Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Parasitol Res ; 119(6): 1925-1941, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279093

RESUMO

Toxoplasmosis is a common parasitic disease caused by Toxoplasma gondii. Limitations of available treatments motivate the search for better therapies for toxoplasmosis. In this study, we synthesized a series of new imidazole derivatives: bis-imidazoles (compounds 1-8), phenyl-substituted 1H-imidazoles (compounds 9-19), and thiopene-imidazoles (compounds 20-26). All these compounds were assessed for in vitro potential to restrict the growth of T. gondii. To explore the structure-activity relationships, molecular analyses and bioactivity prediction studies were performed using a standard molecular model. The in vitro results, in combination with the predictive model, revealed that the imidazole derivatives have excellent selectivity activity against T. gondii versus the host cells. Of the 26 compounds screened, five imidazole derivatives (compounds 10, 11, 18, 20, and 21) shared a specific structural moiety and exhibited significantly high selectivity (> 1176 to > 27,666) towards the parasite versus the host cells. These imidazole derivatives are potential candidates for further studies. We show evidence that supports the antiparasitic action of the imidazole derivatives. The findings are promising in that they reinforce the prospects of imidazole derivatives as alternative and effective antiparasitic therapy as well as providing evidence for a probable biological mechanism.


Assuntos
Antiparasitários/química , Antiparasitários/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Toxoplasma/efeitos dos fármacos , Animais , Células Cultivadas , Humanos , Imidazóis/síntese química , Modelos Moleculares , Relação Estrutura-Atividade , Toxoplasmose/parasitologia
2.
PLoS Pathog ; 13(4): e1006341, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28426751

RESUMO

Microsporidia have been identified as pathogens that have important effects on our health, food security and economy. A key to the success of these obligate intracellular pathogens is their unique invasion organelle, the polar tube, which delivers the nucleus containing sporoplasm into host cells during invasion. Due to the size of the polar tube, the rapidity of polar tube discharge and sporoplasm passage, and the absence of genetic techniques for the manipulation of microsporidia, study of this organelle has been difficult and there is relatively little known regarding polar tube formation and the function of the proteins making up this structure. Herein, we have characterized polar tube protein 4 (PTP4) from the microsporidium Encephalitozoon hellem and found that a monoclonal antibody to PTP4 labels the tip of the polar tube suggesting that PTP4 might be involved in a direct interaction with host cell proteins during invasion. Further analyses employing indirect immunofluorescence (IFA), enzyme-linked immunosorbent (ELISA) and fluorescence-activated cell sorting (FACS) assays confirmed that PTP4 binds to mammalian cells. The addition of either recombinant PTP4 protein or anti-PTP4 antibody reduced microsporidian infection of its host cells in vitro. Proteomic analysis of PTP4 bound to host cell membranes purified by immunoprecipitation identified transferrin receptor 1 (TfR1) as a potential host cell interacting partner for PTP4. Additional experiments revealed that knocking out TfR1, adding TfR1 recombinant protein into cell culture, or adding anti-TfR1 antibody into cell culture significantly reduced microsporidian infection rates. These results indicate that PTP4 is an important protein competent of the polar tube involved in the mechanism of host cell infection utilized by these pathogens.


Assuntos
Anticorpos Antifúngicos/imunologia , Encephalitozoon/genética , Encefalitozoonose/microbiologia , Proteínas Fúngicas/metabolismo , Proteômica , Animais , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Encephalitozoon/imunologia , Encephalitozoon/patogenicidade , Encephalitozoon/ultraestrutura , Encefalitozoonose/patologia , Proteínas Fúngicas/genética , Organelas/metabolismo , Organelas/ultraestrutura , Coelhos , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Proteínas Recombinantes , Esporos Fúngicos/ultraestrutura
3.
Folia Parasitol (Praha) ; 662019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30799835

RESUMO

Toxoplasmosis is a common parasitic disease caused by Toxoplasma gondii (Nicolle et Manceaux, 1908), an obligate parasite capable of infecting a range of cell types in almost all warm-blooded animals. Upon infecting an intermediate host, the parasites differentiate into tachyzoites which rapidly infect host tissues. Usually, the invading parasites are cleared by the immune system and administered drugs, but some tachyzoites differentiate into bradyzoites forming tissue cysts. These tissue cysts could serve as a source for re-infection and exacerbations. Currently, treatment for toxoplasmosis is limited and, moreover, there are no drugs for treating the cystic stage thus rendering toxoplasmosis a global burden. Recently, we demonstrated that inorganic nanoparticles showed promising activity against the tachyzoite stage T. gondii. In the present study, we evaluated nanoparticles for effect on bradyzoite formation in vitro. Data revealed that the nanoparticles limited bradyzoite burden in vitro. Further, the nanoparticles decreased the bradyzoite-specific BAG-1 promoter activity relative to the untreated control under a bradyzoite-inducing culture condition, even though this reduction in BAG-1 promoter activity waned with increasing concentrations of nanoparticles. In contrast, a parallel experiment under normal cell culture conditions showed that the nanoparticle treatment mildly increased the BAG-1 promoter activity relative to the untreated control. Taken together, the findings are evidence that nanoparticles not only possess anti-tachyzoite potential but they also have anti-bradyzoite potential in vitro.


Assuntos
Coccidiostáticos/farmacologia , Merozoítos/efeitos dos fármacos , Nanopartículas Metálicas , Toxoplasma/efeitos dos fármacos , Merozoítos/crescimento & desenvolvimento , Toxoplasma/crescimento & desenvolvimento
4.
Parasitol Res ; 117(2): 355-363, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29260298

RESUMO

Toxoplasma gondii is the etiological agent of toxoplasmosis, a common parasitic disease that affects nearly one-third of the human population. The primary infection can be asymptomatic in healthy individuals but may prove fatal in immunocompromised individuals. Available treatment options for toxoplasmosis patients are limited, underscoring the urgent need to identify and develop new therapies. Non-biased screening of libraries of chemical compounds including the repurposing of well-characterized compounds is emerging as viable approach to achieving this goal. In the present investigation, we screened libraries of natural product and FDA-approved compounds to identify those that inhibited T. gondii growth. We identified 32 new compounds that potently inhibit T. gondii growth. Our findings are new and promising, and further strengthen the prospects of drug repurposing as well as the screening of a wide range of chemical compounds as a viable source of alternative anti-parasitic therapeutic agents.


Assuntos
Coccidiostáticos/farmacologia , Toxoplasma/efeitos dos fármacos , Animais , Linhagem Celular , Humanos , Toxoplasma/crescimento & desenvolvimento
5.
Anal Biochem ; 464: 9-11, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24991689

RESUMO

Toxoplasma gondii can differentiate into tachyzoites or bradyzoites. To accelerate the investigation of bradyzoite differentiation mechanisms, we constructed a reporter parasite, PLK/DLUC_1C9, for a high-throughput assay. PLK/DLUC_1C9 expressed firefly luciferase under the bradyzoite-specific BAG1 promoter. Firefly luciferase activity was detected with a minimum of 10(2) parasites induced by pH 8.1. To normalize bradyzoite differentiation, PLK/DLUC_1C9 expressed Renilla luciferase under the parasite's α-tubulin promoter. Renilla luciferase activity was detected with at least 10(2) parasites. By using PLK/DLUC_1C9 with this 96-well format screening system, we found that the protein kinase inhibitor analogs, bumped kinase inhibitors 1NM-PP1, 3MB-PP1, and 3BrB-PP1, had bradyzoite-inducing effects.


Assuntos
Luciferases/metabolismo , Toxoplasma/crescimento & desenvolvimento , Animais
6.
Malar J ; 13: 487, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25495520

RESUMO

BACKGROUND: There is an urgent need to develop and test novel compounds against malaria infection. Carrageenans, sulphated polysaccharides derived from seaweeds, have been previously shown to inhibit Plasmodium falciparum in vitro. However, they are inflammatory and alter the permeability of the blood-brain barrier, raising concerns that their use as a treatment for malaria could lead to cerebral malaria (CM), a severe complication of the disease. In this work, the authors look into the effects of the administration of λ-carrageenan to the development and severity of CM in BALB/c mice, a relatively non-susceptible model, during infection with the ANKA strain of Plasmodium berghei. METHODS: Five-week-old female BALB/c mice were infected with P. berghei intraperitoneally. One group was treated with λ-carrageenan (PbCGN) following the 4-day suppressive test protocol, whereas the other group was not treated (PbN). Another group of healthy BALB/c mice was similarly given λ-carrageenan (CGN) for comparison. The following parameters were assessed: parasitaemia, clinical signs of CM, and mortality. Brain and other vital organs were collected and examined for gross and histopathological lesions. Evans blue dye assays were employed to assess blood-brain barrier integrity. RESULTS: Plasmodium berghei ANKA-infected BALB/c mice treated with λ-carrageenan died earlier than those that received no treatment. Histopathological examination revealed that intracerebral haemorrhages related to CM were present in both groups of infected BALB/c mice, but were more numerous in those treated with λ-carrageenan than in mock-treated animals. Inflammatory lesions were also observed only in the λ-carrageenan-treated mice. These observations are consistent with the clinical signs associated with CM, such as head tilt, convulsions, and coma, which were observed only in this group, and may account for the earlier death of the mice. CONCLUSION: The results of this study indicate that the administration of λ-carrageenan exacerbates the severe brain lesions and clinical signs associated with CM in BALB/c mice infected with P. berghei ANKA.


Assuntos
Antimaláricos/efeitos adversos , Carragenina/efeitos adversos , Fatores Imunológicos/efeitos adversos , Malária Cerebral/tratamento farmacológico , Malária Cerebral/patologia , Plasmodium berghei/efeitos dos fármacos , Animais , Antimaláricos/administração & dosagem , Carragenina/administração & dosagem , Modelos Animais de Doenças , Feminino , Fatores Imunológicos/administração & dosagem , Malária Cerebral/parasitologia , Camundongos Endogâmicos BALB C , Parasitemia/diagnóstico , Análise de Sobrevida
7.
Jpn J Vet Res ; 62(1-2): 17-24, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24979990

RESUMO

The 23-kDa piroplasm membrane protein of Theileria orientalis (p23) is an immunogenic protein expressed during the intraerythrocytic stage of the parasite; its function, however, remains unclear. To evaluate the host factor or factors that interact with p23, we examined the binding of p23 to components of the host cell surface. Recombinant p23 protein of the Ikeda genotype failed to bind to bovine red blood cells or to peripheral blood mononuclear cells, but did bind to Madin-Darby Bovine Kidney (MDBK) cells. A glycoarray assay showed that recombinant p23 proteins from the three genotypes bound to heparin, indicating that p23 is a heparin-binding Theileria surface molecule. Further analysis of heparin-binding molecules is useful for understanding attachment and invasion of T. orientalis merozoites.


Assuntos
Heparina/química , Proteínas de Membrana/metabolismo , Theileria/metabolismo , Animais , Linhagem Celular , Cães , Genótipo , Proteínas de Membrana/química , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Análise Serial de Proteínas/métodos , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
8.
Microorganisms ; 12(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257964

RESUMO

Transcriptional variation has been studied but post-transcriptional modification due to RNA editing has not been investigated in Plasmodium. We investigated developmental stage-specific RNA editing in selected genes in Plasmodium falciparum 3D7. We detected extensive amination- and deamination-type RNA editing at 8, 16, 24, 32, 40, and 46 h in tightly synchronized Plasmodium. Most of the editing events were observed in 8 and 16 h ring-stage parasites. Extensive A-to-G deamination-type editing was detected more during the 16 h ring stage (25%) than the 8 h ring stage (20%). Extensive U-to-C amination-type editing was detected more during the 16 h ring stage (31%) than the 8 h ring stage (22%). In 28S, rRNA editing converted the loop structure to the stem structure. The hemoglobin binding activity of PF3D7_0216900 was also altered due to RNA editing. Among the expressed 28S rRNA genes, PF3D7_0532000 and PF3D7_0726000 expression was higher. Increased amounts of the transcripts of these two genes were found, particularly PF3D7_0726000 in the ring stage and PF3D7_0532000 in the trophozoite and schizont stages. Adenosine deaminase (ADA) expression did not correlate with the editing level. This first experimental report of RNA editing will help to identify the editing machinery that might be useful for antimalarial drug discovery and malaria control.

9.
Front Cell Infect Microbiol ; 14: 1359888, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828265

RESUMO

Toxoplasma, an important intracellular parasite of humans and animals, causes life-threatening toxoplasmosis in immunocompromised individuals. Although Toxoplasma secretory proteins during acute infection (tachyzoite, which divides rapidly and causes inflammation) have been extensively characterized, those involved in chronic infection (bradyzoite, which divides slowly and is surrounded by a cyst wall) remain uncertain. Regulation of the cyst wall is essential to the parasite life cycle, and polysaccharides, such as chitin, in the cyst wall are necessary to sustain latent infection. Toxoplasma secretory proteins during the bradyzoite stage may have important roles in regulating the cyst wall via polysaccharides. Here, we focused on characterizing the hypothetical T. gondii chitinase, chitinase-like protein 1 (TgCLP1). We found that the chitinase-like domain containing TgCLP1 is partially present in the bradyzoite microneme and confirmed, albeit partially, its previous identification in the tachyzoite microneme. Furthermore, although parasites lacking TgCLP1 could convert from tachyzoites to bradyzoites and make an intact cyst wall, they failed to convert from bradyzoites to tachyzoites, indicating that TgCLP1 is necessary for bradyzoite reactivation. Taken together, our findings deepen our understanding of the molecular basis of recrudescence and could contribute to the development of novel strategies for the control of toxoplasmosis.


Assuntos
Quitinases , Proteínas de Protozoários , Toxoplasma , Toxoplasmose , Animais , Humanos , Camundongos , Quitinases/metabolismo , Quitinases/genética , Estágios do Ciclo de Vida , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Toxoplasma/enzimologia , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo , Toxoplasmose/parasitologia
10.
EBioMedicine ; 99: 104950, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159532

RESUMO

BACKGROUND: Pulmonary infection with SARS-CoV-2 stimulates host immune responses and can also result in the progression of dysregulated and critical inflammation. Throughout the pandemic, the management and treatment of COVID-19 has been continuously updated with a range of antiviral drugs and immunomodulators. Monotherapy with oral antivirals has proven to be effective in the treatment of COVID-19. However, treatment should be initiated in the early stages of infection to ensure beneficial therapeutic outcomes, and there is still room for further consideration on therapeutic strategies using antivirals. METHODS: We studied the therapeutic effects of monotherapy with the oral antiviral ensitrelvir or the anti-inflammatory corticosteroid methylprednisolone and combination therapy with ensitrelvir and methylprednisolone in a delayed dosing model of hamsters infected with SARS-CoV-2. FINDINGS: Combination therapy with ensitrelvir and methylprednisolone improved respiratory conditions and reduced the development of pneumonia in hamsters even when the treatment was started after 2 days post-infection. The combination therapy led to a differential histological and transcriptomic pattern in comparison to either of the monotherapies, with reduced lung damage and down-regulation of expression of genes involved in the inflammatory response. Furthermore, we found that the combination treatment is effective in case of infection with either the highly pathogenic delta or circulating omicron variants. INTERPRETATION: Our results demonstrate the advantage of combination therapy with antiviral and corticosteroid drugs in COVID-19 treatment from the perspective of lung pathology and host inflammatory responses. FUNDING: Funding bodies are described in the Acknowledgments section.


Assuntos
COVID-19 , Humanos , Animais , Cricetinae , Tratamento Farmacológico da COVID-19 , Atraso no Tratamento , SARS-CoV-2 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Metilprednisolona/farmacologia , Metilprednisolona/uso terapêutico , Corticosteroides , Antivirais/farmacologia , Antivirais/uso terapêutico
11.
Parasitol Res ; 112(12): 4169-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24096605

RESUMO

Toxoplasma gondii is one of the most prevalent parasites, causing toxoplasmosis in various warm-blooded animals, including humans. Because of the broad range of hosts susceptible to T. gondii, it had been postulated that a universal component of the host cell surface, such as glycosaminoglycans (GAGs), may act as a receptor for T. gondii infection. Carruthers et al. (Infect Immun 68:4005-4011, 2000) showed that soluble GAGs have also been shown to disrupt parasite binding to human fibroblasts. Therefore, we investigated the inhibitory effect of GAGs and their analogue dextran sulfate (DS) on T. gondii infection. For up to 24 h of incubation after inoculation of T. gondii, the inhibitory effect of GAGs on T. gondii infection and growth inside the host cell was weak. In contrast, DS markedly inhibited T. gondii infection. Moreover, low molecular weight DS particularly slowed the growth of T. gondii inside host cells. DS10 (dextran sulfate MW 10 kDa) was the most effective agent in these in vitro experiments and was therefore tested for its inhibitory effects in animal experiments; infection inhibition by DS10 was confirmed under these in vivo conditions. In this report, we showed that DSs, especially DS10, have the potential of a new type of drug for toxoplasmosis.


Assuntos
Sulfato de Dextrana/farmacologia , Glicosaminoglicanos/farmacologia , Toxoplasma/efeitos dos fármacos , Animais , Chlorocebus aethiops , Feminino , Camundongos Endogâmicos BALB C , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Células Vero
12.
Microorganisms ; 11(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894242

RESUMO

Molecular assays and capillary electrophoresis sequencing have been used to identify parasites in livestock. The low sample capacity, which increases labor and processing time, is one drawback. Targeted amplicon sequencing (Ampliseq) uses the fast and large sample capacity platform to identify parasites in the target host, overcoming this limitation. DNA was extracted from 162 whole blood samples collected from cattle in three provinces in the Philippines. Using Illumina's Miseq platform, the V4 hypervariable region of the piroplasma 18S rRNA gene was amplified and sequenced. The AMPtk pipeline was used to obtain distinct amplicon sequence variants (ASVs) and the NCBI BLAST non-redundant database was used to assign taxonomy. In total, 95 (58.64%) samples were positive for piroplasma. Using the AMPTk pipeline, 2179 ASVs were obtained. A total of 79 distinct ASVs were obtained after clustering and filtering, which belonged to genera Babesia (n = 58), Theileria (n = 17), Hepatozoon (n = 2), and Sarcocystis (n = 2). The ASV top hits were composed of 10 species: Babesia bovis, B. bigemina, Theileria orientalis, Babesia sp., Hepatozoon canis, Sarcocystis cruzi, T. annulata, T. equi, T. mutans, and Theileria sp. Thung Song. The results generated in this study demonstrated the applicability of Ampliseq in detecting piroplasmid parasites infecting cattle in the Philippines.

13.
PLoS One ; 18(5): e0285861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192155

RESUMO

A novel multiplex loop-mediated isothermal amplification (LAMP) method combined with DNA chromatography was developed for the simultaneous detection of three important respiratory disease-causing viruses: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus, and influenza B virus. Amplification was performed at a constant temperature, and a positive result was confirmed by a visible colored band. An in-house drying protocol with trehalose was used to prepare the dried format multiplex LAMP test. Using this dried multiplex LAMP test, the analytical sensitivity was determined to be 100 copies for each viral target and 100-1000 copies for the simultaneous detection of mixed targets. The multiplex LAMP system was validated using clinical COVID-19 specimens and compared with the real-time qRT-PCR method as a reference test. The determined sensitivity of the multiplex LAMP system for SARS-CoV-2 was 71% (95% CI: 0.62-0.79) for cycle threshold (Ct) ≤ 35 samples and 61% (95% CI: 0.53-0.69) for Ct ≤40 samples. The specificity was 99% (95%CI: 0.92-1.00) for Ct ≤35 samples and 100% (95%CI: 0.92-1.00) for the Ct ≤40 samples. The developed simple, rapid, low-cost, and laboratory-free multiplex LAMP system for the two major important respiratory viral diseases, COVID-19 and influenza, is a promising field-deployable diagnosis tool for the possible future 'twindemic, ' especially in resource-limited settings.


Assuntos
COVID-19 , Orthomyxoviridae , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA , RNA Viral/análise
14.
Infect Genet Evol ; 98: 105213, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35041968

RESUMO

Toxoplasma gondii is one of the most common zoonotic protozoan parasites. It has three major infectious stages: rapidly multiplying tachyzoites (Tz), slowly replicating bradyzoites (Bz) and a resting/free-living stage, sporozoites (Sz). The regulatory mechanisms governing stage-specific gene expression are not fully understood. Few transcriptional start sites (TSS) are known for Sz. In this study, we obtained TSS of Sz using an oligo-capping method and RNA-seq analysis. We identified 1,043,503 TSS in the Sz transcriptome. These defined 38,973 TSS clusters, of which, 11,925 were expressed in Sz and 1535 TSS differentially expressed in Sz. Based on these data, we defined promoter regions and novel sporozoite stage-specific motifs using MEME. TGTANNTACA was distributed around -55 to -75 regions from each TSS. Interestingly, the same motif was reported in another apicomplexan, Plasmodium berghei, as a cis-element of female-specific gametocyte genes, implying the presence of common regulatory machinery. Further comparative analysis should better define the distribution and function of these elements in other members of this important parasitic phylum.


Assuntos
Regiões Promotoras Genéticas , Esporozoítos/genética , Toxoplasma/genética , Sítio de Iniciação de Transcrição , RNA-Seq
15.
Front Cell Infect Microbiol ; 12: 848693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372115

RESUMO

Toxoplasma gondii bradyzoites establish chronic infections within their host cells. Recent studies have demonstrated that several parasite effector proteins are translocated to host cells during the bradyzoite stage of chronic infection. To understand the interaction between host cells and bradyzoites at the transcriptomic landscape level, we utilized single-cell RNA-sequencing (scRNA-Seq) to characterize the bradyzoite-induced host cell response. Distinct gene expression profiles were observed in infected host, cells with low parasite mapped reads, and mock (non-exposed) control cells. Gene set enrichment analysis showed that c-Myc and NF-κB signaling and energy metabolic pathways were upregulated by infection. Type I and II interferon response pathways were upregulated in cells with low parasite mapped reads compared to the non-exposed host control cells, and this upregulation effect was reversed in infected cells. Differences were observed in the host cells depending on the differentiation status of the parasites, as determined by BAG1 and SAG1 expression. NF-κB, inflammatory response pathways, and IFN-γ response pathways were downregulated in host cells containing T. gondiiBAG1+/SAG1-, whereas this downregulation effect was reversed in case of T. gondiiBAG1-/SAG1+. We also identified two distinct host cell subsets that contained T. gondiiBAG1+/SAG1-, one of which displayed distinct transcriptomes with upregulated c-Myc expression. Overall, these data clearly demonstrate that host cell transcriptional alteration by bradyzoite infection is different from that of tachyzoite infection, indicating fine-tuning of the host immune response.


Assuntos
Toxoplasma , Diferenciação Celular , Regulação para Baixo , Toxoplasma/metabolismo , Transcriptoma , Regulação para Cima
16.
Interdiscip Perspect Infect Dis ; 2022: 2109641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212105

RESUMO

With an increasing number of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) sequences gathered worldwide, we recognize that deletion mutants and nucleotide substitutions that may affect whole-genome sequencing are accumulating. Here, we propose an additional strategy for tiling PCR for whole-genome resequencing, which can make the pipeline robust for mutations at the primer annealing site by a redundant amplicon scheme. We further demonstrated that subtracting overrepresented amplicons from the multiplex PCR products reduced the bias of the next-generation sequencing (NGS) library, resulting in decreasing required sequencing reads per sample. We applied this sequencing strategy to clinical specimens collected in Bangladesh. More than 80% out of the 304 samples were successfully sequenced. Less than 5% were ambiguous nucleotides, and several known variants were detected. With the additional strategies presented here, we believe that whole-genome resequencing of SARS-CoV-2 from clinical samples can be optimized.

17.
mSphere ; 7(5): e0033222, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36005385

RESUMO

Metagenomic next-generation sequencing (mNGS) offers a hypothesis-free approach for pathogen detection, but its applicability in clinical diagnosis, in addition to other factors, remains limited due to complicated library construction. The present study describes a PCR-free isothermal workflow for mNGS targeting RNA, based on a multiple displacement amplification, termed circular whole-transcriptome amplification (cWTA), as the template is circularized before amplification. The cWTA approach was validated with clinical samples and nanopore sequencing. Reads homologous to dengue virus 2 and chikungunya virus were detected in clinical samples from Bangladesh and Brazil, respectively. In addition, the practicality of a high-throughput detection system that combines mNGS and a group testing algorithm termed mNGS screening enhanced by a group testing algorithm (mEGA) was established. This approach enabled significant library size reduction while permitting trackability between samples and diagnostic results. Serum samples of patients with undifferentiated febrile illnesses from Vietnam (n = 43) were also amplified with cWTA, divided into 11 pools, processed for library construction, and sequenced. Dengue virus 2, hepatitis B virus, and parvovirus B19 were successfully detected without prior knowledge of their existence. Collectively, cWTA with the nanopore platform opens the possibility of hypothesis-free on-site comprehensive pathogen diagnosis, while mEGA contributes to the scaling up of sample throughput. IMPORTANCE Given the breadth of pathogens that cause infections, a single approach that can detect a wide range of pathogens is ideal but is impractical due to the available tests being highly specific to a certain pathogen. Recent developments in sequencing technology have introduced mNGS as an alternative that provides detection of a wide-range of pathogens by detecting the presence of their nucleic acids in the sample. However, sequencing library preparation is still a bottleneck, as it is complicated, costly, and time-consuming. In our studies, alternative approaches to optimize library construction for mNGS were developed. This included isothermal nucleic acid amplification and expansion of sample throughput with a group testing algorithm. These methods can improve the utilization of mNGS as a diagnostic tool and can serve as a high-throughput screening system aiding infectious disease surveillance.


Assuntos
Ácidos Nucleicos , Transcriptoma , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Algoritmos , RNA
18.
J Biol Chem ; 285(3): 1716-25, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19940142

RESUMO

Erythrocyte invasion is critical to the pathogenesis and survival of the malarial parasite, Plasmodium falciparum. This process is partly mediated by proteins that belong to the Duffy binding-like family, which are expressed on the merozoite surface. One of these proteins, BAEBL (also known as EBA-140), is thought to bind to glycophorin C in a sialic acid-dependent manner. In this report, by the binding assay between recombinant BAEBL protein and enzyme-treated erythrocytes, we show that the binding of BAEBL to erythrocytes is mediated primarily by sialic acid and partially through heparan sulfate (HS). Because BAEBL binds to several kinds of HS proteoglycans or purified HS, the BAEBL-HS binding was found to be independent of the HS proteoglycan peptide backbone and the presence of sialic acid moieties. Furthermore, both the sialic acid- and HS-dependent binding were disrupted by the addition of soluble heparin. This inhibition may be the result of binding between BAEBL and heparin. Invasion assays demonstrated that HS-dependent binding was related to the efficiency of merozoite invasion. These results suggest that HS functions as a factor that promotes the binding of BAEBL and merozoite invasion. Moreover, these findings may explain the invasion inhibition mechanisms observed following the addition of heparin and other sulfated glycoconjugates.


Assuntos
Proteínas de Transporte/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Antimaníacos/farmacologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/química , Heparina/metabolismo , Heparina/farmacologia , Humanos , Células Jurkat , Proteínas de Membrana , Merozoítos/efeitos dos fármacos , Merozoítos/fisiologia , Camundongos , Dados de Sequência Molecular , Ácido N-Acetilneuramínico/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Ligação Proteica , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/química , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
19.
Eukaryot Cell ; 9(4): 667-70, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20173034

RESUMO

Toxoplasma gondii CDPK1 (TgCDPK1) was found to be the target of the toxoplasmocidal compound 1NM-PP1. When TgCDPK1 was mutated at position 128 from glycine to methionine, resistance was gained. Inhibition of gliding motility without inhibition of micronemal secretion by 1NM-PP1 suggests a function for TgCDPK1 in gliding motility.


Assuntos
Movimento Celular/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasma/fisiologia , Sequência de Aminoácidos , Animais , Feminino , Humanos , Dados de Sequência Molecular , Gravidez , Proteínas Quinases/genética , Proteínas de Protozoários/genética , Alinhamento de Sequência
20.
Microbiol Resour Announc ; 10(49): e0076421, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34881982

RESUMO

Genomic sequences from a complete SARS-CoV-2 open reading frame (ORF) were obtained from 24 patients diagnosed in May 2020 in Dhaka, Bangladesh. All sequences belonged to clade 20A or 20B, and none were variants of concern. Interestingly, one sequence showed a 161-nucleotide deletion in ORF7a.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa