Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 87(4): 1507-16, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20445974

RESUMO

A high cell density strategy has been used in bioethanol production to shorten the fermentation period. To reveal the molecular basis of fermentative behavior in high cell density, the profiling of the phospholipids and sterols of Saccharomyces cerevisiae during fermentation at five different pitching rates (1, 5, 10, 20, and 40 g/L) was investigated. Using LC/ESI/MS(n) technology, 148 phospholipid species were detected, of which 91 species were quantified, and using the gas chromatography-time-of-flight mass spectrometry procedure, a total of 11 sterols were quantified. Phospholipid samples from different pitching rates were discriminated into three groups using principal component analysis (1, 5 g/L, and the others). The main changes in the lipid profile of yeast cells with higher pitching rates were as follows: (a) the relative contents of phosphatidylglycerol and phosphatidylserine were higher while phosphatidylinositol was lower compared with lower pitching rates, (b) the saturated and the relatively shorter fatty acyl chains of phospholipids decreased, and (c) the content of ergosterol was higher. These findings suggested a regulation of the property of the membrane at the situation of high cell density and a possible approach of self-protection of the yeast cells against the high density stresses.


Assuntos
Fermentação , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo , Fosfolipídeos/química , Esteróis/química
2.
Proteomics ; 9(20): 4704-13, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19743421

RESUMO

The cell-density-dependent responses of Saccharomyces cerevisiae to inoculation sizes were explored by a proteomic approach. According to their gene ontology, 100 protein spots with differential expression, corresponding to 67 proteins, were identified and classed into 17 different functional groups. Upregulation of eight heat shock, oxidative response and amino acid biosynthesis-related proteins (e.g. Hsp78p, Ssa1p, Hsp60p, Ctt1p, Sod1p, Ahp1p, Met6p and Met17p), which may jointly maintain the cell redox homeostasis, was dependant on inoculation density. Significant increases in the levels of five proteins involved in glycolysis and alcohol biosynthesis pathways (e.g. Glk1p, Fba1p, Eno1p, Pdc1p and Adh1p) might play critical roles in improving ethanol productivity of the fermentation process and shortening the fermentation time when inoculation sizes were increased. Cell-density-dependent glycolytic variations of proteins involved in trehalose, glycerol biosynthesis and pentose phosphate pathway revealed shifts among metabolic pathways during fermentation with different inoculation sizes. Upregulation of three signal transduction proteins (Bmh1p, Bmh2p and Fpr1p) indicated that adequate cell-cell contacts improved cellular communication at high inoculation sizes. These findings provide insights into yeast responses to inoculation size and optimizing the direct inoculation of active dry yeast fermentation, so as to improve the ethanol production.


Assuntos
Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Resposta ao Choque Térmico , Estresse Oxidativo , Proteômica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Regulação para Cima
3.
J Biotechnol ; 144(4): 279-86, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19808067

RESUMO

To investigate the metabolic regulation against inoculum density and stress response to high cell density, comparative metabolomic analysis was employed on Saccharomyces cerevisiae under fermentations with five different inoculum sizes by gas chromatography time-of-flight mass spectrometry. Samples from these fermentations were clearly distinguished by principal components analysis, indicating that inoculum size had a profound effect on the metabolism of S. cerevisiae. Potential biomarkers responsible for the discrimination were identified as glycerol, phosphoric acid, succinate, glycine, isoleucine, proline, palmitoleic acid, myo-inositol and ethanolamine. It indicated that enhanced stress protectants in glycerol biosynthesis and amino acid metabolism, depressed citric acid cycle intermediates, as well as decreased metabolites relating to membrane structure and function were involved as the inoculum size of yeast increased. Furthermore, significantly higher levels of glycerol and proline in yeast cells of higher inoculum size fermentation (40 g l(-1)) revealed that they played important roles in protecting yeast from stresses in high cell density fermentation. These findings provided new insights into characterizing the metabolic regulation and stress response depending on inoculum density during ethanol fermentation.


Assuntos
Regulação Fúngica da Expressão Gênica , Resposta ao Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Meios de Cultura , Etanol/metabolismo , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Microbiologia Industrial/métodos , Metabolômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa