Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 55(15): 7734-8, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27399160

RESUMO

The black-colored compound BaUSe3 has been synthesized at 1173 K by a stoichiometric reaction of the elements in a CsCl flux. BaUSe3 crystallizes in the GdFeO3 structure type. There is no change in structure between 100 and 298 K. The U atoms in this structure are octahedrally connected to six Se atoms. Each octahedral unit shares all six corners with neighboring octahedra, forming a three-dimensional network. BaUSe3 can be charge balanced as Ba(2+)U(4+)(Se(2-))3. DFT electronic structure calculations found BaUSe3 to be antiferromagnetic in its ground state and to be a semiconductor with a band gap of 2.5 eV. The band gap is inconsistent with the black color of the material and with the small activation energy of 0.12(1) eV obtained from resistivity measurements. A UV-vis spectrum indicated that there was no band gap above 1 eV. It is possible that, for BaUSe3, intrinsic and extrinsic impurities from the flux create midgap states that lead to the experimentally measured narrow optical gap. More likely, BaUSe3 presents a challenge to DFT calculations as applied to 5f materials.

2.
Inorg Chem ; 51(7): 4359-67, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22409657

RESUMO

An oxidation of cluster anion [Re(12)CS(17)(CN)(6)](6-) by H(2)O(2) in water has been investigated. It was shown that selective two-step oxidation of bridging µ(2)-S-ligands in trigonal prismatic unit {Re(3)(µ(6)-C)(µ(2)-S)(3)Re(3)} takes place. The first stage runs rapidly, whereas the speed of the second stage depends on intensity of ultraviolet irradiation of the reaction mixture. Each stage of the reaction is accompanied by a change in the solution's color. In the first stage of the oxidation, the cluster anion [Re(12)CS(14)(SO(2))(3)(CN)(6)](6-) is produced, in which all bridging S-ligands are turned into bridging SO(2)-ligands. The second stage of the oxidation leads to formation of the anion [Re(12)CS(14)(SO(2))(2)(SO(3))(CN)(6)](6-), in which one of the SO(2)-ligands underwent further oxidation forming the bridging SO(3)-ligand. Seven compounds containing these anions were synthesized and characterized by a set of different methods, elemental analyses, IR and UV/vis spectroscopy, and quantum-chemical calculations. Structures of some compounds based on similar cluster anions, [Cu(NH(3))(5)](3)[Re(12)CS(14)(SO(2))(3)(CN)(6)]·9.5H(2)O, [Ni(NH(3))(6)](3)[Re(12)CS(14)(SO(2))(3)(CN)(6)]·4H(2)O, and [Cu(NH(3))(5)](2.6)[Re(12)CS(14)(SO(2))(3)(CN)(6)](0.6)[{Re(12)CS(14)(SO(2))(2)(SO(3))(CN)(5)(µ-CN)}{Cu(NH(3))(4)}](0.4)·5H(2)O, were investigated by X-ray analysis of single crystals.

3.
Chem Commun (Camb) ; (19): 2655-7, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19532911

RESUMO

X-Ray studies and (1)H NMR measurements for novel cyano-bridged polymers [(H){Ln(H(2)O)(4)}{Re(6)S(8)(CN)(6)}]*2H(2)O (Ln = Yb, Lu) reveal temperature dependence of proton localization: acid protons are trapped between nitrogen atoms at low temperatures, but can be transferred to the water sublattice at higher temperatures; this transfer resulted in intermolecular proton exchange.

4.
Dalton Trans ; 47(4): 1122-1130, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29265139

RESUMO

Herein, two new octahedral molybdenum cyanide cluster compounds, namely [{Ni(NH3)6}4{Ni2(NH3)8}1][Mo6Br6Q2(CN)6]3·12H2O, Q = S (1) and Se (2), have been synthesized as single crystals by slow diffusion of a solution of nickel chloride into aqueous ammonia solutions of a K2Cs2[Mo6Br6Q2(CN)6] molybdenum cyanide cluster-based compound. Both 1 and 2 were structurally characterized by single-crystal X-ray diffraction. They are isostructural and crystallize in the cubic system (Im3[combining macron]m (no. 229); Z = 2, a = 18.147(1) Å, and V = 5976(1) Å3 and a = 18.188(2) Å and V = 6016(2) Å3 for 1 and 2, respectively). 1 and 2 are based on the association of [Mo6Bri6Qi2(CN)a6]4- (Q = S, Se) cluster anions with Ni2+ dimer-based cubic [Ni2(NH3)8]4+ and octahedral [Ni(NH3)6]2+ cations. The structure is based on 2-fold interpenetrated [{Ni(NH3)6}4{Ni2(NH3)8}1][Mo6Br6Q2(CN)6]3 frameworks related to each other by [½, ½, ½] translation. The unit cell is based on a body-centered cubic framework of cubic [Ni2(NH3)8]4+. The [Mo6Bri6Qi2(CN)a6]4- (Q = S, Se) cluster units are located in the middle of the edges and at the center of the faces of the cell. The [{Ni(NH3)6}]2+ cations are located at the center of the cubes of the a/2 edge. The dimers [Ni2(NH3)8]4+ are stabilized by hydrogen bonds between the cyanide ligands of the cluster unit and the hydrogen atoms of the ammonia molecules. Both compounds exhibit a weak antiferromagnetic coupling within the [Ni2(NH3)8]4+ dimer entities at low temperatures together with a paramagnetic behavior originating from the cations of the octahedral [{Ni(NH3)6}]2+ complexes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa