Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Biomacromolecules ; 25(1): 188-199, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38102990

RESUMO

Gelatin methacryloyl (GelMA) hydrogels have gained significant attention due to their biocompatibility and tunable properties. Here, a new approach to engineer GelMA-based matrices to mimic the osteoid matrix is provided. Two cross-linking methods were employed to mimic the tissue stiffness: standard cross-linking (SC) based on visible light exposure (VL) and dual cross-linking (DC) involving physical gelation, followed by VL. It was demonstrated that by reducing the GelMA concentration from 10% (G10) to 5% (G5), the dual-cross-linked G5 achieved a compressive modulus of ∼17 kPa and showed the ability to support bone formation, as evidenced by alkaline phosphatase detection over 3 weeks of incubation in osteogenic medium. Moreover, incorporating poly(ethylene) oxide (PEO) into the G5 and G10 samples was found to hinder the fabrication of highly porous hydrogels, leading to compromised cell survival and reduced osteogenic differentiation, as a consequence of incomplete PEO removal.


Assuntos
Hidrogéis , Osteogênese , Engenharia Tecidual/métodos , Osso e Ossos , Metacrilatos , Gelatina , Polietilenoglicóis , Alicerces Teciduais
2.
Mar Drugs ; 21(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37755076

RESUMO

Skeletal constructs of diverse marine sponges remain to be a sustainable source of biocompatible porous biopolymer-based 3D scaffolds for tissue engineering and technology, especially structures isolated from cultivated demosponges, which belong to the Verongiida order, due to the renewability of their chitinous, fibre-containing architecture focused attention. These chitinous scaffolds have already shown excellent and promising results in biomimetics and tissue engineering with respect to their broad diversity of cells. However, the mechanical features of these constructs have been poorly studied before. For the first time, the elastic moduli characterising the chitinous samples have been determined. Moreover, nanoindentation of the selected bromotyrosine-containing as well as pigment-free chitinous scaffolds isolated from selected verongiids was used in the study for comparative purposes. It was shown that the removal of bromotyrosines from chitin scaffolds results in a reduced elastic modulus; however, their hardness was relatively unaffected.


Assuntos
Quitina , Poríferos , Animais , Biomimética , Porosidade , Engenharia Tecidual
3.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430842

RESUMO

Biodegradable polymer-based composite materials may be successfully utilised to fabricate fiducial markers (FMs), which are intended to precisely label tumour margins during image-guided surgery or radiotherapy. However, due to matrix degradability, the stability of the functional properties of FMs depends on the chosen polymer. Thus, this study aimed to investigate novel radiopaque composites which varied in the polymeric matrix-polycaprolactone (PCL), poly(L-lactide-co-caprolactone) (P[LAcoCL]) with two molar ratios (70:30 and 85:15), and poly(L-lactide-co-glycolide) (with molar ratio 82:18). The radiopaque component of the materials was a mixture of barium sulphate and hydroxyapatite. The changes in water contact angle, stiffness, and radiopacity occurring during the 24-week-long degradation experiment were examined for the first time. This study comprehensively analyses the microstructural causes of composites behaviour within degradation experiments using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), gel permitted chromatography (GPC), and scanning electron microscopy (SEM). The obtained results suggest that the utilized biodegradable matrix plays an essential role in radiopaque composite properties and stability thereof. This long-term in vitro assessment enabled a comparison of the materials and aided in choosing the most favourable composite for FMs' fabrication.


Assuntos
Durapatita , Marcadores Fiduciais , Varredura Diferencial de Calorimetria , Polímeros/química , Microscopia Eletrônica de Varredura
4.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070436

RESUMO

The aim was to examine the efficiency of a scaffold made of poly (L-lactic acid)-co-poly(ϵ-caprolactone), collagen (COL), polyaniline (PANI), and enriched with adipose-derived stem cells (ASCs) as a nerve conduit in a rat model. P(LLA-CL)-COL-PANI scaffold was optimized and electrospun into a tubular-shaped structure. Adipose tissue from 10 Lewis rats was harvested for ASCs culture. A total of 28 inbred male Lewis rats underwent sciatic nerve transection and excision of a 10 mm nerve trunk fragment. In Group A, the nerve gap remained untouched; in Group B, an excised trunk was used as an autograft; in Group C, nerve stumps were secured with P(LLA-CL)-COL-PANI conduit; in Group D, P(LLA-CL)-COL-PANI conduit was enriched with ASCs. After 6 months of observation, rats were sacrificed. Gastrocnemius muscles and sciatic nerves were harvested for weight, histology analysis, and nerve fiber count analyses. Group A showed advanced atrophy of the muscle, and each intervention (B, C, D) prevented muscle mass decrease (p < 0.0001); however, ASCs addition decreased efficiency vs. autograft (p < 0.05). Nerve fiber count revealed a superior effect in the nerve fiber density observed in the groups with the use of conduit (D vs. B p < 0.0001, C vs. B p < 0.001). P(LLA-CL)-COL-PANI conduits with ASCs showed promising results in managing nerve gap by decreasing muscle atrophy.


Assuntos
Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Nanofibras/química , Regeneração Nervosa , Neurogênese , Traumatismos dos Nervos Periféricos/terapia , Nervo Isquiático/metabolismo , Alicerces Teciduais/química , Compostos de Anilina/química , Animais , Caproatos/química , Células Cultivadas , Colágeno/química , Imuno-Histoquímica , Lactonas/química , Masculino , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Varredura , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Nanofibras/ultraestrutura , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Poliésteres/química , Ratos , Ratos Endogâmicos Lew , Nervo Isquiático/citologia , Nervo Isquiático/patologia , Transplante Autólogo
5.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948005

RESUMO

In this work, NiTi alloy parts were fabricated using laser powder bed fusion (LBPF) from pre-alloyed NiTi powder and in situ alloyed pure Ni and Ti powders. Comparative research on the corrosive and biological properties of both studied materials was performed. Electrochemical corrosion tests were carried out in phosphate buffered saline at 37 °C, and the degradation rate of the materials was described based on Ni ion release measurements. Cytotoxicity, bacterial growth, and adhesion to the surface of the fabricated coupons were evaluated using L929 cells and spherical Escherichia coli (E. coli) bacteria, respectively. The in situ alloyed NiTi parts exhibit slightly lower corrosion resistance in phosphate buffered saline solution than pre-alloyed NiTi. Moreover, the passive layer formed on in situ alloyed NiTi is weaker than the one formed on the NiTi fabricated from pre-alloyed NiTi powder. Furthermore, in situ alloyed NiTi and NiTi made from pre-alloyed powders have comparable cytotoxicity and biological properties. Overall, the research has shown that nitinol sintered using in situ alloyed pure Ni and Ti is potentially useful for biomedical applications.


Assuntos
Ligas/farmacologia , Escherichia coli/fisiologia , Níquel/química , Titânio/química , Ligas/química , Animais , Aderência Bacteriana/efeitos dos fármacos , Linhagem Celular , Corrosão , Escherichia coli/efeitos dos fármacos , Teste de Materiais , Camundongos , Fosfatos/química , Pós , Propriedades de Superfície
6.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070750

RESUMO

The immune system is a fine modulator of the tumor biology supporting or inhibiting its progression, growth, invasion and conveys the pharmacological treatment effect. Tumors, on their side, have developed escaping mechanisms from the immune system action ranging from the direct secretion of biochemical signals to an indirect reaction, in which the cellular actors of the tumor microenvironment (TME) collaborate to mechanically condition the extracellular matrix (ECM) making it inhospitable to immune cells. TME is composed of several cell lines besides cancer cells, including tumor-associated macrophages, cancer-associated fibroblasts, CD4+ and CD8+ lymphocytes, and innate immunity cells. These populations interface with each other to prepare a conservative response, capable of evading the defense mechanisms implemented by the host's immune system. The presence or absence, in particular, of cytotoxic CD8+ cells in the vicinity of the main tumor mass, is able to predict, respectively, the success or failure of drug therapy. Among various mechanisms of immunescaping, in this study, we characterized the modulation of the phenotypic profile of CD4+ and CD8+ cells in resting and activated states, in response to the mechanical pressure exerted by a three-dimensional in vitro system, able to recapitulate the rheological and stiffness properties of the tumor ECM.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Matriz Extracelular/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Evasão Tumoral , Microambiente Tumoral/imunologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Técnicas de Cultura de Células , Módulo de Elasticidade , Matriz Extracelular/química , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Humanos , Hidrogéis/química , Interferon gama/genética , Interferon gama/imunologia , Ativação Linfocitária , Mecanotransdução Celular , Modelos Biológicos , NF-kappa B/genética , NF-kappa B/imunologia , Fenótipo , Cultura Primária de Células , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Reologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/imunologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia
7.
Small ; 15(24): e1805530, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31012262

RESUMO

Skeletal muscle tissue engineering (SMTE) aims at repairing defective skeletal muscles. Until now, numerous developments are made in SMTE; however, it is still challenging to recapitulate the complexity of muscles with current methods of fabrication. Here, after a brief description of the anatomy of skeletal muscle and a short state-of-the-art on developments made in SMTE with "conventional methods," the use of 3D bioprinting as a new tool for SMTE is in focus. The current bioprinting methods are discussed, and an overview of the bioink formulations and properties used in 3D bioprinting is provided. Finally, different advances made in SMTE by 3D bioprinting are highlighted, and future needs and a short perspective are provided.


Assuntos
Bioimpressão/métodos , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Bioimpressão/instrumentação , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células Cultivadas , Humanos , Medicina Regenerativa/instrumentação , Medicina Regenerativa/métodos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais/química
8.
Langmuir ; 35(17): 5987-5996, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30946782

RESUMO

Controlling wetting of solids by liquids attracts attention because of its scientific and technological importance. In this paper, the wettability of a highly uniform porous poly(methyl methacrylate) film on a silicon substrate containing a high density of randomly distributed self-similar pores was gradually tuned by changing the shape of nanometric crownlike structures around the pores. Fine-tuning the topography of these thin films was performed by isothermal annealing. The equilibrium contact angle of a water droplet placed on the surface of the films could be varied from 72 to 102°. The contact angle changes were assumed to be a consequence of changes in surface topography in the nanoscale. A simple method of a quantitative description of the change of the topography of these films was developed. Critical dimensions of these films were determined in horizontal and vertical directions relative to the surface plane. The slope coefficient (SC) describing how sharp the structures are, is defined as the ratio between the critical dimensions: the root-mean-square roughness σ and the autocorrelation length ξ. For SC > 0.08, the contact angle increased proportionally to the value of SC, whereas for SC < 0.08, the contact angle proportionally decreased. At the highest SC values, the contact angles were 6-10% higher than those predicted for flat porous surfaces using the Cassie-Baxter equation. We suggest that this discrepancy is due to the capillary tension caused by the submicron-scale undulation of the triple line, which was found to be proportional to the height of the crownlike pore edges and the value of SC. The same effect is responsible for the linear dependence of the contact angle on the SC value.

9.
J Interv Cardiol ; 2019: 6945372, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772543

RESUMO

OBJECTIVES: To assess the expansion pattern of coronary stents by using different balloon inflation times and pressures. BACKGROUND: The selection of coronary stent size and its proper deployment is crucial in coronary artery interventions, having an impact on the success of the procedure and further therapy. METHODS: Ten pairs of different stents were deployed under nominal pressure using sequential (5, 5, 10, and 10 seconds of repeated inflations, thus 30 seconds of summarized time) and continuous (30 seconds) deployment pattern. After each given time-point, intraluminal stent measurements were performed by optical coherence tomography (OCT) and intravascular ultrasound (IVUS). RESULTS: Both in-stent diameters and cross-section areas (CSA) of paired stents measured by OCT at all sequential time-points were significantly smaller compared to given manufacturers charts' values (90% to 94% for diameters and 81% to 88% for CSA, p<0.05). Significant increase of in-stent diameter and CSA was observed across the step-by-step deployment pattern. In-stent lumen measurements were significantly larger when sequential deployment pattern was applied compared to continuous deployment. Additional measurements were also done for overlapping segments of stents, showing smaller in-stent measurements of the latter compared to nonoverlapping segments. Validation of OCT and IVUS measurements using a phantom metallic tube showed perfect reproducibility with OCT and overestimation with IVUS (8% for diameters and 16% for CSA). CONCLUSIONS: Stent diameter after deployment is time-dependent and not only pressure-dependent. Different stent expansion behavior, depending on the applied deployment pattern (sequential and nonsequential), was observed.


Assuntos
Angioplastia Coronária com Balão , Desenho de Equipamento , Stents , Angioplastia Coronária com Balão/instrumentação , Angioplastia Coronária com Balão/métodos , Angiografia Coronária/métodos , Humanos , Teste de Materiais/métodos , Stents/classificação , Stents/normas , Fatores de Tempo , Tomografia de Coerência Óptica/métodos , Ultrassonografia de Intervenção/métodos
10.
BMC Musculoskelet Disord ; 20(1): 469, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31651295

RESUMO

The authors have retracted this article [1] because it constitutes redundant publication [2].

11.
Angew Chem Int Ed Engl ; 58(23): 7620-7625, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-30908850

RESUMO

Tailoring the morphology of macroporous structures remains one of the biggest challenges in material synthesis. Herein, we present an innovative approach for the fabrication of custom macroporous materials in which pore size varies throughout the structure by up to an order of magnitude. We employed a valve-based flow-focusing junction (vFF) in which the size of the orifice can be adjusted in real-time (within tens of milliseconds) to generate foams with on-line controlled bubble size. We used the junction to fabricate layered and smoothly graded porous structures with pore size varying in the range of 80-800 µm. Additionally, we mounted the vFF on top of an extrusion printer and 3D-printed constructs characterized by a predefined 3D geometry and a controlled, spatially varying internal porous architecture, such as a model of a bone. The presented technology opens new possibilities in macroporous material synthesis with potential applications ranging from tissue engineering to aerospace industry and construction.

12.
Int J Mol Sci ; 19(6)2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849015

RESUMO

The use of laser 3D printers is very perspective in the fabrication of solid and porous implants made of various polymers, metals, and its alloys. The Selective Laser Melting (SLM) process, in which consolidated powders are fully melted on each layer, gives the possibility of fabrication personalized implants based on the Computer Aid Design (CAD) model. During SLM fabrication on a 3D printer, depending on the system applied, there is a possibility for setting the amount of energy density (J/mm³) transferred to the consolidated powders, thus controlling its porosity, contact angle and roughness. In this study, we have controlled energy density in a range 8⁻45 J/mm³ delivered to titanium powder by setting various levels of laser power (25⁻45 W), exposure time (20⁻80 µs) and distance between exposure points (20⁻60 µm). The growing energy density within studied range increased from 63 to 90% and decreased from 31 to 13 µm samples density and Ra parameter, respectively. The surface energy 55⁻466 mN/m was achieved with contact angles in range 72⁻128° and 53⁻105° for water and formamide, respectively. The human mesenchymal stem cells (hMSCs) adhesion after 4 h decreased with increasing energy density delivered during processing within each parameter group. The differences in cells proliferation were clearly seen after a 7-day incubation. We have observed that proliferation was decreasing with increasing density of energy delivered to the samples. This phenomenon was explained by chemical composition of oxide layers affecting surface energy and internal stresses. We have noticed that TiO2, which is the main oxide of raw titanium powder, disintegrated during selective laser melting process and oxygen was transferred into metallic titanium. The typical for 3D printed parts post-processing methods such as chemical polishing in hydrofluoric (HF) or hydrofluoric/nitric (HF/HNO3) acid solutions and thermal treatments were used to restore surface chemistry of raw powders and improve surface.


Assuntos
Titânio/química , Temperatura Alta , Humanos , Ácido Fluorídrico/química , Porosidade , Propriedades de Superfície
13.
J Phycol ; 53(4): 880-888, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28523651

RESUMO

We present topographical and nanomechanical characterization of single Didymosphenia geminata stalk. We compared the samples before and after adsorption of metal ions from freshwater samples. Transmission electron microscopy studies of single stalk cross-sections have shown three distinct layers and an additional thin extra coat on the external layer (called "EL"). Using scanning electron microscopy and atomic force microscopy (AFM), we found that topography of single stalks after ionic adsorption differed significantly from topography of pristine stalks. AFM nanoindentation studies in ambient conditions yielded elastic moduli of 214 ± 170 MPa for pristine stalks and 294 ± 108 MPa for stalks after ionic adsorption. Statistical tests showed that those results were significantly different. We conducted only preliminary comparisons between ionic adsorption of several stalks in air and in water. While the stalks with ions were on average stiffer than the pristine stalks in air, they became more compliant than the pristine stalks in water. We also heated the stalks and detected EL softening at 50°C ± 15°C. AFM nanoindentation in air on the softened samples yielded elastic moduli of 26 ± 9 MPa for pristine samples and 43 ± 22 MPa for stalks with absorbed metal ions. Substantial decrease of the EL elastic moduli after heating was expected. Significantly different elastic moduli for the samples after ionic adsorption in both cases (i.e., for heated and nonheated samples), as well as behavior of the stalks immersed in water, point to permanent structural EL changes due to ions.


Assuntos
Diatomáceas/fisiologia , Metais/metabolismo , Adsorção , Fenômenos Biomecânicos , Diatomáceas/citologia , Diatomáceas/ultraestrutura , Módulo de Elasticidade , Íons/metabolismo , Cinética , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura
14.
BMC Musculoskelet Disord ; 18(1): 426, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29100511

RESUMO

BACKGROUND: The aim of the study was to evaluate the potential consequences of drilling titanium alloy (Ti) and tantalum (Ta) implants. METHODS: During an in vitro study, four holes were made in each of two spatially porous trabecular implants: one Ta and the other Ti alloy (Ti-6Al-7Nb). The weight and the volume of particles produced during the drilling were then measured using a Radwag XA 110/2X (USA) laboratory balance. RESULTS: The loss of mass of the Ti and Ta implants was respectively 1.26 g and 2.48 g, and the volume of free particles was respectively 280 mm3 and 149 mm3. The particles were recovered after each stage. Despite the use of 5 µm filters, around 0.6% of the total implant mass from both implants was not recovered after drilling (roughly 2% of the mass of the particles created). CONCLUSION: It is technically difficult to make holes in Ti and Ta implants using standard surgical tools, and the process creates a significant amount of metal particles which cannot be removed, despite intensive flushing. This may have a potentially adverse influence on the survival of the implant and result in negative systemic consequences.


Assuntos
Artroplastia/métodos , Prótese Articular , Tantálio , Titânio , Artroplastia/efeitos adversos , Humanos , Projetos Piloto
15.
Postepy Hig Med Dosw (Online) ; 69: 1140-8, 2015 Oct 13.
Artigo em Polonês | MEDLINE | ID: mdl-26561840

RESUMO

Bacteria living constantly in the oral cavity are in the form of a biofilm. The biofilm formed on a solid base such as the enamel of the teeth, fillings, restorations, orthodontic appliances or obturators is dental plaque. Disturbance of homeostasis of biofilm, excessive growth or increase in the number of acid-forming bacteria leads to the development of the most common diseases of the oral cavity, i.e. dental caries and periodontal disease. The presence of bacterial biofilm on the walls of the root canal or at the top of the root on an outer wall leads to complications and failure in endodontic treatment. The aim of the study was to present the latest information on the occurrence, development and the role of biofilm in the etiopathogenesis of oral diseases and its control. Based on the literature analyzed, it can be concluded that the biofilm, due to its complex structure and numerous mechanisms of bacteria adaptation, is an effective barrier against the traditional agents with antibacterial properties. There are now great hopes for nanotechnology as an innovative method for obtaining new structures of nanometric size and different properties than source materials. The use of antibacterial properties of nano-silver used in dentistry significantly reduces the metabolic activity and the number of colony forming bacteria and lactic acid production in the biofilm.


Assuntos
Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Fenômenos Fisiológicos Bacterianos , Biofilmes , Materiais Dentários , Placa Dentária/prevenção & controle , Assistência Odontológica , Cárie Dentária/microbiologia , Cárie Dentária/prevenção & controle , Placa Dentária/microbiologia , Humanos , Nanotecnologia , Doenças Periodontais/microbiologia , Doenças Periodontais/prevenção & controle
16.
Acta Biomater ; 178: 24-40, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458512

RESUMO

Bone metastasis primarily occurs when breast, prostate, or lung cancers disseminate tumoral cells into bone tissue, leading to a range of complications in skeletal tissues and, in severe cases, paralysis resulting from spinal cord compression. Unfortunately, our understanding of pathophysiological mechanisms is incomplete and the translation of bone metastasis research into the clinic has been slow, mainly due to the lack of credible ex vivo and in vivo models to study the disease progression. Development of reliable and rational models to study how tumor cells become circulating cells and then invade and sequentially colonize the bone are in great need. Advances in tissue engineering technologies offers reliable 3D tissue alternatives which answer relevant research questions towards the understanding of cancer evolution and key functional properties of metastasis progression as well as prognosis of therapeutic approach. Here we performed an overview of cellular mechanisms involved in bone metastasis including a short summary of normal bone physiology and metastasis initiation and progression. Also, we comprehensively summarized current advances and methodologies in fabrication of reliable bone tumor models based on state-of-the-art printing technologies which recapitulate structural and biological features of native tissue. STATEMENT OF SIGNIFICANCE: This review provides a comprehensive summary of the collective findings in relation to various printed bone metastasis models utilized for investigating specific bone metastasis diseases, related characteristic functions and chemotherapeutic drug screening. These tumoral models are comprehensively evaluated and compared, in terms of their ability to recapitulate physiological metastasis microenvironment. Various biomaterials (natural and synthetic polymers and ceramic based substrates) and printing strategies and design architecture of models used for printing of 3D bone metastasis models are discussed here. This review clearly out-lines current challenges and prospects for 3D printing technologies in bone metastasis research by focusing on the required perspective models for clinical application of these technologies in chemotherapeutic drug screening.


Assuntos
Bioimpressão , Neoplasias Ósseas , Humanos , Biomimética , Engenharia Tecidual , Materiais Biocompatíveis , Impressão Tridimensional , Bioimpressão/métodos , Alicerces Teciduais/química , Microambiente Tumoral
17.
J Mech Behav Biomed Mater ; 151: 106359, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38181569

RESUMO

The paper concerns the numerical design of novel three-dimensional titanium scaffolds with complex open-porous structures and desired mechanical properties for the Powder Bed Fusion using Laser Beam (PBF-LB). The 60 structures with a broad range of porosity (38-78%), strut diameters (0.70-1.15 mm), and coefficients of pore volume variation, CV(Vp), 0.35-5.35, were designed using the Laguerre-Voronoi tessellations (LVT). Their Young's moduli and Poisson's ratios were calculated using Finite Element Model (FEM) simulations. The experimental verification was performed on the representative designs additively manufactured (AM) from commercially pure titanium (CP Ti) which, after chemical polishing, were subjected to uniaxial compression tests. Scanning Electron Microscopy (SEM) observations and microtomography (µ-CT) confirmed the removal of the support structures and unmelted powder particles. PBF-LB structures after chemical polishing were in close agreement with the CAD models' dimensions having 4-12% more volume. The computational and experimental results show that elastic properties were predicted in very close agreement for the low CV(Vp), and with even 30-40% discrepancies for CV(Vp) higher than 4.0, mainly due to PBF-LB scaffold architecture drawbacks rather than CAD inaccuracy. Our research demonstrates the possibility of designing the open-porous scaffolds with pore volume diversity and tuning their elastic properties for biomedical applications.


Assuntos
Próteses e Implantes , Titânio , Porosidade , Titânio/química , Pós , Lasers
18.
J Biomed Mater Res B Appl Biomater ; 112(1): e35313, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37596854

RESUMO

This study aimed to develop material for multimodal imaging by means of X-ray and near-infrared containing FDA- and EMA-approved iohexol and indocyanine green (ICG). The mentioned contrast agents (CAs) are hydrophilic and amphiphilic, respectively, which creates difficulties in fabrication of functional polymeric composites for fiducial markers (FMs) with usage thereof. Therefore, this study exploited for the first time the possibility of enhancing the radiopacity and introduction of the NIR fluorescence of FMs by adsorption of the CAs on hydroxyapatite (HAp) nanoparticles. The particles were embedded in the poly(L-lactide-co-caprolactone) (P[LAcoCL]) matrix resulting in the composite material for bimodal near-infrared fluorescence- and X-ray-based imaging. The applied method of material preparation provided homogenous distribution of both CAs with high iohexol loading efficiency and improved fluorescence signal due to hindered ICG aggregation. The material possessed profound contrasting properties for both imaging modalities. Its stability was evaluated during in vitro experiments in phosphate-buffered saline (PBS) and foetal bovine serum (FBS) solutions. The addition of HAp nanoparticles had significant effect on the fluorescence signal. The X-ray radiopacity was stable within minimum 11 weeks, even though the addition of ICG contributed to a faster release of iohexol. The stiffness of the material was not affected by iohexol or ICG, but incorporation of HAp nanoparticles elevated the values of bending modulus by approximately 70%. Moreover, the performed cell study revealed that all tested materials were not cytotoxic. Thus, the developed material can be successfully used for fabrication of FMs.


Assuntos
Verde de Indocianina , Iohexol , Poliésteres , Verde de Indocianina/farmacologia , Durapatita , Fluorescência , Raios X
19.
Eur J Pharm Biopharm ; 193: 285-293, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984593

RESUMO

Intravitreal administrated bevacizumab has emerged as an effective antibody for suppressing VEGF expression in age-related macular degeneration (AMD) therapy. This study discusses certain issues related to the sustained release of bevacizumab from intravitreal poly(lactic-co-glycolic acid) (PLGA) microspheres. A computational model elucidating the ocular kinetics of bevacizumab is demonstrated, wherein the release of the drug from PLGA microspheres is modeled using the Koizumi approach, complemented by an empirical model that links the kinetics of bevacizumab release to a size-dependent hydrolytic degradation of the drug-loaded polymeric microparticles. The results of the simulation were then rigorously validated against experimental data. The as-developed model proved remarkably accurate in predicting the time-concentration profiles obtained following the intravitreal injection of PLGA microspheres of significantly different sizes. Notably, the time-concentration profiles of bevacizumab in distinct ocular tissues were almost unaffected by the size of the intravitreally administered PLGA microparticles. Furthermore, the model successfully predicted the retinal concentration of bevacizumab and its fragments (e.g., ranibizumab) administrated in the form of a solution. As such, this model for drug sustained release and ocular transport holds tremendous potential for facilitating the reliable evaluation of planned anti-VEGF therapies.


Assuntos
Retina , Bevacizumab , Preparações de Ação Retardada , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Injeções Intravítreas
20.
J Biomater Appl ; 38(4): 548-561, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37732423

RESUMO

The study aimed to evaluate an angiogenic effect of adipose-derived stem cells (ASCs) seeding and surgical prefabrication (placing a vascular pedicle inside the scaffold) on developed composite scaffolds made of poly-ε-caprolactone (PCL), ß-tricalcium phosphate (ß-TCP), and poly (lactic-co-glycolic acid) (PLGA) (PCL+ß-TCP+PLGA). Moreover, we aimed to compare our data with previously tested PCL scaffolds to assess whether the new material has better angiogenic properties. The study included 18 inbred male WAG rats. There were three scaffold groups (six animals each): with non-seeded PCL+ß-TCP+PLGA scaffolds, with PCL+ß-TCP+PLGA scaffolds seeded with ASCs and with PCL+ß-TCP+PLGA scaffolds seeded with ASCs and osteogenic-induced. Each rat was implanted with two scaffolds in the inguinal region (one prefabricated and one non-prefabricated). After 2 months from implantation, the scaffolds were explanted, and vessel density was determined by histopathological examination. Prefabricated ASC-seeded PCL+ß-TCP+PLGA scaffolds promoted greater vessel formation than non-seeded scaffolds (19.73 ± 5.46 vs 12.54 ± 0.81; p = .006) and those seeded with osteogenic-induced ASCs (19.73 ± 5.46 vs 11.87±2.21; p = .004). The developed composite scaffold promotes vessel formation more effectively than the previously described PCL scaffold.


Assuntos
Fosfatos de Cálcio , Alicerces Teciduais , Masculino , Ratos , Animais , Fosfatos de Cálcio/farmacologia , Adipócitos , Osteogênese , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa