RESUMO
Inertial confinement fusion implosions designed to have minimal fluid motion at peak compression often show significant linear flows in the laboratory, attributable per simulations to percent-level imbalances in the laser drive illumination symmetry. We present experimental results which intentionally varied the mode 1 drive imbalance by up to 4% to test hydrodynamic predictions of flows and the resultant imploded core asymmetries and performance, as measured by a combination of DT neutron spectroscopy and high-resolution x-ray core imaging. Neutron yields decrease by up to 50%, and anisotropic neutron Doppler broadening increases by 20%, in agreement with simulations. Furthermore, a tracer jet from the capsule fill-tube perturbation that is entrained by the hot-spot flow confirms the average flow speeds deduced from neutron spectroscopy.
RESUMO
To reach the pressures and densities required for ignition, it may be necessary to develop an approach to design that makes it easier for simulations to guide experiments. Here, we report on a new short-pulse inertial confinement fusion platform that is specifically designed to be more predictable. The platform has demonstrated 99%+0.5% laser coupling into the hohlraum, high implosion velocity (411 km/s), high hotspot pressure (220+60 Gbar), and high cold fuel areal density compression ratio (>400), while maintaining controlled implosion symmetry, providing a promising new physics platform to study ignition physics.
RESUMO
Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.
RESUMO
Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR>1 g/cm(2). This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.
RESUMO
The sensitivity of inertial confinement fusion implosions, of the type performed on the National Ignition Facility (NIF) [1], to low-mode flux asymmetries is investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P(4), resulting from low-order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the deuterium and tritium (DT) "ice" layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of implosion kinetic energy to internal energy of the central hot spot, thus reducing the neutron yield. Furthermore, synthetic gated x-ray images of the hot spot self-emission indicate that P(4) shapes may be unquantifiable for DT layered capsules. Instead the positive P(4) asymmetry "aliases" itself as an oblate P(2) in the x-ray images. Correction of this apparent P(2) distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed postshot two-dimensional simulations.
RESUMO
Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.
RESUMO
The PROBIES diagnostic is a new, highly flexible, imaging and energy spectrometer designed for laser-accelerated protons. The diagnostic can detect low-mode spatial variations in the proton beam profile while resolving multiple energies on a single detector or more. When a radiochromic film stack is employed for "single-shot mode," the energy resolution of the stack can be greatly increased while reducing the need for large numbers of films; for example, a recently deployed version allowed for 180 unique energy measurements spanning â¼3 to 75 MeV with <0.4 MeV resolution using just 20 films vs 180 for a comparable traditional film and filter stack. When utilized with a scintillator, the diagnostic can be run in high-rep-rate (>Hz rate) mode to recover nine proton energy bins. We also demonstrate a deep learning-based method to analyze data from synthetic PROBIES images with greater than 95% accuracy on sub-millisecond timescales and retrained with experimental data to analyze real-world images on sub-millisecond time-scales with comparable accuracy.
RESUMO
In order to understand how close current layered implosions in indirect-drive inertial confinement fusion are to ignition, it is necessary to measure the level of alpha heating present. To this end, pairs of experiments were performed that consisted of a low-yield tritium-hydrogen-deuterium (THD) layered implosion and a high-yield deuterium-tritium (DT) layered implosion to validate experimentally current simulation-based methods of determining yield amplification. The THD capsules were designed to reduce simultaneously DT neutron yield (alpha heating) and maintain hydrodynamic similarity with the higher yield DT capsules. The ratio of the yields measured in these experiments then allowed the alpha heating level of the DT layered implosions to be determined. The level of alpha heating inferred is consistent with fits to simulations expressed in terms of experimentally measurable quantities and enables us to infer the level of alpha heating in recent high-performing implosions.
RESUMO
Ignition implosions on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision to keep the fuel entropy and adiabat low and ρR high. The first series of precision tuning experiments on the National Ignition Facility, which use optical diagnostics to directly measure the strength and timing of all four shocks inside a hohlraum-driven, cryogenic liquid-deuterium-filled capsule interior have now been performed. The results of these experiments are presented demonstrating a significant decrease in adiabat over previously untuned implosions. The impact of the improved shock timing is confirmed in related deuterium-tritium layered capsule implosions, which show the highest fuel compression (ρR~1.0 g/cm(2)) measured to date, exceeding the previous record [V. Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] by more than a factor of 3. The experiments also clearly reveal an issue with the 4th shock velocity, which is observed to be 20% slower than predictions from numerical simulation.
RESUMO
The National Ignition Facility has been used to compress deuterium-tritium to an average areal density of ~1.0±0.1 g cm(-2), which is 67% of the ignition requirement. These conditions were obtained using 192 laser beams with total energy of 1-1.6 MJ and peak power up to 420 TW to create a hohlraum drive with a shaped power profile, peaking at a soft x-ray radiation temperature of 275-300 eV. This pulse delivered a series of shocks that compressed a capsule containing cryogenic deuterium-tritium to a radius of 25-35 µm. Neutron images of the implosion were used to estimate a fuel density of 500-800 g cm(-3).
RESUMO
A multidimensional measurable criterion for central ignition of inertial-confinement-fusion capsules is derived. The criterion accounts for the effects of implosion nonuniformities and depends on three measurable parameters: the neutron-averaged total areal density (rhoR(n)(tot)), the ion temperature (T(n)), and the yield over clean (YOC=ratio of the measured neutron yield to the predicted one-dimensional yield). The YOC measures the implosion uniformity. The criterion can be approximated by chi=(rhoR(n)(tot))(0.8) x (T(n)/4.7)(1.7)YOC(mu)>1 (where rhoR is in g cm(-2), T in keV, and mu approximately 0.4-0.5) and can be used to assess the performance of cryogenic implosions on the NIF and OMEGA. Cryogenic implosions on OMEGA have achieved chi approximately 0.02-0.03.
RESUMO
This paper presents a study on hotspot parameters in indirect-drive, inertially confined fusion implosions as they proceed through the self-heating regime. The implosions with increasing nuclear yield reach the burning-plasma regime, hotspot ignition, and finally propagating burn and ignition. These implosions span a wide range of alpha heating from a yield amplification of 1.7-2.5. We show that the hotspot parameters are explicitly dependent on both yield and velocity and that by fitting to both of these quantities the hotspot parameters can be fit with a single power law in velocity. The yield scaling also enables the hotspot parameters extrapolation to higher yields. This is important as various degradation mechanisms can occur on a given implosion at fixed implosion velocity which can have a large impact on both yield and the hotspot parameters. The yield scaling also enables the experimental dependence of the hotspot parameters on yield amplification to be determined. The implosions reported have resulted in the highest yield (1.73×10^{16}±2.6%), yield amplification, pressure, and implosion velocity yet reported at the National Ignition Facility.
RESUMO
An important diagnostic value of a shot at the National Ignition Facility is the resultant center-of-mass motion of the imploding capsule. This residual velocity reduces the efficiency of converting laser energy into plasma temperature. A new analysis method extracts the effective hot spot motion by using information from multiple neutron time-of-flight (nToF) lines-of-sight (LoSs). This technique fits a near Gaussian spectrum to the nToF scope traces and overcomes reliance on models to relate the plasma temperature to the mean energy of the emitted neutrons. This method requires having at least four nToF LoSs. The results of this analysis will be compared to an approach where each LoS is analyzed separately and a model is used to infer the mean energy of the emitted neutrons.
RESUMO
The release of phosphorus (P) from bed sediments to the overlying water can delay the recovery of lakes for decades following reductions in catchment contributions, preventing water quality targets being met within timeframes set out by environmental legislation (e.g. EU Water Framework Directive: WFD). Therefore supplementary solutions for restoring lakes have been explored, including the capping of sediment P sources using a lanthanum (La)-modified bentonite clay to reduce internal P loading and enhance the recovery process. Here we present results from Loch Flemington where the first long-term field trial documenting responses of phytoplankton community structure and abundance, and the UK WFD phytoplankton metric to a La-bentonite application was performed. A Before-After-Control-Impact (BACI) analysis was used to distinguish natural variability from treatment effect and confirmed significant reductions in the magnitude of summer cyanobacterial blooms in Loch Flemington, relative to the control site, following La-bentonite application. However this initial cyanobacterial response was not sustained beyond two years after application, which implied that the reduction in internal P loading was short-lived; several possible explanations for this are discussed. One reason is that this ecological quality indicator is sensitive to inter-annual variability in weather patterns, particularly summer rainfall and water temperature. Over the monitoring period, the phytoplankton community structure of Loch Flemington became less dominated by cyanobacteria and more functionally diverse. This resulted in continual improvements in the phytoplankton compositional and abundance metrics, which were not observed at the control site, and may suggest an ecological response to the sustained reduction in filterable reactive phosphorus (FRP) concentration following La-bentonite application. Overall, phytoplankton classification indicated that the lake moved from poor to moderate ecological status but did not reach the proxy water quality target (i.e. WFD Good Ecological Status) within four years of the application. As for many other shallow lakes, the effective control of internal P loading in Loch Flemington will require further implementation of both in-lake and catchment-based measures. Our work emphasizes the need for appropriate experimental design and long-term monitoring programmes, to ascertain the efficacy of intervention measures in delivering environmental improvements at the field scale.
Assuntos
Lagos/química , Fitoplâncton , Bentonita/química , Eutrofização , Lantânio/química , FósforoRESUMO
The Neutron Imaging System at the National Ignition Facility is used to observe the primary â¼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.
RESUMO
We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 µm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 µm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.
RESUMO
The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.
RESUMO
An accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T_{ion} are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T_{ion} are observed and the difference is seen to increase with increasing apparent DT T_{ion}. The line-of-sight rms variations of both DD and DT T_{ion} are small, â¼150eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T_{ion}. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT T_{ion} greater than the DD T_{ion}, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.
RESUMO
Results of repeated peripheral blood chromosome studies were normal in a boy with intrauterine growth retardation, short stature, moderate mental retardation, and multiple minor anomalies. At age 9 years it was recognized that the swirls of pigmentation/depigmentation on his trunk, linear streaks on his limbs, and body asymmetry were suggestive of chromosomal mosaicism. Four skin biopsies were obtained under anesthesia during a dental procedure. All showed mosaicism for a normal cell line, a line with an extra chromosome 7, and a cell line with an extra small ring. In one biopsy, there was a fourth cell line with an extra chromosome 7 and the ring. Fluorescence in situ hybridization (FISH) with a chromosome 7 paint confirmed trisomy 7 and the chromosome 7 derivation of the ring. This young man's intra-uterine and postnatal growth retardation is an aneuploidy effect, whereas his asymmetry reflects a mosaicism effect that should have aroused suspicion of tissue-limited mosaicism before the development of obvious Blaschkolinear skin pigmentary dysplasia.
Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 7 , Deficiências do Desenvolvimento/genética , Mosaicismo/genética , Transtornos da Pigmentação/genética , Trissomia , Adolescente , Bandeamento Cromossômico , Diagnóstico Diferencial , Crescimento/genética , Humanos , Hibridização in Situ Fluorescente , Masculino , Hipotonia Muscular/congênito , SíndromeRESUMO
A pilot health education project stressing prevention and individual responsibility was developed and presented at two high schools. The health record, maintained by the individual, focuses on health maintenance and illness prevention; although it allows for recording illnesses as well. Preliminary results are encouraging. Students were interested in the course and the record and indicated their intent to continue using the record. The article describes the health record, the educational process used and directions for future research.