Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 86(4): 1937-42, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24498852

RESUMO

Glycosylation and phosphorylation are important post-translational modifications in biological processes and biomarker research. The difficulty in analyzing these modifications is mainly their low abundance and dissociation of labile regions such as sialic acids or phosphate groups. One solution in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is to improve matrices for glycopeptides, carbohydrates, and phosphopeptides by increasing the sensitivity and suppressing dissociation of the labile regions. Recently, a liquid matrix 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA), introduced by Kolli et al. in 1996, has been reported to increase sensitivity for carbohydrates or phosphopeptides, but it has not been systematically evaluated for glycopeptides. In addition, 3-AQ/CHCA enhances the dissociation of labile regions. In contrast, a liquid matrix 1,1,3,3-tetramethylguanidium (TMG, G) salt of p-coumaric acid (CA) (G3CA) was reported to suppress dissociation of sulfate groups or sialic acids of carbohydrates. Here we introduce a liquid matrix 3-AQ/CA for glycopeptides, carbohydrates, and phosphopeptides. All of the analytes were detected as [M + H](+) or [M - H](-) with higher or comparable sensitivity using 3-AQ/CA compared with 3-AQ/CHCA or 2,5-dihydroxybenzoic acid (2,5-DHB). The sensitivity was increased 1- to 1000-fold using 3-AQ/CA. The dissociation of labile regions such as sialic acids or phosphate groups and the fragmentation of neutral carbohydrates were suppressed more using 3-AQ/CA than using 3-AQ/CHCA or 2,5-DHB. 3-AQ/CA was thus determined to be an effective MALDI matrix for high sensitivity and the suppression of dissociation of labile regions in glycosylation and phosphorylation analyses.


Assuntos
Carboidratos/análise , Ácidos Cumáricos/química , Glicopeptídeos/análise , Fosfopeptídeos/análise , Quinolonas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Animais , Carboidratos/genética , Bovinos , Glicopeptídeos/genética , Humanos , Dados de Sequência Molecular , Propionatos
2.
Rapid Commun Mass Spectrom ; 26(20): 2454-60, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22976212

RESUMO

RATIONALE: A liquid matrix, 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA), introduced by Kolli et al. in 1996 for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), has been reported for peptides and proteins, oligonucleotides, oligosaccharides, and glycopeptides. However, it has not been validated for phosphopeptides. METHODS: We optimized sample preparation using 3-AQ/CHCA for phosphopeptides. The sensitivity of six phosphopeptide species as isolated or in digests was systematically evaluated by using MALDI-quadropole ion trap (QIT)-time of flight (TOF) MS in positive and negative ion modes, and compared with the conventional methods using a solid matrix, 2,5-dihydroxybenzoic acid (2,5-DHB). RESULTS: The sensitivity of mono- and tetraphosphopeptides was improved 10- to 10 000-fold with the optimized preparation method using 3-AQ/CHCA compared with the conventional methods using 2,5-DHB. Improvement by 3-AQ/CHCA itself was 10-fold. Adding ammonium dihydrogen phosphate or an analyte solvent composition was also effectively improved the sensitivity. Phosphopeptides in isolated form or in digests were detected at femto- or subfemtomole levels. CONCLUSIONS: Sensitivity of phosphopeptides was improved by the optimized sample preparation method using 3-AQ/CHCA compared with the conventional method using 2,5-DHB. The validation of 3-AQ/CHCA for phosphopeptides was systematically confirmed, expanding the potential of this matrix to phosphoproteomics.


Assuntos
Aminoquinolinas/química , Ácidos Cumáricos/química , Fosfopeptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Animais , Caseínas/química , Galinhas , Dados de Sequência Molecular , Ovalbumina/química , Receptor de Insulina/química
3.
J Mass Spectrom ; 48(11): 1217-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24259210

RESUMO

We describe here an optimization study of the sample preparation conditions for sensitive detection of peptides by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Among many factors in the conditions, we varied the percent acetonitrile in the peptide solution, the percent acetonitrile in the matrix solution and the α-cyano-4-hydroxycinnamic acid (CHCA) concentration in the matrix solution. CHCA was chosen because it is the most frequently used matrix for analyzing peptides. The well-established dried-droplet method was employed for sample deposition. The examined range of the concentration of CHCA was from 0.01 to 10 mg/ml, and the MeCN content of the solvent for matrix/analyte was 10% to 50%. The indicator for the detection sensitivity was the S/N ratio of the peaks of peptides used. Highly increased sensitivity (100- to 1000-fold) was observed for the optimal CHCA concentration of 0.1 mg/ml in 20% MeCN/0.1% aq. trifluoroacetic acid (TFA), as compared with the conventional concentration (10 mg/ml) in 50% MeCN/0.1% aq. TFA. For example, the limit of detection of human ACTH 18-39 was 10 amol/well for the optimal condition but 10 fmol/well for the conventional condition. The optimal condition (0.1 mg/ml CHCA in 20% MeCN/0.1% aq. TFA) was verified with five model peptides and provided significant improvement in sensitivity (by two to three orders of magnitude) compared with the conventional conditions. Optimizing the CHCA concentration and solvent composition significantly improved the detection sensitivity in the analysis of peptides by MALDI-MS.


Assuntos
Peptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Acetonitrilas/química , Animais , Bovinos , Ácidos Cumáricos/química , Limite de Detecção , Peptídeos/química , Reprodutibilidade dos Testes , Soroalbumina Bovina/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa