Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.677
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(1): 186-199.e19, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30220457

RESUMO

Mutations or aberrant upregulation of EZH2 occur frequently in human cancers, yet clinical benefits of EZH2 inhibitor (EZH2i) remain unsatisfactory and limited to certain hematological malignancies. We profile global posttranslational histone modification changes across a large panel of cancer cell lines with various sensitivities to EZH2i. We report here oncogenic transcriptional reprogramming mediated by MLL1's interaction with the p300/CBP complex, which directs H3K27me loss to reciprocal H3K27ac gain and restricts EZH2i response. Concurrent inhibition of H3K27me and H3K27ac results in transcriptional repression and MAPK pathway dependency in cancer subsets. In preclinical models encompassing a broad spectrum of EZH2-aberrant solid tumors, a combination of EZH2 and BRD4 inhibitors, or a triple-combination including MAPK inhibition display robust efficacy with very tolerable toxicity. Our results suggest an attractive precision treatment strategy for EZH2-aberrant tumors on the basis of tumor-intrinsic MLL1 expression and concurrent inhibition of epigenetic crosstalk and feedback MAPK activation.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histona-Lisina N-Metiltransferase/fisiologia , Proteína de Leucina Linfoide-Mieloide/fisiologia , Animais , Carcinogênese/genética , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Epigênese Genética/genética , Epigenômica/métodos , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Código das Histonas/efeitos dos fármacos , Código das Histonas/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Ativação Transcricional , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Fatores de Transcrição de p300-CBP/fisiologia
2.
PLoS Biol ; 22(6): e3002661, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829909

RESUMO

Deuterostomes are a monophyletic group of animals that includes Hemichordata, Echinodermata (together called Ambulacraria), and Chordata. The diversity of deuterostome body plans has made it challenging to reconstruct their ancestral condition and to decipher the genetic changes that drove the diversification of deuterostome lineages. Here, we generate chromosome-level genome assemblies of 2 hemichordate species, Ptychodera flava and Schizocardium californicum, and use comparative genomic approaches to infer the chromosomal architecture of the deuterostome common ancestor and delineate lineage-specific chromosomal modifications. We show that hemichordate chromosomes (1N = 23) exhibit remarkable chromosome-scale macrosynteny when compared to other deuterostomes and can be derived from 24 deuterostome ancestral linkage groups (ALGs). These deuterostome ALGs in turn match previously inferred bilaterian ALGs, consistent with a relatively short transition from the last common bilaterian ancestor to the origin of deuterostomes. Based on this deuterostome ALG complement, we deduced chromosomal rearrangement events that occurred in different lineages. For example, a fusion-with-mixing event produced an Ambulacraria-specific ALG that subsequently split into 2 chromosomes in extant hemichordates, while this homologous ALG further fused with another chromosome in sea urchins. Orthologous genes distributed in these rearranged chromosomes are enriched for functions in various developmental processes. We found that the deeply conserved Hox clusters are located in highly rearranged chromosomes and that maintenance of the clusters are likely due to lower densities of transposable elements within the clusters. We also provide evidence that the deuterostome-specific pharyngeal gene cluster was established via the combination of 3 pre-assembled microsyntenic blocks. We suggest that since chromosomal rearrangement events and formation of new gene clusters may change the regulatory controls of developmental genes, these events may have contributed to the evolution of diverse body plans among deuterostomes.


Assuntos
Cromossomos , Evolução Molecular , Genoma , Filogenia , Animais , Cromossomos/genética , Genoma/genética , Sintenia , Ligação Genética , Cordados/genética
3.
Cell ; 145(2): 183-97, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21477851

RESUMO

The embryonic stem (ES) cell transcriptional and chromatin-modifying networks are critical for self-renewal maintenance. However, it remains unclear whether these networks functionally interact and, if so, what factors mediate such interactions. Here, we show that WD repeat domain 5 (Wdr5), a core member of the mammalian Trithorax (trxG) complex, positively correlates with the undifferentiated state and is a regulator of ES cell self-renewal. We demonstrate that Wdr5, an "effector" of H3K4 methylation, interacts with the pluripotency transcription factor Oct4. Genome-wide protein localization and transcriptome analyses demonstrate overlapping gene regulatory functions between Oct4 and Wdr5. The Oct4-Sox2-Nanog circuitry and trxG cooperate in activating transcription of key self-renewal regulators, and furthermore, Wdr5 expression is required for the efficient formation of induced pluripotent stem (iPS) cells. We propose an integrated model of transcriptional and epigenetic control, mediated by select trxG members, for the maintenance of ES cell self-renewal and somatic cell reprogramming.


Assuntos
Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Proteínas/metabolismo , Animais , Imunoprecipitação da Cromatina , Células-Tronco Embrionárias/citologia , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Metilação , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Análise de Sequência de DNA , Ativação Transcricional
4.
Mol Cell ; 70(1): 136-149.e7, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625034

RESUMO

Insect herbivory causes severe damage to plants and threatens the world's food production. During evolutionary adaptation, plants have evolved sophisticated mechanisms to rapidly accumulate a key defense hormone, jasmonate (JA), that triggers plant defense against herbivory. However, little is known about how plants initially activate JA biosynthesis at encounter with herbivory. Here, we uncover that a novel JAV1-JAZ8-WRKY51 (JJW) complex controls JA biosynthesis to defend against insect attack. In healthy plants, the JJW complex represses JA biosynthesis to restrain JA at a low basal level to ensure proper plant growth. When plants are injured by insect attack, injury rapidly triggers calcium influxes to activate calmodulin-dependent phosphorylation of JAV1, which disintegrates JJW complex and activates JA biosynthesis, giving rise to the rapid burst of JA for plant defense. Our findings offer new insights into the highly sophisticated defense systems evolved by plants to defend against herbivory.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas Correpressoras/metabolismo , Ciclopentanos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Spodoptera/fisiologia , Fatores de Transcrição/metabolismo , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sinalização do Cálcio , Calmodulina/genética , Proteínas Correpressoras/genética , Regulação da Expressão Gênica de Plantas , Herbivoria , Peptídeos e Proteínas de Sinalização Intracelular/genética , Complexos Multiproteicos , Fosforilação , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética
5.
Proc Natl Acad Sci U S A ; 120(45): e2205463120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37917793

RESUMO

Zero-knowledge proof (ZKP) is a fundamental cryptographic primitive that allows a prover to convince a verifier of the validity of a statement without leaking any further information. As an efficient variant of ZKP, noninteractive zero-knowledge proof (NIZKP) adopting the Fiat-Shamir heuristic is essential to a wide spectrum of applications, such as federated learning, blockchain, and social networks. However, the heuristic is typically built upon the random oracle model that makes ideal assumptions about hash functions, which does not hold in reality and thus undermines the security of the protocol. Here, we present a quantum solution to the problem. Instead of resorting to a random oracle model, we implement a quantum randomness service. This service generates random numbers certified by the loophole-free Bell test and delivers them with postquantum cryptography (PQC) authentication. By employing this service, we conceive and implement NIZKP of the three-coloring problem. By bridging together three prominent research themes, quantum nonlocality, PQC, and ZKP, we anticipate this work to inspire more innovative applications that combine quantum information science and the cryptography field.

6.
Lancet ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38996463

RESUMO

BACKGROUND: Outcomes are poor for patients with large B-cell lymphoma who relapse after CD19-directed chimeric antigen receptor (CAR) T-cell therapy (CAR19). CD22 is a nearly universally expressed B-cell surface antigen and the efficacy of a CD22-directed CAR T-cell therapy (CAR22) in large B-cell lymphoma is unknown, which was what we aimed to examine in this study. METHODS: In this single centre, open-label, dose-escalation phase 1 trial, we intravenously administered CAR22 at two dose levels (1 million and 3 million CAR22-positive T cells per kg of bodyweight) to adult patients (aged ≥18 years) who relapsed after CAR19 or had CD19-negative large B-cell lymphoma. The primary endpoints were manufacturing feasibility, safety measured by the incidence and severity of adverse events and dose-limiting toxicities, and identification of the maximum tolerated dose (ie, the recommended phase 2 dose). This study is registered with ClinicalTrials.gov (NCT04088890) and is active, but closed for enrolment. FINDINGS: From Oct 17, 2019, to Oct 19, 2022, a total of 41 patients were assessed for eligibility; however, one patient withdrew. 40 patients underwent leukapheresis and 38 (95%) had CAR T-cell products manufactured successfully. The median age was 65 years (range 25-84), 17 (45%) were women, 32 (84%) had elevated pretreatment lactate dehydrogenase, 11 (29%) had refractory disease to all previous therapies, and patients had received a median of four lines of previous therapy (range 3-8). Of the 38 patients treated, 37 (97%) had relapsed after previous CAR19. The identified maximum tolerated dose was 1 million CAR T cells per kg. Of 29 patients who received the maximum tolerated dose, no patients developed a dose-limiting toxicity or grade 3 or higher cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, or immune effector cell-associated haemophagocytic lymphohistiocytosis-like syndrome. INTERPRETATION: This trial identifies CD22 as an immunotherapeutic target in large B-cell lymphoma and demonstrates the durable clinical activity of CAR22 in patients with disease progression after CAR19 therapy. Although these findings are promising, it is essential to recognise that this is a phase 1 dose-finding study. Further investigations are warranted to establish the long-term efficacy and to delineate the patient subgroups that will derive the most benefit from this therapeutic approach. FUNDING: National Cancer Institute, National Institutes of Health, Stanford Cancer Institute, Leukemia & Lymphoma Society, Parker Institute for Cancer Immunotherapy, Lymph & Co, and the European Hematology Association.

7.
Proc Natl Acad Sci U S A ; 119(11): e2114802119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263228

RESUMO

SignificanceIn this manuscript, we address an essential question in developmental and evolutionary biology: How have changes in gene regulatory networks contributed to the invertebrate-to-vertebrate transition? To address this issue, we perturbed four signaling pathways critical for body plan formation in the cephalochordate amphioxus and in zebrafish and compared the effects of such perturbations on gene expression and gene regulation in both species. Our data reveal that many developmental genes have gained response to these signaling pathways in the vertebrate lineage. Moreover, we show that the interconnectivity between these pathways is much higher in zebrafish than in amphioxus. We conclude that this increased signaling pathway complexity likely contributed to vertebrate morphological novelties during evolution.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Anfioxos , Peixe-Zebra , Animais , Evolução Biológica , Gastrulação/genética , Anfioxos/embriologia , Anfioxos/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética
8.
Nano Lett ; 24(17): 5332-5341, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634554

RESUMO

Alloying-type anode materials provide high capacity for lithium-ion batteries; however, they suffer pulverization problems resulting from the volume change during cycling. Realizing the cycling reversibility of these anodes is therefore critical for sustaining their electrochemical performance. Here, we investigate the structural reversibility of Sn NPs during cycling at atomic-level resolution utilizing in situ high-resolution TEM. We observed a surprisingly near-perfect structural reversibility after a complete cycle. A three-step phase transition happens during lithiation, accompanied by the generation of a significant number of defects, grain boundaries, and up to 202% volume expansion. In subsequent delithiation, the volume, morphology, and crystallinity of the Sn NPs were restored to their initial state. Theoretical calculations show that compressive stress drives the removal of vacancies generated within the NPs during delithiation, therefore maintaining their intact morphology. This work demonstrates that removing vacancies during cycling can efficiently improve the structural reversibility of high-capacity anode materials.

9.
J Am Chem Soc ; 146(22): 15085-15095, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776232

RESUMO

The spleen emerges as a pivotal target for mRNA delivery, prompting a continual quest for specialized and efficient lipid nanoparticles (LNPs) designed to enhance spleen-selective transfection efficiency. Here we report imidazole-containing ionizable lipids (IMILs) that demonstrate a pronounced preference for mRNA delivery into the spleen with exceptional transfection efficiency. We optimized IMIL structures by constructing and screening a multidimensional IMIL library containing multiple heads, tails, and linkers to perform a structure-activity correlation analysis. Following high-throughput in vivo screening, we identified A3B7C2 as a top-performing IMIL in spleen-specific mRNA delivery via the formulated LNPs, achieving a remarkable 98% proportion of splenic transfection. Moreover, A3B7C2-based LNPs are particularly potent in splenic dendritic cell transfection. Comparative analyses revealed that A3B7C2-based LNPs achieved a notable 2.8-fold and 12.9-fold increase in splenic mRNA transfection compared to SM102 and DLin-MC3-DMA lipid formulations, respectively. Additionally, our approach yielded an 18.3-fold enhancement in splenic mRNA expression compared to the SORT method without introducing additional anionic lipids. Collectively, these IMILs highlight promising avenues for further research in spleen-selective mRNA delivery. This work offers valuable insights for the swift discovery and rational design of ionizable lipid candidates tailored for spleen-selective transfection, thereby facilitating the application of mRNA therapeutics in spleen-related interventions.


Assuntos
Imidazóis , Lipídeos , RNA Mensageiro , Baço , Baço/metabolismo , Imidazóis/química , Lipídeos/química , Lipídeos/síntese química , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Animais , Camundongos , Transfecção/métodos , Nanopartículas/química , Estrutura Molecular
10.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37850912

RESUMO

A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Homeodomínio , Animais , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Imunidade Adaptativa/genética
11.
Anal Chem ; 96(14): 5669-5676, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38527906

RESUMO

Europium ions (Eu3+) have been utilized as a fluorescence-sensing probe for a variety of analytes, including tetracycline (TC). When Eu3+ is chelated with TC, its fluorescence can be greatly enhanced. Moreover, Eu3+ possesses 6 unpaired electrons in its f orbital, which makes it paramagnetic. Being a hard acid, Eu3+ can chelate with hard bases, such as oxygen-containing functional groups (e.g., phosphates and carboxylates), present on the cell surface of pathogenic bacteria. Due to these properties, in this study, Eu3+ was explored as a magnetic-trapping and sensing probe against pathogenic bacteria present in complex samples. Eu3+ was used as a magnetic probe to trap bacteria such as Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Acinetobacter baumannii, Bacillus cereus, and Pseudomonas aeruginosa. The addition of TC facilitated the easy detection of magnetic Eu3+-bacterium conjugates through fluorescence spectroscopy, with a detection limit of approximately ∼104 CFU mL-1. Additionally, matrix-assisted laser desorption/ionization mass spectrometry was employed to differentiate bacteria tapped by our magnetic probes.


Assuntos
Európio , Tetraciclina , Európio/química , Fluorescência , Antibacterianos , Staphylococcus aureus/química , Corantes Fluorescentes/química , Espectrometria de Fluorescência
12.
Cancer Immunol Immunother ; 73(3): 60, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400933

RESUMO

Over the past decade, US Food and Drug Administration (FDA)-approved immune checkpoint inhibitors that target programmed death-1 (PD-1) have demonstrated significant clinical benefit particularly in patients with PD-L1 expressing tumors. Toripalimab is a humanized anti-PD-1 antibody, approved by FDA for first-line treatment of nasopharyngeal carcinoma in combination with chemotherapy. In a post hoc analysis of phase 3 studies, toripalimab in combination with chemotherapy improved overall survival irrespective of PD-L1 status in nasopharyngeal carcinoma (JUPITER-02), advanced non-small cell lung cancer (CHOICE-01) and advanced esophageal squamous cell carcinoma (JUPITER-06). On further characterization, we determined that toripalimab is molecularly and functionally differentiated from pembrolizumab, an anti-PD-1 mAb approved previously for treating a wide spectrum of tumors. Toripalimab, which binds the FG loop of PD-1, has 12-fold higher binding affinity to PD-1 than pembrolizumab and promotes significantly more Th1- and myeloid-derived inflammatory cytokine responses in healthy human PBMCs in vitro. In an ex vivo system employing dissociated tumor cells from treatment naïve non-small cell lung cancer patients, toripalimab induced several unique genes in IFN-γ and immune cell pathways, showed different kinetics of activation and significantly enhanced IFN-γ signature. Additionally, binding of toripalimab to PD-1 induced lower levels of SHP1 and SHP2 recruitment, the negative regulators of T cell activation, in Jurkat T cells ectopically expressing PD-1. Taken together, these data demonstrate that toripalimab is a potent anti-PD-1 antibody with high affinity PD-1 binding, strong functional attributes and demonstrated clinical activity that encourage its continued clinical investigation in several types of cancer.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias Pulmonares , Neoplasias Nasofaríngeas , Humanos , Anticorpos Monoclonais/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Nasofaríngeo , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Linfócitos T/patologia
13.
Breast Cancer Res Treat ; 205(3): 425-438, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492162

RESUMO

PURPOSE: Depression is one of the main psychological responses experienced by patients with breast cancer perioperatively. Therefore, this review aimed to synthesize the prevalence rate of depression preoperatively among patients with breast cancer. METHODS: Six databases were searched for published articles, which recruited female patients aged 18 years and above, diagnosed with breast cancer and planned for breast surgery. Grey literatures were searched from ProQuest Theses and Dissertations, Science.gov and CogPrints. Studies published in English from the inception of databases to January 2023 were considered. Two reviewers screened, extracted, and appraised the data independently. Joanna Briggs Institute data collection form was used for data collection. Hoy's Risk of Bias Tool was utilized to assess the individual study's quality. Review Manager 5.4 software was utilized for meta-analysis. Subgroup analyses were conducted to explore the reasons for any heterogeneity. Publication bias was evaluated by Egger's test and funnel plot. RESULTS: Twenty studies involving 32,143 patients with breast cancer were included. Meta-analyses revealed an overall preoperative prevalence of 30% among all studies. Subgroup analyses showed that studies conducted in the Middle East and North Africa used purposive sampling, with patients undergoing mastectomy and lumpectomy and with moderate risk of bias reported higher prevalence of preoperative depression (54%, 44%, 40%, and 49%, respectively) as compared to other respective subgroups. CONCLUSION: The high prevalence of preoperative depression among women with breast cancer indicated the need for health care professionals to provide more psychological support to them.


Assuntos
Neoplasias da Mama , Depressão , Mastectomia , Humanos , Feminino , Neoplasias da Mama/cirurgia , Neoplasias da Mama/psicologia , Neoplasias da Mama/epidemiologia , Prevalência , Depressão/epidemiologia , Depressão/etiologia , Depressão/psicologia , Mastectomia/psicologia , Fatores de Risco , Período Pré-Operatório
14.
Small ; 20(22): e2308851, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38112252

RESUMO

Vanadium oxides have aroused attention as cathode materials in aqueous zinc-ion batteries (AZIBs) due to their low cost and high safety. However, low ion diffusion and vanadium dissolution often lead to capacity decay and deteriorating stability during cycling. Herein, vanadium dioxides (VO2) nanobelts are coated with a single-atom cobalt dispersed N-doped carbon (Co-N-C) layer via a facile calcination strategy to form Co-N-C layer coated VO2 nanobelts (VO2@Co-N-C NBs) for cathodes in AZIBs. Various in-/ex situ characterizations demonstrate the interfaces between VO2 layers and Co-N-C layers can protect the VO2 NBs from collapsing, increase ion diffusion, and enhance the Zn2+ storage performance. Additional density functional theory (DFT) simulations demonstrate that Co─O─V bonds between VO2 and Co-N-C layers can enhance interfacial Zn2+ storage. Moreover, the VO2@Co-N-C NBs provided an ultrahigh capacity (418.7 mAh g-1 at 1 A g-1), outstanding long-term stability (over 8000 cycles at 20 A g-1), and superior rate performance.

15.
Int Arch Allergy Immunol ; 185(5): 480-488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38387446

RESUMO

INTRODUCTION: Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a recently discovered inhibitor of matrix metalloproteinase (MMP). There is a large number of chronic obstructive pulmonary disease (COPD) patients worldwide; however, the role of RECK on COPD has not been studied. This study explored the expression of RECK in COPD patients and its effect on neutrophil function to provide a new scientific basis for the prevention and treatment of COPD. METHOD: Fifty patients with acute exacerbation of COPD and fifty healthy controls were enrolled in the study. RECK was detected in lung tissue, sputum, and plasma of subjects as well as in BEAS-2B cells stimulated with cigarette smoke extract (CSE) by immunohistochemistry, ELISA, and qRT-PCR. Meanwhile, lung function (FEV1%pred) and inflammatory cytokines (IL-6 and IL-8) were examined, and correlation analysis was performed with RECK expression. The effect of RECK on proliferation, apoptosis, migration, and inflammatory cytokines and its potential mechanism was further quantified by neutrophil stimulated with recombinant human RECK protein (rhRECK) combined with CSE using CCK8, flow cytometry, Transwell assay, qRT-PCR, ELISA, and Western analysis. RESULTS: RECK was mainly expressed on airway epithelial cells in normal lung tissue and was significantly diminished in COPD patients. The levels of RECK in sputum and plasma were also significantly decreased in COPD patients. Pearson correlation analysis showed that RECK level in plasma was positively correlated with FEV1%pred (r = 0.458, p < 0.001) and negatively correlated with IL-6 and IL-8 (r = -0.386, -0.437; p = 0.006, 0.002) in COPD patients. The expression of RECK was decreased in BEAS-2B stimulated with CSE. The migration, inflammation, and MMP-9 expression of neutrophils were promoted by CSE, while inhibited by rhRECK. CONCLUSION: RECK is low expressed in COPD patients and negatively correlated with inflammation. It may inhibit the inflammation and migration of neutrophils by downregulating MMP-9.


Assuntos
Proteínas Ligadas por GPI , Neutrófilos , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/imunologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Citocinas/metabolismo , Escarro/metabolismo , Escarro/imunologia , Linhagem Celular , Inflamação/metabolismo , Apoptose , Movimento Celular , Pulmão/imunologia , Pulmão/patologia , Pulmão/metabolismo
16.
Circ Res ; 130(1): 112-129, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34816743

RESUMO

BACKGROUND: Mutations in genes encoding sarcomeric proteins lead to failures in sarcomere assembly, the building blocks of contracting muscles, resulting in cardiomyopathies that are a leading cause of morbidity and mortality worldwide. Splicing variants of sarcomeric proteins are crucial at different stages of myofibrillogenesis, accounting for sarcomeric structural integrity. RBM24 (RNA-binding motif protein 24) is known as a tissue-specific splicing regulator that plays an essential role in cardiogenesis. However, it had been unclear if the developmental stage-specific alternative splicing facilitated by RBM24 contributes to sarcomere assembly and cardiogenesis. Our aim is to study the molecular mechanism by which RBM24 regulates cardiogenesis and sarcomere assembly in a temporal-dependent manner. METHODS: We ablated RBM24 from human embryonic stem cells (hESCs) using CRISPR/Cas9 techniques. RESULTS: Although RBM24-/- hESCs still differentiated into sarcomere-hosting cardiomyocytes, they exhibited disrupted sarcomeric structures with punctate Z-lines due to impaired myosin replacement during early myofibrillogenesis. Transcriptomics revealed >4000 genes regulated by RBM24. Among them, core myofibrillogenesis proteins (eg, ACTN2 [α-actinin 2], TTN [titin], and MYH10 [non-muscle myosin IIB]) were misspliced. Consequently, MYH6 (muscle myosin II) cannot replace nonmuscle myosin MYH10, leading to myofibrillogenesis arrest at the early premyofibril stage and causing disrupted sarcomeres. Intriguingly, we found that the ABD (actin-binding domain; encoded by exon 6) of the Z-line anchor protein ACTN2 is predominantly excluded from early cardiac differentiation, whereas it is consistently included in human adult heart. CRISPR/Cas9-mediated deletion of exon 6 from ACTN2 in hESCs, as well as forced expression of full-length ACTN2 in RBM24-/- hESCs, further corroborated that inclusion of exon 6 is critical for sarcomere assembly. Overall, we have demonstrated that RBM24-facilitated inclusion of exon 6 in ACTN2 at distinct stages of cardiac differentiation is evolutionarily conserved and crucial to sarcomere assembly and integrity. CONCLUSIONS: RBM24 acts as a master regulator to modulate the temporal dynamics of core myofibrillogenesis genes and thereby orchestrates sarcomere organization.


Assuntos
Processamento Alternativo , Células-Tronco Embrionárias Humanas/metabolismo , Desenvolvimento Muscular , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Actinina/genética , Actinina/metabolismo , Diferenciação Celular , Linhagem Celular , Conectina/genética , Conectina/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Miócitos Cardíacos/citologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIB/genética , Miosina não Muscular Tipo IIB/metabolismo , Proteínas de Ligação a RNA/genética
17.
Biomacromolecules ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935055

RESUMO

Postoperative tissue adhesion and poor tendon healing are major clinical problems associated with tendon surgery. To avoid postoperative adhesion and promote tendon healing, we developed and synthesized a membrane to wrap the surgical site after tendon suturing. The bilayer-structured porous membrane comprised an outer layer [1,4-butanediol diglycidyl ether cross-linked with carboxymethyl cellulose (CX)] and an inner layer [1,4-butanediol diglycidyl ether cross-linked with Bletilla striata polysaccharides and carboxymethyl cellulose (CXB)]. The morphology, chemical functional groups, and membrane structure were determined. In vitro experiments revealed that the CX/CXB membrane demonstrated good biosafety and biodegradability, promoted tenocyte proliferation and migration, and exhibited low cell attachment and anti-inflammatory effects. Furthermore, in in vivo animal study, the CX/CXB membrane effectively reduced postoperative tendon-peripheral tissue adhesion and improved tendon repair, downregulating inflammatory cytokines in the tendon tissue at the surgical site, which ultimately increased tendon strength by 54% after 4 weeks.

18.
BMC Psychiatry ; 24(1): 433, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858652

RESUMO

BACKGROUND: Objective and quantifiable markers are crucial for developing novel therapeutics for mental disorders by 1) stratifying clinically similar patients with different underlying neurobiological deficits and 2) objectively tracking disease trajectory and treatment response. Schizophrenia is often confounded with other psychiatric disorders, especially bipolar disorder, if based on cross-sectional symptoms. Awake and sleep EEG have shown promise in identifying neurophysiological differences as biomarkers for schizophrenia. However, most previous studies, while useful, were conducted in European and American populations, had small sample sizes, and utilized varying analytic methods, limiting comprehensive analyses or generalizability to diverse human populations. Furthermore, the extent to which wake and sleep neurophysiology metrics correlate with each other and with symptom severity or cognitive impairment remains unresolved. Moreover, how these neurophysiological markers compare across psychiatric conditions is not well characterized. The utility of biomarkers in clinical trials and practice would be significantly advanced by well-powered transdiagnostic studies. The Global Research Initiative on the Neurophysiology of Schizophrenia (GRINS) project aims to address these questions through a large, multi-center cohort study involving East Asian populations. To promote transparency and reproducibility, we describe the protocol for the GRINS project. METHODS: The research procedure consists of an initial screening interview followed by three subsequent sessions: an introductory interview, an evaluation visit, and an overnight neurophysiological recording session. Data from multiple domains, including demographic and clinical characteristics, behavioral performance (cognitive tasks, motor sequence tasks), and neurophysiological metrics (both awake and sleep electroencephalography), are collected by research groups specialized in each domain. CONCLUSION: Pilot results from the GRINS project demonstrate the feasibility of this study protocol and highlight the importance of such research, as well as its potential to study a broader range of patients with psychiatric conditions. Through GRINS, we are generating a valuable dataset across multiple domains to identify neurophysiological markers of schizophrenia individually and in combination. By applying this protocol to related mental disorders often confounded with each other, we can gather information that offers insight into the neurophysiological characteristics and underlying mechanisms of these severe conditions, informing objective diagnosis, stratification for clinical research, and ultimately, the development of better-targeted treatment matching in the clinic.


Assuntos
Eletroencefalografia , Esquizofrenia , Humanos , Esquizofrenia/fisiopatologia , Esquizofrenia/diagnóstico , Eletroencefalografia/métodos , Sono/fisiologia , Projetos de Pesquisa , Neurofisiologia/métodos , Adulto , Masculino , Feminino , Biomarcadores , Estudos de Coortes
19.
Med Sci Monit ; 30: e943360, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38715343

RESUMO

BACKGROUND Aberrant lipid metabolism alterations in skin tissue, blood, or urine have been implicated in psoriasis. Here, we examined lipid metabolites related to psoriasis and their association with the age of disease onset. MATERIAL AND METHODS Differences in lipid metabolites before and after methotrexate (MTX) treatment were evaluated. The discovery cohort and validation cohort consisted of 50 and 46 patients, respectively, with moderate-to-severe psoriasis. After MTX treatment, the patients were divided into response (Psoriasis Area and Severity Index [PASI] 75 and above) and non-response (PASI below 75) groups, blood was collected for serum metabolomics, and multivariate statistical analysis was performed. RESULTS We detected 1546 lipid metabolites. The proportion of the top 3 metabolites was as follows: triglycerides (TG, 34.8%), phospholipids (PE, 14.5%), phosphatidylcholine (PC, 12.4%); diglycerides (DG) (16: 1/18: 1), and DG (18: 1/18: 1) showed strong positive correlations with onset age. There were marked changes in TG (16: 0/18: 0/20: 0), TG (18: 0/18: 0/22: 0), TG (14: 0/18: 0/22: 0), TG (14: 0/20: 0/20: 0), lysophosphatidylcholine (LPC) (16: 0/0: 0), LPC (18: 0/0: 0), LPC (14: 0/0: 0), and LPC (18: 1/0: 0) levels before and after 12 weeks of MTX treatment. The glycerophospholipid metabolic pathway was implicated in psoriasis development. Of the 96 recruited patients, 35% were MTX responders and 65% non-responders. PE (34: 4) and PE (38: 1) levels were significantly different between the groups. Obvious differences in lipid metabolism were found between early-onset (<40 years) and late-onset (≥40 years) psoriasis. Significant changes in serum lipid profile before and after MTX treatment were observed. CONCLUSIONS The specific lipid level changes in responders may serve as an index for MTX treatment efficacy evaluation.


Assuntos
Metabolismo dos Lipídeos , Metabolômica , Metotrexato , Psoríase , Índice de Gravidade de Doença , Humanos , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Psoríase/sangue , Metotrexato/uso terapêutico , Masculino , Feminino , Metabolômica/métodos , Pessoa de Meia-Idade , Adulto , Metabolismo dos Lipídeos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Lipídeos/sangue , Idoso
20.
Artigo em Inglês | MEDLINE | ID: mdl-38909990

RESUMO

BACKGROUND: This study was designed to assess stress levels and related factors during the coronavirus disease 2019 (COVID-19) epidemic among individuals in centralized quarantine camps in Wenzhou, China. METHODS: The survey was conducted using a questionnaire. The questionnaire included questions on sociodemographic characteristics, life events related to the COVID-19 and stressful situations, as well as Perceived Stress Scale-14. Participants included close contacts of patients with COVID-19 or at-risk individuals in quarantine camps. Multivariate logistic regression was used to analyze different factors affecting perceived stress. RESULTS: The prevalence of high stress among quarantine camp participants was 37.45%. Of the 881 respondents, 51.99% were concerned about the difficulty of controlling the epidemic, 46.20% were concerned about the health of themselves and their family members and 39.61% were concerned about not being able to leave their homes. Multivariate logistic regression analysis revealed statistically significant differences in the prevalence of stress among different groups for certain variables, including occupation, education level and knowledge of COVID-19 (all P < 0.05). Our study found that at-risk individuals and close contacts experienced high levels of stress in quarantine camps during the COVID-19 pandemic. CONCLUSIONS: These findings suggest that centralized quarantine policies should be adapted and optimized to minimize negative psychological effects on quarantined individuals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa