Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Anal Chem ; 96(16): 6311-6320, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38594017

RESUMO

Schistosomiasis is a neglected tropical disease caused by worm parasites of the genus Schistosoma. Upon infection, parasite eggs can lodge inside of host organs like the liver. This leads to granuloma formation, which is the main cause of the pathology of schistosomiasis. To better understand the different levels of host-pathogen interaction and pathology, our study focused on the characterization of glycosphingolipids (GSLs). For this purpose, GSLs in livers of infected and noninfected hamsters were studied by combining high-spatial-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) with nanoscale hydrophilic interaction liquid chromatography tandem mass spectrometry (nano-HILIC MS/MS). Nano-HILIC MS/MS revealed 60 GSL species with a distinct saccharide and ceramide composition. AP-SMALDI MSI measurements were conducted in positive- and negative-ion mode for the visualization of neutral and acidic GSLs. Based on nano-HILIC MS/MS results, we discovered no downregulated but 50 significantly upregulated GSLs in liver samples of infected hamsters. AP-SMALDI MSI showed that 44 of these GSL species were associated with the granulomas in the liver tissue. Our findings suggest an important role of GSLs during granuloma formation.


Assuntos
Glicoesfingolipídeos , Fígado , Schistosoma mansoni , Esquistossomose mansoni , Animais , Glicoesfingolipídeos/metabolismo , Glicoesfingolipídeos/química , Fígado/metabolismo , Fígado/parasitologia , Cricetinae , Esquistossomose mansoni/parasitologia , Esquistossomose mansoni/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Mesocricetus , Cromatografia Líquida , Masculino
2.
Anal Chem ; 95(31): 11672-11679, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506282

RESUMO

Microglia are non-neuronal cells, which reside in the central nervous system and are known to play an important role in health and disease. We investigated the lipidomic phenotypes of human naïve and stimulated microglia-like cells by atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI). With lateral resolutions between 5 and 1.5 µm pixel size, we were able to chart lipid compositions of individual cells, enabling differentiation of cell lines and stimulation conditions. This allowed us to reveal local lipid heterogeneities in naïve and lipopolysaccharide (LPS)-stimulated cells. We were able to identify individual cells with elevated triglyceride (TG) levels and could show that the number of these TG-enriched cells increased with LPS stimulation as a hallmark for a proinflammatory phenotype. Additionally, the observed local abundance alterations of specific phosphatidylinositols (PIs) indicate a cell specific regulation of the PI metabolism.


Assuntos
Lipopolissacarídeos , Microglia , Humanos , Lipopolissacarídeos/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fosfatidilinositóis , Diferenciação Celular
3.
Plant J ; 106(1): 185-199, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421236

RESUMO

In order to cope with the presence of unfavorable compounds, plants can biotransform xenobiotics, translocate both parent compounds and metabolites, and perform compartmentation and segregation at the cellular or tissue level. Such a scenario also applies to mycotoxins, fungal secondary metabolites with a pre-eminent role in plant infection. In this work, we aimed to describe the effect of the interplay between Zea mays (maize) and aflatoxin B1 (AFB1) at the tissue and organ level. To address this challenge, we used atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) to investigate the biotransformation, localization and subsequent effects of AFB1 on primary and secondary metabolism of healthy maize plants, both in situ and from a metabolomics standpoint. High spatial resolution (5 µm) provided fine localization of AFB1, which was located within the root intercellular spaces, and co-localized with its phase-I metabolite aflatoxin M2. We provided a parallel visualization of maize metabolic changes, induced in different organs and tissues by an accumulation of AFB1. According to our untargeted metabolomics investigation, anthocyanin biosynthesis and chlorophyll metabolism in roots are most affected. The biosynthesis of these metabolites appears to be inhibited by AFB1 accumulation. On the other hand, metabolites found in above-ground organs suggest that the presence of AFB1 may also activate the biochemical response in the absence of an actual fungal infection; indeed, several plant secondary metabolites known for their antimicrobial or antioxidant activities were localized in the outer tissues, such as phenylpropanoids, benzoxazinoids, phytohormones and lipids.


Assuntos
Aflatoxina B1/metabolismo , Zea mays/metabolismo , Aflatoxina B1/genética , Metabolômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Zea mays/genética
4.
Pflugers Arch ; 474(2): 231-242, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34797426

RESUMO

The distribution of atherosclerotic lesions in the aorta and its branches of ApoE knockout (ApoE-/-) mice is like that of patients with atherosclerosis. By using high-resolution MALDI mass spectrometry imaging (MSI), we aimed at characterizing universally applicable physiological biomarkers by comparing the murine lipid marker profile with that of human atherosclerotic arteries. Therefore, the aorta or carotid artery of male ApoE-/- mice at different ages, human arteries with documented atherosclerotic changes originated from amputated limbs, and corresponding controls were analysed. Obtained data were subjected to multivariate statistical analysis to identify potential biomarkers. Thirty-one m/z values corresponding to individual lipid species of cholesterol esters, lysophosphatidylcholines, lysophosphatidylethanolamines, and cholesterol derivatives were found to be specific in aortic atherosclerotic plaques of old ApoE-/- mice. The lipid composition at related vessel positions of young ApoE-/- mice was more comparable with wild-type mice. Twenty-six m/z values of the murine lipid markers were found in human atherosclerotic peripheral arteries but also control vessels and showed a more patient-dependent diverse distribution. Extensive data analysis without marker preselection based on mouse data revealed lysophosphatidylcholine and glucosylated cholesterol species, the latter not being detected in the murine atherosclerotic tissue, as specific potential novel human atherosclerotic vessel markers. Despite the heterogeneous lipid profile of atherosclerotic peripheral arteries derived from human patients, we identified lipids specifically colocalized to atherosclerotic human tissue and plaques in ApoE-/- mice. These data highlight species-dependent differences in lipid profiles between peripheral artery disease and aortic atherosclerosis.


Assuntos
Lipídeos/fisiologia , Placa Aterosclerótica/metabolismo , Animais , Aorta/metabolismo , Doenças da Aorta/metabolismo , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
5.
Anal Chem ; 94(46): 16086-16094, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36355437

RESUMO

Ambient mass spectrometry imaging (MSI) methods come with the advantage of visualizing biomolecules from tissues with no or minimal sample preparation and operation under atmospheric-pressure conditions. Similar to all other MSI methodologies, however, ambient MSI modalities suffer from a pronounced bias toward either polar or nonpolar analytes due to the underlying desorption and ionization mechanisms of the ion source. In this study, we present the design, construction, testing, and application of an in-capillary dielectric barrier discharge (DBD) module for post-ionization of neutrals desorbed by an ambient infrared matrix-assisted laser desorption/ionization (IR-MALDI) MSI source. We demonstrate that the DBD device enhances signal intensities of nonpolar compounds by up to 104 compared to IR-MALDI without affecting transmission of IR-MALDI ions. This allows performing MSI experiments of mouse tissue and Danaus plexippus caterpillar tissue sections, visualizing the distribution of sterols, fatty acids, monoglycerides, and diglycerides that are not detected in IR-MALDI MSI experiments. The pronounced signal enhancement due to IR-MALDI-DBD compared to IR-MALDI MSI enables mapping of nonpolar analytes with pixel resolutions down to 20 µm in mouse brain tissue and to discern the spatial distribution of sterol lipids characteristic for histological regions of D. plexippus.


Assuntos
Química Encefálica , Ácidos Graxos , Animais , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Pressão Atmosférica , Diagnóstico por Imagem
6.
Anal Chem ; 94(46): 15971-15979, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36347515

RESUMO

Spatial metabolomics describes the spatially resolved analysis of interconnected pathways, biochemical reactions, and transport processes of small molecules in the spatial context of tissues and cells. However, a broad range of metabolite classes (e.g., steroids) show low intrinsic ionization efficiencies in mass spectrometry imaging (MSI) experiments, thus restricting the spatial characterization of metabolic networks. Additionally, decomposing complex metabolite networks into chemical compound classes and molecular annotations remains a major bottleneck due to the absence of repository-scaled databases. Here, we describe a multimodal mass-spectrometry-based method combining computational metabolome mining tools and high-resolution on-tissue chemical derivatization (OTCD) MSI for the spatially resolved analysis of metabolic networks at the low micrometer scale. Applied to plant toxin sequestration in Danaus plexippus as a model system, we first utilized liquid chromatography (LC)-MS-based molecular networking in combination with artificial intelligence (AI)-driven chemical characterization to facilitate the structural elucidation and molecular identification of 32 different steroidal glycosides for the host-plant Asclepias curassavica. These comprehensive metabolite annotations guided the subsequent matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) analysis of cardiac-glycoside sequestration in D. plexippus. We developed a spatial-context-preserving OTCD protocol, which improved cardiac glycoside ion yields by at least 1 order of magnitude compared to results with untreated samples. To illustrate the potential of this method, we visualized previously inaccessible (sub)cellular distributions (2 and 5 µm pixel size) of steroidal glycosides in D. plexippus, thereby providing a novel insight into the sequestration of toxic metabolites and guiding future metabolomics research of other complex sample systems.


Assuntos
Inteligência Artificial , Metabolômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Metabolômica/métodos , Metaboloma , Plantas/metabolismo , Glicosídeos/metabolismo
7.
Anal Bioanal Chem ; 414(24): 7223-7241, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36048190

RESUMO

Besides their influence on climate and cloud formation, many organic and inorganic substances in aerosol particles pose a risk to human health. Namely, polycyclic aromatic hydrocarbons (PAH) and heavy metals are suspected to be carcinogenic or acutely toxic. The detection and quantification of such compounds is difficult if only small amounts of particulate matter (PM) are available. In addition, filter samples are often complex and time-consuming to prepare for chromatographic measurements and elemental analysis. Here, we present a method based on high-resolution atmospheric pressure laser desorption ionization mass spectrometry imaging (AP-LDI-MSI) and statistical analysis which allows the analysis and characterization of very small sample quantities (< 30 µg) without any sample preparation. The power and simplicity of the method is demonstrated by two filter samples from heavily polluted mega cities. The samples were collected in Tehran (Iran) and Hangzhou (China) in February 2018. In the course of the measurement, more than 3200 sum formulae were assigned, which allowed a statistical evaluation of colocalized substances within the particles on the filter samples. This resulted in a classification of the different particle types on the filters. Finally, both megacities could be distinguished based on characteristic compounds. In the samples from Tehran, the number of sulphur-containing organic compounds was up to 6 times as high as the samples from Hangzhou, possibly due to the increasing efforts of the Chinese government to reduce sulphur emissions in recent years. Additionally, quantification of 13 PAH species was carried out via standard addition. Especially, the samples from Tehran showed elevated concentrations of PAHs, which in the case of higher-molecular-weight species (> m/z 228) were mostly more than twice as high as in Hangzhou. Both cities showed high levels of heavy metals and potentially harmful organic compounds, although their share of total particulate matter was significantly higher in the samples from Tehran. The pre-treatment of the samples was reduced to a minimum with this method, and only small amounts of particles were required to obtain a comprehensive picture for a specific filter sample. The described method provides faster and better control of air pollution in heavily polluted megacities.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Humanos , Irã (Geográfico) , Lasers , Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Enxofre/análise
8.
Anal Bioanal Chem ; 414(6): 2235-2250, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35083512

RESUMO

Peroxisomes are versatile single membrane-enclosed cytoplasmic organelles, involved in reactive oxygen species (ROS) and lipid metabolism and diverse other metabolic processes. Peroxisomal disorders result from mutations in Pex genes-encoded proteins named peroxins (PEX proteins) and single peroxisomal enzyme deficiencies. The PEX11 protein family (α, ß, and γ isoforms) plays an important role in peroxisomal proliferation and fission. However, their specific functions and the metabolic impact caused by their deficiencies have not been precisely characterized. To understand the systemic molecular alterations caused by peroxisomal defects, here we utilized untreated peroxisomal biogenesis factor 11α knockout (Pex11α KO) mouse model and performed serial relative-quantitative lipidomic, metabolomic, and proteomic analyses of serum, liver, and heart tissue homogenates. We demonstrated significant specific changes in the abundances of multiple lipid species, polar metabolites, and proteins and dysregulated metabolic pathways in distinct biological specimens of the Pex11α KO adult mice in comparison to the wild type (WT) controls. Overall, the present study reports comprehensive semi-quantitative molecular omics information of the Pex11α KO mice, which might serve in the future as a reference for a better understanding of the roles of Pex11α and underlying pathophysiological mechanisms of peroxisomal biogenesis disorders.


Assuntos
Lipidômica , Proteômica , Animais , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout
9.
Anal Bioanal Chem ; 414(12): 3653-3665, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35320368

RESUMO

Schistosomiasis, caused by the human parasite Schistosoma mansoni, is one of the WHO-listed neglected tropical diseases (NTDs), and it has severe impact on morbidity and mortality, especially in Africa. Not only the adult worms but also their eggs are responsible for health problems. Up to 50% of the eggs produced by the female worms are not excreted with the feces but are trapped in the host tissue, such as the liver, where they provoke immune responses and a change in the lipid profile. We built up a database with 372 infection markers found in livers of S. mansoni-infected hamsters, using LC-MS/MS for identification, followed by statistical analysis. Most of them belong to the lipid classes of phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and triglycerides (TGs). We assigned some of these markers to specific anatomical structures by applying high-resolution MALDI MSI to cryosections of hamster liver and generating ion images based on the marker list from the LC-MS/MS experiments. Furthermore, enrichment and depletion of several markers were visualized.


Assuntos
Esquistossomose mansoni , Animais , Cromatografia Líquida , Cricetinae , Feminino , Lipídeos , Fígado , Schistosoma mansoni , Esquistossomose mansoni/parasitologia , Espectrometria de Massas em Tandem
10.
Appl Microbiol Biotechnol ; 106(18): 6095-6107, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36040487

RESUMO

Aldehydes represent a versatile and favored class of flavoring substances. A biocatalytic access to odor-active aldehydes was developed by conversion of fatty acids with two enzymes of the α-dioxygenase pathway. The recombinant enzymes α-dioxygenase (α-DOX) originating from Crocosphaera subtropica and fatty aldehyde dehydrogenase (FALDH) from Vibrio harveyi were heterologously expressed in E. coli, purified, and applied in a coupled (tandem) repetitive reaction. The concept was optimized in terms of number of reaction cycles and production yields. Up to five cycles and aldehyde yields of up to 26% were achieved. Afterward, the approach was applied to sea buckthorn pulp oil as raw material for the enzyme catalyzed production of flavoring/fragrance ingredients based on complex aldehyde mixtures. The most abundant fatty acids in sea buckthorn pulp oil, namely palmitic, palmitoleic, oleic, and linoleic acid, were used as substrates for further biotransformation experiments. Various aldehydes were identified, semi-quantified, and sensorially characterized by means of headspace-solid phase microextraction-gas chromatography-mass spectrometry-olfactometry (HS-SPME-GC-MS-O). Structural validation of unsaturated aldehydes in terms of double-bond positions was performed by multidimensional high-resolution mass spectrometry experiments of their Paternò-Büchi (PB) photoproducts. Retention indices and odor impressions of inter alia (Z,Z)-5,8-tetradecadienal (Z,Z)-6,9-pentadecadienal, (Z)-8-pentadecenal, (Z)-4-tridecenal, (Z)-6-pentadecenal, and (Z)-8-heptadecenal were determined for the first time. KEY POINTS: • Coupled reaction of Csα-DOX and VhFALDH yields chain-shortened fatty aldehydes. • Odors of several Z-unsaturated fatty aldehydes are described for the first time. • Potential for industrial production of aldehyde-based odorants from natural sources.


Assuntos
Dioxigenases , Odorantes , Aldeídos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Odorantes/análise
11.
Parasitol Res ; 121(4): 1145-1153, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35067744

RESUMO

Understanding drug penetration, distribution, and metabolization is fundamental for understanding drug efficacy. This also accounts for parasites during antiparasitic treatment. Recently, we established matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) in blood flukes and liver flukes. This label-free technique is capable of visualizing the molecular distribution of endogenous and exogenous molecules, such as drug compounds. Here, we conducted atmospheric-pressure scanning microprobe MALDI MSI (AP-SMALDI MSI) of tissue sections of adult Fasciola hepatica that have been treated in vitro with 100 µM of triclabendazole (TCBZ), the drug of choice for treatment of fasciolosis, and its main metabolite triclabendazole sulfoxide (TCBZ-SO). Measurements covered an m/z mass range of 250-1,000 and provided a high spatial resolution using a pixel size of 10 µm. To support the interpretation of drug distribution, we first identified endogenous lipids that mark characteristic tissues such as the gastrodermis, the tegument, and the parenchyma. The obtained results suggested an early tegumental route of TCBZ uptake within 20 min, followed by spreading throughout the parasite after 4 h, and an even distribution in most tissues after 12 h. This coincided with a strong reduction of parasite vitality. TCBZ-SO treatment demonstrated the accumulation of this metabolite in the same tissues as the parent drug compound. These data demonstrate the auspicious potential of MALDI MSI to visualize uptake and distribution patterns of drugs or drug-candidate compounds in parasites, which might contribute to preclinical drug discovery in liver fluke research and beyond.


Assuntos
Anti-Helmínticos , Fasciola hepatica , Fasciolíase , Navegação Espacial , Animais , Anti-Helmínticos/uso terapêutico , Benzimidazóis , Fasciola hepatica/metabolismo , Fasciolíase/tratamento farmacológico , Fasciolíase/parasitologia , Espectrometria de Massas
12.
Molecules ; 27(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35209202

RESUMO

Schistosomiasis is a neglected tropical disease affecting more than 200 million people worldwide. Chemotherapy relies on one single drug, praziquantel, which is safe but ineffective at killing larval stages of this parasite. Furthermore, concerns have been expressed about the rise in resistance against this drug. In the absence of an antischistosomal vaccine, it is, therefore, necessary to develop new drugs against the different species of schistosomes. Protein kinases are important molecules involved in key cellular processes such as signaling, growth, and differentiation. The kinome of schistosomes has been studied and the suitability of schistosomal protein kinases as targets demonstrated by RNA interference studies. Although protein kinase inhibitors are mostly used in cancer therapy, e.g., for the treatment of chronic myeloid leukemia or melanoma, they are now being increasingly explored for the treatment of non-oncological conditions, including schistosomiasis. Here, we discuss the various approaches including screening of natural and synthetic compounds, de novo drug development, and drug repurposing in the context of the search for protein kinase inhibitors against schistosomiasis. We discuss the status quo of the development of kinase inhibitors against schistosomal serine/threonine kinases such as polo-like kinases (PLKs) and mitogen-activated protein kinases (MAP kinases), as well as protein tyrosine kinases (PTKs).


Assuntos
Anti-Helmínticos/uso terapêutico , Reposicionamento de Medicamentos , Proteínas de Helminto/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Schistosoma/enzimologia , Esquistossomose , Animais , Proteínas de Helminto/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Esquistossomose/tratamento farmacológico , Esquistossomose/enzimologia
13.
Molecules ; 27(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234944

RESUMO

Cross-linking net aggregates of thermolabile thaumatin-like proteins (TLPs) and chitinases (CHIs) are the primary source of haze in white wines. Although bentonite fining is still routinely used in winemaking, alternative methods to selectively remove haze proteins without affecting wine organoleptic properties are needed. The availability of pure TLPs and CHIs would facilitate the research for the identification of such technological advances. Therefore, we proposed the usage of recombinant TLP (rTLP) and CHI (rCHI), expressed by Komagataella phaffii, as haze-protein models, since they showed similar characteristics (aggregation potential, melting point, functionality, glycosylation levels and bentonite adsorption) to the native-haze proteins from Vitis vinifera. Hence, rTLP and rCHI can be applied to study haze formation mechanisms on a molecular level and to explore alternative fining methods by screening proteolytic enzymes and ideal adsorptive resins.


Assuntos
Quitinases , Vitis , Vinho , Bentonita/metabolismo , Quitinases/genética , Quitinases/metabolismo , Aditivos Alimentares/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Vinho/análise
14.
J Proteome Res ; 20(1): 895-908, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33225711

RESUMO

Saw-scaled or carpet vipers (genus Echis) are considered to cause a higher global snakebite mortality than any other snake. Echis carinatus sochureki (ECS) is a widely distributed snake species, also found across the thirteen provinces of Iran, where it is assumed to be responsible for the most snakebite envenomings. Here, we collected the Iranian specimens of ECS from three different geographically distinct populations, investigated food habits, and performed toxicity assessment and venom proteome profiling to better understand saw-scaled viper life. Our results show that the prey items most commonly found in all populations were arthropods, with scorpions from the family Buthidae particularly well represented. LD50 (median lethal dose) values of the crude venom demonstrate highly comparable venom toxicities in mammals. Consistent with this finding, venom characterization via top-down and bottom-up proteomics, applied to both crude venoms and size-exclusion chromatographic fractions, revealed highly comparable venom compositions among the different populations. By combining all proteomics data, we identified 22 protein families from 102 liquid chromatography and tandem mass spectrometry (LC-MS/MS) raw files, including the most abundant snake venom metalloproteinases (SVMPs, 29-34%); phospholipase A2 (PLA2s, 26-31%); snake venom serine proteinases (SVSPs, 11-12%); l-amino acid oxidases (LAOs, 8-11%), C-type lectins/lectin-like (CTLs, 7-9%) protein families, and many newly detected ones, e.g., renin-like aspartic proteases (RLAPs), fibroblast growth factors (FGFs), peptidyl-prolyl cis-trans isomerases (PPIs), and venom vasodilator peptides (VVPs). Furthermore, we identified and characterized methylated, acetylated, and oxidized proteoforms relating to the PLA2 and disintegrin toxin families and the site of their modifications. It thus seems that post-translational modifications (PTMs) of toxins, particularly target lysine residues, may play an essential role in the structural and functional properties of venom proteins and might be able to influence the therapeutic response of antivenoms, to be investigated in future studies.


Assuntos
Proteômica , Venenos de Víboras , Animais , Cromatografia Líquida , Irã (Geográfico) , Espectrometria de Massas em Tandem , Venenos de Víboras/toxicidade
15.
Analyst ; 146(9): 3004-3015, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949361

RESUMO

We present a handheld liquid extraction pen (LEP) combined with a self-sustaining electrospray ionization platform for ambient mass spectrometry within a laboratory-independent workspace. The LEP enables direct sampling from various surfaces and textures, independent of sample shape without precise sample positioning or dedicated sample preparation. The combination of liquid extraction of analytes through the pen and electrospray ionization (ESI) opens a broad field of applications. Qualitative and semi-quantitative analysis is presented for pesticides, plasticizers and drugs which were analyzed from representative consumer goods, such as fruits, toys and pills. Food authentication via metabolomic fingerprinting and multivariate statistics is demonstrated for the analysis of fish fillets and coffee. The LEP source uses a rechargeable battery to power a compressor. Ambient air is used for solvent nebulization in ESI. Through a pressure pump with integrated solvent reservoir, a solvent flow through the LEP and ESI source is generated. Measurement times of more than three hours are possible. The ion source is adaptable to any kind of mass spectrometer equipped with an atmospheric pressure interface. Measurements were performed on orbital trapping instruments and on a miniature mass spectrometer. Coupled to the miniaturized mass spectrometer, the completely portable LEP-MS instrument has dimensions of 48.4 × 27.0 × 18.0 cm (l × w × h).

16.
Environ Sci Technol ; 55(23): 15940-15949, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34758624

RESUMO

The potential of microplastics to act as a vector for micropollutants of natural or anthropogenic origin is of rising concern. Cyanobacterial toxins, including microcystins, are harmful to humans and wildlife. In this study, we demonstrate for the first time the potential of microplastics to act as vectors for two different microcystin analogues. A concentration of up to 28 times from water to plastic was observed for the combination of polystyrene and microcystin-LF achieving toxin concentrations on the plastic of 142 ± 7 µg g-1. Based on the experimental results, and assuming a worst-case scenario, potential toxin doses for daphnids are calculated based on published microplastic ingestion data. Progressing up through trophic levels, theoretically, the concentration of microcystins in organisms is discussed. The experimental results indicate that adsorption of microcystins onto microplastics is a multifactorial process, depending on the particle size, the variable amino acid composition of the microcystins, the type of plastic, and pH. Furthermore, the results of the current study stressed the limitations of exclusively investigating microcystin-LR (the most commonly studied microcystin congener) as a model compound representing a group of around 250 reported microcystin congeners.


Assuntos
Cianobactérias , Venenos , Toxinas de Cianobactérias , Humanos , Toxinas Marinhas , Microcistinas , Microplásticos , Plásticos
17.
Anal Bioanal Chem ; 413(8): 2125-2134, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33544161

RESUMO

Mass spectrometry-based imaging (MSI) has emerged as a promising method for spatial metabolomics in plant science. Several ionisation techniques have shown great potential for the spatially resolved analysis of metabolites in plant tissue. However, limitations in technology and methodology limited the molecular information for irregular 3D surfaces with resolutions on the micrometre scale. Here, we used atmospheric-pressure 3D-surface matrix-assisted laser desorption/ionisation mass spectrometry imaging (3D-surface MALDI MSI) to investigate plant chemical defence at the topographic molecular level for the model system Asclepias curassavica. Upon mechanical damage (simulating herbivore attacks) of native A. curassavica leaves, the surface of the leaves varies up to 700 µm, and cardiac glycosides (cardenolides) and other defence metabolites were exclusively detected in damaged leaf tissue but not in different regions of the same leaf. Our results indicated an increased latex flow rate towards the point of damage leading to an accumulation of defence substances in the affected area. While the concentration of cardiac glycosides showed no differences between 10 and 300 min after wounding, cardiac glycosides decreased after 24 h. The employed autofocusing AP-SMALDI MSI system provides a significant technological advancement for the visualisation of individual molecule species on irregular 3D surfaces such as native plant leaves. Our study demonstrates the enormous potential of this method in the field of plant science including primary metabolism and molecular mechanisms of plant responses to abiotic and biotic stress and symbiotic relationships.


Assuntos
Asclepias/química , Glicosídeos Cardíacos/análise , Folhas de Planta/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Asclepias/fisiologia , Herbivoria , Folhas de Planta/fisiologia , Estresse Fisiológico
18.
Anal Bioanal Chem ; 413(10): 2755-2766, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33723627

RESUMO

Schistosoma mansoni is a parasitic flatworm causing schistosomiasis, an infectious disease affecting several hundred million people worldwide. Schistosomes live dioeciously, and upon pairing with the male, the female starts massive egg production, which causes pathology. Praziquantel (PZQ) is the only drug used, but it has an inherent risk of resistance development. Therefore, alternatives are needed. In the context of drug repurposing, the cancer drug imatinib was tested, showing high efficacy against S. mansoni in vitro. Besides the gonads, imatinib mainly affected the integrity of the intestine in males and females. In this study, we investigated the potential uptake and distribution of imatinib in adult schistosomes including its distribution kinetics. To this end, we applied for the first time atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) for drug imaging in paired S. mansoni. Our results indicate that imatinib was present in the esophagus and intestine of the male as early as 20 min after in vitro exposure, suggesting an oral uptake route. After one hour, the drug was also found inside the paired female. The detection of the main metabolite, N-desmethyl imatinib, indicated metabolization of the drug. Additionally, a marker signal for the female ovary was successfully applied to facilitate further conclusions regarding organ tropism of imatinib. Our results demonstrate that AP-SMALDI MSI is a useful method to study the uptake, tissue distribution, and metabolization of imatinib in S. mansoni. The results suggest using AP-SMALDI MSI also for investigating other antiparasitic compounds and their metabolites in schistosomes and other parasites.


Assuntos
Antineoplásicos/análise , Antiparasitários/análise , Mesilato de Imatinib/análise , Schistosoma mansoni/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Antineoplásicos/farmacocinética , Antiparasitários/farmacocinética , Reposicionamento de Medicamentos , Feminino , Masculino , Mesocricetus , Schistosoma mansoni/citologia , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia
19.
Nat Methods ; 14(12): 1156-1158, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28945703

RESUMO

We describe an atmospheric pressure matrix-assisted laser desorption-ionization mass spectrometry imaging system that uses long-distance laser triangulation on a micrometer scale to simultaneously obtain topographic and molecular information from 3D surfaces. We studied the topographic distribution of compounds on irregular 3D surfaces of plants and parasites, and we imaged nonplanar tissue sections with high lateral resolution, thereby eliminating height-related signal artifacts.


Assuntos
Flores/química , Imageamento Tridimensional/métodos , Folhas de Planta/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Trematódeos/química , Animais , Pressão Atmosférica , Propriedades de Superfície
20.
Nat Methods ; 14(1): 90-96, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27842060

RESUMO

We report an atmospheric pressure (AP) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) setup with a lateral resolution of 1.4 µm, a mass resolution greater than 100,000, and accuracy below ±2 p.p.m. We achieved this by coupling a focusing objective with a numerical aperture (NA) of 0.9 at 337 nm and a free working distance of 18 mm in coaxial geometry to an orbitrap mass spectrometer and optimizing the matrix application. We demonstrate improvement in image contrast, lateral resolution, and ion yield per unit area compared with a state-of-the-art commercial MSI source. We show that our setup can be used to detect metabolites, lipids, and small peptides, as well as to perform tandem MS experiments with 1.5-µm2 sampling areas. To showcase these capabilities, we identified subcellular lipid, metabolite, and peptide distributions that differentiate, for example, cilia and oral groove in Paramecium caudatum.


Assuntos
Encéfalo/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Rim/metabolismo , Paramecium caudatum/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Pressão Atmosférica , Encéfalo/citologia , Feminino , Rim/citologia , Lipídeos/análise , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Análise de Célula Única/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa