Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(4): 1720-1724, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38214245

RESUMO

Starting from labile hydroxamic acid ligands that are strong chelators, here, we implemented a sacrificial modulating strategy to prepare a series of scandium carboxylate metal-organic frameworks. Overcoming conventional syntheses that use excessive carboxylate modulators, the present strategy greatly reduces the organics required and produces large single crystals of several Sc-MOFs for X-ray crystallography.

2.
Inorg Chem ; 63(22): 10414-10422, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38772007

RESUMO

Developing metal-organic materials (MOMs) with chemical robustness is a prerequisite to exploring their intriguing properties and applications. As part of a continuing effort to construct robust MOMs featuring chelated building units, here we introduce a "bent" thiophene-2,5-dihydroxamate ligand with multiple intrinsic conformations when it is used as a chelating linkage. This approach should further diversify the coordination chemistry in hydroxamate-based MOM structures without compromising the stability. In combination with Group 13 metals Ga/In to ensure homoleptic metal vertices, we report the successful crystallization of four MOMs with diverse structures and dimensionalities: SUM-81 as a 0D metal-organic polyhedron (MOP), SUM-82 as a 2D MOF with an fes topology, SUM-83 and SUM-84 as distinct 1D coordination polymers with shapes mimic stairs and mesh tubes, respectively. As these structures indeed contain the aforementioned different ligand conformations and combinations thereof, these results expand our understanding of the coordination chemistry of hydroxamates. To demonstrate the potential applicability of hydroxamate-chelated robust MOMs, the permanently porous SUM-81 MOP was successfully incorporated in a series of mixed matrix membranes for CO2/N2 separation, showing impressive performances.

3.
Nanomaterials (Basel) ; 13(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299635

RESUMO

A core-shell nanowire heterostructure is an important building block for nanowire-based optoelectronic devices. In this paper, the shape and composition evolution induced by adatom diffusion is investigated by constructing a growth model for alloy core-shell nanowire heterostructures, taking diffusion, adsorption, desorption and incorporation of adatoms into consideration. With moving boundaries accounting for sidewall growth, the transient diffusion equations are numerically solved by the finite element method. The adatom diffusions introduce the position-dependent and time-dependent adatom concentrations of components A and B. The newly grown alloy nanowire shell depends on the incorporation rates, resulting in both shape and composition evolution during growth. The results show that the morphology of nanowire shell strongly depends on the flux impingement angle. With the increase in this impingement angle, the position of the largest shell thickness on sidewall moves down to the bottom of nanowire and meanwhile, the contact angle between shell and substrate increases to an obtuse angle. Coupled with the shell shapes, the composition profiles are shown as non-uniform along both the nanowire and the shell growth directions, which can be attributed to the adatom diffusion of components A and B. The impacts of parameters on the shape and composition evolution are systematically investigated, including diffusion length, adatom lifetime and corresponding ratios between components. This kinetic model is expected to interpret the contribution of adatom diffusion in growing alloy group-IV and group III-V core-shell nanowire heterostructures.

4.
Chem Commun (Camb) ; 58(22): 3601-3604, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35103744

RESUMO

Novel two-dimensional kagome metal-organic frameworks with mononuclear Zr4+/Hf4+ nodes chelated by benzene-1,4-dihydroxamate linkers were synthesized. The MOFs, namely SUM-1, are chemically robust and kinetically favorable, as confirmed by theoretical and experimental studies. SUM-1(Zr) can be readily made into large (∼100 µm) single crystals and nanoplates (∼50 nm), constituting a versatile MOF platform.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa