum albumin (HSA) protein were studied by UV absorption, fluorescence, synchronous fluorescence and circular dichroism (CD) spectroscopy. Both DCP and DQ quenched the fluorescence emission spectrum of HSA through the static quenching mechanism. The Stern-Volmer quenching constant, binding constant, the number of binding sites and thermodynamic parameters were determined at 288K, 298K, 310K and 318K. In HSA-DCP and HSA-DQ systems, an increase in temperature led to a decrease in the Stern-Volmer quenching constant and binding constant. One binding site was obtained for DCP and DQ on HSA. It was found that DCP can bind to HSA with higher affinity than DQ. Negative ΔH and positive ΔS values were obtained for the binding processes between protein and herbicide molecules. This result displayed that electrostatic interactions play a major role in the formation of HSA-DCP and HSA-DQ complexes. The binding processes were exothermic reactions and spontaneous. In addition, synchronous fluorescence and CD spectra of HSA revealed that the binding of DCP to HSA did not cause a significant conformational change in protein, but the interaction of DQ with HSA led to an alteration in the protein structure.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análogos & derivados , Diquat/metabolismo , Herbicidas/metabolismo , Albumina Sérica/metabolismo , Ácido 2,4-Diclorofenoxiacético/metabolismo , Sítios de Ligação , Dicroísmo Circular , Humanos , Ligação Proteica , Conformação Proteica , Albumina Sérica/química , Albumina Sérica Humana , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa