Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 24(23-24): 1798-1807, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30129882

RESUMO

Induced pluripotent stem cells (iPSCs) have been shown to differentiate to functional cardiomyocytes (CM) with high efficiency through temporally controlled inhibition of the GSK3/Wnt signaling pathways. In this study, we investigated the ability of temporally controlled release of GSK3/Wnt small-molecule inhibitors to drive cardiac differentiation of iPSC without manual intervention. Porous silica particles were loaded with GSK3 inhibitor CHIR99021 or Wnt inhibitor IWP2, and the particles containing IWP2 were coated with 5 wt% poly(lactic-co-glycolic acid) 50:50 to delay release by ∼72 h. iPSCs reprogrammed through mRNA transfection were cultured with these particles up to 30 days. High-performance liquid chromatography suggests a burst release of CHIR99021 within the first 24 h and a delayed release of IWP2 after 72 h. Annexin V/propidium iodide staining did not show a significant effect on apoptosis or necrosis rates. Cultured cells upregulated both early (Nkx 2.5, Isl-1) and late (cTnT, MHC, Cx43) cardiac markers, assayed with a quantitative real-time polymerase chain reaction, and began spontaneous contraction at 3.0 ± 0.6 Hz at 15-21 days after the start of differentiation. CM had clear sarcomeric striations when stained for ß-myosin heavy chain, and showed expression and punctate membrane localization of gap junction protein Connexin43. Calcium and voltage-sensitive imaging showed both action potential and calcium transients typical of immature CM. This study showed that the cardiac differentiation of pluripotent stem cells can be directed by porous silica vectors with temporally controlled release of small-molecule inhibitors. These results suggest methods for automating and eliminating variability in manual maintenance of inhibitor concentrations in the differentiation of pluripotent stem cells to CM.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Dióxido de Silício/farmacologia , Líquido Amniótico/citologia , Animais , Biomarcadores/metabolismo , Preparações de Ação Retardada/farmacologia , Fenômenos Eletrofisiológicos , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Camundongos Nus , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Porosidade , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo
2.
ACS Appl Mater Interfaces ; 10(51): 44344-44353, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30511828

RESUMO

The use of nanomaterials as carriers for the delivery of growth factors has been applied to a multitude of applications in tissue engineering. However, issues of toxicity, stability, and systemic effects of these platforms have yet to be fully understood, especially for cardiovascular applications. Here, we proposed a delivery system composed of poly(dl-lactide- co-glycolide) acid (PLGA) and porous silica nanoparticles (pSi) to deliver vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). The tight spatiotemporal release of these two proteins has been proven to promote neovascularization. In order to minimize tissue toxicity, localize the release, and maintain a stable platform, we conjugated two formulations of PLGA-pSi to electrospun (ES) gelatin to create a combined ES patch releasing both PDGF and VEGF. When compared to freely dispersed particles, the ES patch cultured in vitro with neonatal cardiac cells had significantly less particle internalization (2.0 ± 1.3%) compared to free PLGA-pSi (21.5 ± 6.1) or pSi (28.7 ± 2.5) groups. Internalization was positively correlated to late-stage apoptosis with PLGA-pSi and pSi groups having increased apoptosis compared to the untreated group. When implanted subcutaneously, the ES patch was shown to have greater neovascularization than controls evidenced by increased expression of α-SMA and CD31 after 21 days. Quantitative reverse transcription-polymerase chain reaction results support increased angiogenesis by the upregulation of VEGFA, VEGFR2, vWF, and COL3A1, exhibiting a synergistic effect with the release of VEGF-A164 and PDGF-BB after 21 days in vivo. The results of this study proved that the ES patch reduced cellular toxicity and may be tailored to have a dual release of growth factors promoting localized neovascularization.


Assuntos
Becaplermina , Proliferação de Células/efeitos dos fármacos , Miócitos Cardíacos , Nanopartículas/química , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular , Animais , Becaplermina/química , Becaplermina/farmacocinética , Becaplermina/farmacologia , Implantes de Medicamento/química , Implantes de Medicamento/farmacocinética , Implantes de Medicamento/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/transplante , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Porosidade , Ratos , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Dióxido de Silício/farmacologia , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/farmacocinética , Fator A de Crescimento do Endotélio Vascular/farmacologia
3.
PLoS One ; 12(5): e0177824, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28545044

RESUMO

Congenital heart defects are the most common birth defect. The limiting factor in tissue engineering repair strategies is an autologous source of functional cardiomyocytes. Amniotic fluid contains an ideal cell source for prenatal harvest and use in correction of congenital heart defects. This study aims to investigate the potential of amniotic fluid-derived stem cells (AFSC) to undergo non-viral reprogramming into induced pluripotent stem cells (iPSC) followed by growth-factor-free differentiation into functional cardiomyocytes. AFSC from human second trimester amniotic fluid were transfected by non-viral vesicle fusion with modified mRNA of OCT4, KLF4, SOX2, LIN28, cMYC and nuclear GFP over 18 days, then differentiated using inhibitors of GSK3 followed 48 hours later by inhibition of WNT. AFSC-derived iPSC had high expression of OCT4, NANOG, TRA-1-60, and TRA-1-81 after 18 days of mRNA transfection and formed teratomas containing mesodermal, ectodermal, and endodermal germ layers in immunodeficient mice. By Day 30 of cardiomyocyte differentiation, cells contracted spontaneously, expressed connexin 43 and ß-myosin heavy chain organized in sarcomeric banding patterns, expressed cardiac troponin T and ß-myosin heavy chain, showed upregulation of NKX2.5, ISL-1 and cardiac troponin T with downregulation of POU5F1, and displayed calcium and voltage transients similar to those in developing cardiomyocytes. These results demonstrate that cells from human amniotic fluid can be differentiated through a pluripotent state into functional cardiomyocytes.


Assuntos
Líquido Amniótico/citologia , Células-Tronco Fetais/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Animais , Antígenos de Superfície/genética , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/genética , Gravidez , Segundo Trimestre da Gravidez , Proteoglicanas/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa