Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Am J Hum Genet ; 108(6): 1095-1114, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33991472

RESUMO

Latent transforming growth factor ß (TGFß)-binding proteins (LTBPs) are microfibril-associated proteins essential for anchoring TGFß in the extracellular matrix (ECM) as well as for correct assembly of ECM components. Variants in LTBP2, LTBP3, and LTBP4 have been identified in several autosomal recessive Mendelian disorders with skeletal abnormalities with or without impaired development of elastin-rich tissues. Thus far, the human phenotype associated with LTBP1 deficiency has remained enigmatic. In this study, we report homozygous premature truncating LTBP1 variants in eight affected individuals from four unrelated consanguineous families. Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly). In vitro studies on proband-derived dermal fibroblasts indicate distinct molecular mechanisms depending on the position of the variant in LTBP1. C-terminal variants lead to an altered LTBP1 loosely anchored in the microfibrillar network and cause increased ECM deposition in cultured fibroblasts associated with excessive TGFß growth factor activation and signaling. In contrast, N-terminal truncation results in a loss of LTBP1 that does not alter TGFß levels or ECM assembly. In vivo validation with two independent zebrafish lines carrying mutations in ltbp1 induce abnormal collagen fibrillogenesis in skin and intervertebral ligaments and ectopic bone formation on the vertebrae. In addition, one of the mutant zebrafish lines shows voluminous and hypo-mineralized vertebrae. Overall, our findings in humans and zebrafish show that LTBP1 function is crucial for skin and bone ECM assembly and homeostasis.


Assuntos
Colágeno/metabolismo , Cútis Laxa/etiologia , Variação Genética , Proteínas de Ligação a TGF-beta Latente/genética , Adolescente , Alelos , Animais , Células Cultivadas , Criança , Pré-Escolar , Cútis Laxa/patologia , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Masculino , Linhagem , Pele/metabolismo , Pele/patologia , Peixe-Zebra
2.
Am J Hum Genet ; 108(11): 2195-2204, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34715011

RESUMO

Human mitochondrial RNase P (mt-RNase P) is responsible for 5' end processing of mitochondrial precursor tRNAs, a vital step in mitochondrial RNA maturation, and is comprised of three protein subunits: TRMT10C, SDR5C1 (HSD10), and PRORP. Pathogenic variants in TRMT10C and SDR5C1 are associated with distinct recessive or x-linked infantile onset disorders, resulting from defects in mitochondrial RNA processing. We report four unrelated families with multisystem disease associated with bi-allelic variants in PRORP, the metallonuclease subunit of mt-RNase P. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. Fibroblasts from affected individuals in two families demonstrated decreased steady state levels of PRORP, an accumulation of unprocessed mitochondrial transcripts, and decreased steady state levels of mitochondrial-encoded proteins, which were rescued by introduction of the wild-type PRORP cDNA. In mt-tRNA processing assays performed with recombinant mt-RNase P proteins, the disease-associated variants resulted in diminished mitochondrial tRNA processing. Identification of disease-causing variants in PRORP indicates that pathogenic variants in all three subunits of mt-RNase P can cause mitochondrial dysfunction, each with distinct pleiotropic clinical presentations.


Assuntos
Alelos , Pleiotropia Genética , Mitocôndrias/enzimologia , RNA Mitocondrial/genética , RNA de Transferência/genética , Ribonuclease P/genética , Adulto , Feminino , Humanos , Masculino , Linhagem
3.
PLoS Genet ; 15(5): e1008130, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31048900

RESUMO

Nanophthalmos is a rare, potentially devastating eye condition characterized by small eyes with relatively normal anatomy, a high hyperopic refractive error, and frequent association with angle closure glaucoma and vision loss. The condition constitutes the extreme of hyperopia or farsightedness, a common refractive error that is associated with strabismus and amblyopia in children. NNO1 was the first mapped nanophthalmos locus. We used combined pooled exome sequencing and strong linkage data in the large family used to map this locus to identify a canonical splice site alteration upstream of the last exon of the gene encoding myelin regulatory factor (MYRF c.3376-1G>A), a membrane bound transcription factor that undergoes autoproteolytic cleavage for nuclear localization. This variant produced a stable RNA transcript, leading to a frameshift mutation p.Gly1126Valfs*31 in the C-terminus of the protein. In addition, we identified an early truncating MYRF frameshift mutation, c.769dupC (p.S264QfsX74), in a patient with extreme axial hyperopia and syndromic features. Myrf conditional knockout mice (CKO) developed depigmentation of the retinal pigment epithelium (RPE) and retinal degeneration supporting a role of this gene in retinal and RPE development. Furthermore, we demonstrated the reduced expression of Tmem98, another known nanophthalmos gene, in Myrf CKO mice, and the physical interaction of MYRF with TMEM98. Our study establishes MYRF as a nanophthalmos gene and uncovers a new pathway for eye growth and development.


Assuntos
Glaucoma de Ângulo Fechado/genética , Hiperopia/genética , Proteínas de Membrana/genética , Microftalmia/genética , Degeneração Retiniana/genética , Fatores de Transcrição/genética , Adulto , Animais , Criança , Pré-Escolar , Éxons , Família , Feminino , Mutação da Fase de Leitura/genética , Variação Genética/genética , Glaucoma de Ângulo Fechado/metabolismo , Humanos , Hiperopia/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microftalmia/metabolismo , Pessoa de Meia-Idade , Linhagem , Sítios de Splice de RNA/genética , Erros de Refração/genética , Fatores de Transcrição/metabolismo
5.
Clin Genet ; 96(6): 515-520, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31441039

RESUMO

CHRM3 codes for the M3 muscarinic acetylcholine receptor that is located on the surface of smooth muscle cells of the detrusor, the muscle that effects urinary voiding. Previously, we reported brothers in a family affected by a congenital prune belly-like syndrome with mydriasis due to homozygous CHRM3 frameshift variants. In this study, we describe two sisters with bladders that failed to empty completely and pupils that failed to constrict fully in response to light, who are homozygous for the missense CHRM3 variant c.352G > A; p.(Gly118Arg). Samples were not available for genotyping from their brother, who had a history of multiple urinary tract infections and underwent surgical bladder draining in the first year of life. He died at the age of 6 years. This is the first independent report of biallelic variants in CHRM3 in a family with a rare serious bladder disorder associated with mydriasis and provides important evidence of this association.


Assuntos
Mutação de Sentido Incorreto/genética , Receptor Muscarínico M3/genética , Doenças da Bexiga Urinária/genética , Sequência de Bases , Família , Feminino , Homozigoto , Humanos , Malásia , Masculino
6.
Am J Med Genet A ; 179(3): 404-409, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30628148

RESUMO

The bladder exstrophy-epispadias complex (BEEC) comprises of a spectrum of anterior midline defects, all affecting the lower urinary tract, the external genitalia, and the bony pelvis. In extreme cases, the gastrointestinal tract is also affected. The pathogenesis of BEEC is unclear but chromosomal aberrations have been reported. In particular, duplications of 22q11.2 have been identified in eight unrelated individuals with BEEC. The current study aimed to identify chromosomal copy number variants in BEEC. Analyses was performed using the Affymetrix Genome-wide SNP6.0 assay in 92 unrelated patients cared for by two UK pediatric urology centers. Three individuals had a 22q11.2 duplication, a significantly higher number than that found in a control group of 12,500 individuals with developmental delay who had undergone microarray testing (p < .0001). Sequencing of CRKL, implicated in renal tract malformations in DiGeorge syndrome critical region at 22q11, in 89 individuals with BEEC lacking 22q11 duplications revealed no pathogenic variants. To date, 22q11.2 duplication is the genetic variant most commonly associated with BEEC. This is consistent with the hypothesis that altered expression of a single, yet to be defined, gene therein is critical to the pathogenesis of this potentially devastating congenital disorder.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Extrofia Vesical/diagnóstico , Extrofia Vesical/genética , Duplicação Cromossômica/genética , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Predisposição Genética para Doença , Proteínas Adaptadoras de Transdução de Sinal/genética , Cromossomos Humanos Par 22/genética , Variações do Número de Cópias de DNA , Feminino , Estudos de Associação Genética , Humanos , Masculino , Razão de Chances , Fenótipo , Polimorfismo de Nucleotídeo Único , Reino Unido
7.
J Inherit Metab Dis ; 42(5): 809-817, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31177572

RESUMO

The first step in branched-chain amino acid (BCAA) catabolism is catalyzed by the two BCAA transferase isoenzymes, cytoplasmic branched-chain amino acid transferase (BCAT) 1, and mitochondrial BCAT2. Defects in the second step of BCAA catabolism cause maple syrup urine disease (MSUD), a condition which has been far more extensively investigated. Here, we studied the consequences of BCAT2 deficiency, an ultra-rare condition in humans. We present genetic, clinical, and functional data in five individuals from four different families with homozygous or compound heterozygous BCAT2 mutations which were all detected following abnormal biochemical profile results or familial mutation segregation studies. We demonstrate that BCAT2 deficiency has a recognizable biochemical profile with raised plasma BCAAs and, in contrast with MSUD, low-normal branched-chain keto acids (BCKAs) with undetectable l-allo-isoleucine. Interestingly, unlike in MSUD, none of the individuals with BCAT2 deficiency developed acute encephalopathy even with exceptionally high BCAA levels. We observed wide-ranging clinical phenotypes in individuals with BCAT2 deficiency. While one adult was apparently asymptomatic, three individuals had presented with developmental delay and autistic features. We show that the biochemical characteristics of BCAT2 deficiency may be amenable to protein-restricted diet and that early treatment may improve outcome in affected individuals. BCAT2 deficiency is an inborn error of BCAA catabolism. At present, it is unclear whether developmental delay and autism are parts of the variable phenotypic spectrum of this condition or coincidental. Further studies will be required to explore this.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Aminoácidos de Cadeia Ramificada/sangue , Encéfalo/patologia , Mitocôndrias/patologia , Proteínas da Gravidez/deficiência , Transaminases/deficiência , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Antígenos de Histocompatibilidade Menor/genética , Mutação , Fenótipo , Proteínas da Gravidez/genética , Transaminases/genética
8.
Am J Hum Genet ; 97(4): 535-45, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26387595

RESUMO

Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities, and occasional or late-onset retinal pigmentation. We ascertained eight families affected by HS and, by using a whole-exome sequencing approach, identified biallelic mutations in PEX1 or PEX6 in six of them. Loss-of-function mutations in both genes are known causes of a spectrum of autosomal-recessive peroxisome-biogenesis disorders (PBDs), including Zellweger syndrome. PBDs are characterized by leukodystrophy, hypotonia, SNHL, retinopathy, and skeletal, craniofacial, and liver abnormalities. We demonstrate that each HS-affected family has at least one hypomorphic allele that results in extremely mild peroxisomal dysfunction. Although individuals with HS share some subtle clinical features found in PBDs, the diagnosis was not suggested by routine blood and skin fibroblast analyses used to detect PBDs. In conclusion, our findings define HS as a mild PBD, expanding the pleiotropy of mutations in PEX1 and PEX6.


Assuntos
Adenosina Trifosfatases/genética , Amelogênese Imperfeita/genética , Fibroblastos/patologia , Perda Auditiva Neurossensorial/genética , Proteínas de Membrana/genética , Mutação/genética , Unhas Malformadas/genética , Peroxissomos/patologia , ATPases Associadas a Diversas Atividades Celulares , Adolescente , Adulto , Estudos de Casos e Controles , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Peroxissomos/metabolismo , Fenótipo , Prognóstico , Taxa de Sobrevida , Adulto Jovem
9.
Proc Natl Acad Sci U S A ; 112(25): E3236-45, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056285

RESUMO

Ocular developmental disorders, including the group classified as microphthalmia, anophthalmia, and coloboma (MAC) and inherited retinal dystrophies, collectively represent leading causes of hereditary blindness. Characterized by extreme genetic and clinical heterogeneity, the separate groups share many common genetic causes, in particular relating to pathways controlling retinal and retinal pigment epithelial maintenance. To understand these shared pathways and delineate the overlap between these groups, we investigated the genetic cause of an autosomal dominantly inherited condition of retinal dystrophy and bilateral coloboma, present in varying degrees in a large, five-generation family. By linkage analysis and exome sequencing, we identified a previously undescribed heterozygous mutation, n.37 C > T, in the seed region of microRNA-204 (miR-204), which segregates with the disease in all affected individuals. We demonstrated that this mutation determines significant alterations of miR-204 targeting capabilities via in vitro assays, including transcriptome analysis. In vivo injection, in medaka fish (Oryzias latipes), of the mutated miR-204 caused a phenotype consistent with that observed in the family, including photoreceptor alterations with reduced numbers of both cones and rods as a result of increased apoptosis, thereby confirming the pathogenic effect of the n.37 C > T mutation. Finally, knockdown assays in medaka fish demonstrated that miR-204 is necessary for normal photoreceptor function. Overall, these data highlight the importance of miR-204 in the regulation of ocular development and maintenance and provide the first evidence, to our knowledge, of its contribution to eye disease, likely through a gain-of-function mechanism.


Assuntos
Coloboma/genética , MicroRNAs/genética , Distrofias Retinianas/genética , Sequência de Bases , Coloboma/complicações , Exoma , Feminino , Ligação Genética , Humanos , Masculino , Linhagem , Distrofias Retinianas/complicações , Homologia de Sequência do Ácido Nucleico
10.
Hum Mutat ; 38(4): 426-438, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28058752

RESUMO

Calcium (Ca2+ ) is a physiological key factor, and the precise modulation of free cytosolic Ca2+ levels regulates multiple cellular functions. Store-operated Ca2+ entry (SOCE) is a major mechanism controlling Ca2+ homeostasis, and is mediated by the concerted activity of the Ca2+ sensor STIM1 and the Ca2+ channel ORAI1. Dominant gain-of-function mutations in STIM1 or ORAI1 cause tubular aggregate myopathy (TAM) or Stormorken syndrome, whereas recessive loss-of-function mutations are associated with immunodeficiency. Here, we report the identification and functional characterization of novel ORAI1 mutations in TAM patients. We assess basal activity and SOCE of the mutant ORAI1 channels, and we demonstrate that the G98S and V107M mutations generate constitutively permeable ORAI1 channels, whereas T184M alters the channel permeability only in the presence of STIM1. These data indicate a mutation-dependent pathomechanism and a genotype/phenotype correlation, as the ORAI1 mutations associated with the most severe symptoms induce the strongest functional cellular effect. Examination of the non-muscle features of our patients strongly suggests that TAM and Stormorken syndrome are spectra of the same disease. Overall, our results emphasize the importance of SOCE in skeletal muscle physiology, and provide new insights in the pathomechanisms involving aberrant Ca2+ homeostasis and leading to muscle dysfunction.


Assuntos
Ativação do Canal Iônico/genética , Mutação de Sentido Incorreto , Miopatias Congênitas Estruturais/genética , Proteína ORAI1/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Transtornos Plaquetários/genética , Transtornos Plaquetários/metabolismo , Cálcio/metabolismo , Células Cultivadas , Dislexia/genética , Dislexia/metabolismo , Eritrócitos Anormais/metabolismo , Feminino , Células HEK293 , Humanos , Ictiose/genética , Ictiose/metabolismo , Masculino , Camundongos Knockout , Microscopia de Fluorescência/métodos , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Miose/genética , Miose/metabolismo , Fadiga Muscular/genética , Miopatias Congênitas Estruturais/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Linhagem , Homologia de Sequência de Aminoácidos , Baço/anormalidades , Baço/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
11.
Am J Hum Genet ; 95(5): 622-32, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25439729

RESUMO

Filippi syndrome is a rare, presumably autosomal-recessive disorder characterized by microcephaly, pre- and postnatal growth failure, syndactyly, and distinctive facial features, including a broad nasal bridge and underdeveloped alae nasi. Some affected individuals have intellectual disability, seizures, undescended testicles in males, and teeth and hair abnormalities. We performed homozygosity mapping and whole-exome sequencing in a Sardinian family with two affected children and identified a homozygous frameshift mutation, c.571dupA (p.Ile191Asnfs(∗)6), in CKAP2L, encoding the protein cytoskeleton-associated protein 2-like (CKAP2L). The function of this protein was unknown until it was rediscovered in mice as Radmis (radial fiber and mitotic spindle) and shown to play a pivotal role in cell division of neural progenitors. Sanger sequencing of CKAP2L in a further eight unrelated individuals with clinical features consistent with Filippi syndrome revealed biallelic mutations in four subjects. In contrast to wild-type lymphoblastoid cell lines (LCLs), dividing LCLs established from the individuals homozygous for the c.571dupA mutation did not show CKAP2L at the spindle poles. Furthermore, in cells from the affected individuals, we observed an increase in the number of disorganized spindle microtubules owing to multipolar configurations and defects in chromosome segregation. The observed cellular phenotypes are in keeping with data from in vitro and in vivo knockdown studies performed in human cells and mice, respectively. Our findings show that loss-of-function mutations in CKAP2L are a major cause of Filippi syndrome.


Assuntos
Proteínas do Citoesqueleto/genética , Transtornos do Crescimento/genética , Deficiência Intelectual/genética , Microcefalia/genética , Sindactilia/genética , Animais , Sequência de Bases , Análise Citogenética , Fácies , Mutação da Fase de Leitura/genética , Componentes do Gene , Genes Recessivos/genética , Transtornos do Crescimento/patologia , Humanos , Deficiência Intelectual/patologia , Itália , Masculino , Camundongos , Microcefalia/patologia , Microscopia Confocal , Dados de Sequência Molecular , Análise de Sequência de DNA , Sindactilia/patologia
12.
Am J Hum Genet ; 95(6): 698-707, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25434003

RESUMO

Mutations in components of the major spliceosome have been described in disorders with craniofacial anomalies, e.g., Nager syndrome and mandibulofacial dysostosis type Guion-Almeida. The U5 spliceosomal complex of eight highly conserved proteins is critical for pre-mRNA splicing. We identified biallelic mutations in TXNL4A, a member of this complex, in individuals with Burn-McKeown syndrome (BMKS). This rare condition is characterized by bilateral choanal atresia, hearing loss, cleft lip and/or palate, and other craniofacial dysmorphisms. Mutations were found in 9 of 11 affected families. In 8 families, affected individuals carried a rare loss-of-function mutation (nonsense, frameshift, or microdeletion) on one allele and a low-frequency 34 bp deletion (allele frequency 0.76%) in the core promoter region on the other allele. In a single highly consanguineous family, formerly diagnosed as oculo-oto-facial dysplasia, the four affected individuals were homozygous for a 34 bp promoter deletion, which differed from the promoter deletion in the other families. Reporter gene and in vivo assays showed that the promoter deletions led to reduced expression of TXNL4A. Depletion of TXNL4A (Dib1) in yeast demonstrated reduced assembly of the tri-snRNP complex. Our results indicate that BMKS is an autosomal-recessive condition, which is frequently caused by compound heterozygosity of low-frequency promoter deletions in combination with very rare loss-of-function mutations.


Assuntos
Atresia das Cóanas/genética , Surdez/congênito , Deleção de Genes , Cardiopatias Congênitas/genética , Regiões Promotoras Genéticas/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Spliceossomos/genética , Alelos , Pré-Escolar , Atresia das Cóanas/diagnóstico , Surdez/diagnóstico , Surdez/genética , Exossomos/genética , Fácies , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , Genes Reporter , Cardiopatias Congênitas/diagnóstico , Heterozigoto , Homozigoto , Humanos , Masculino , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Fenótipo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Análise de Sequência de DNA , Spliceossomos/metabolismo
13.
Am J Med Genet A ; 173(4): 1051-1055, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28328138

RESUMO

PTRH2 is an evolutionarily highly conserved mitochondrial protein that belongs to a family of peptidyl-tRNA hydrolases. Recently, patients from two consanguineous families with mutations in the PTRH2 gene were reported. Global developmental delay associated with microcephaly, growth retardation, progressive ataxia, distal muscle weakness with ankle contractures, demyelinating sensorimotor neuropathy, and sensorineural hearing loss were present in all patients, while facial dysmorphism with widely spaced eyes, exotropia, thin upper lip, proximally placed thumbs, and deformities of the fingers and toes were present in some individuals. Here, we report a new family with three siblings affected by sensorineural hearing loss and peripheral neuropathy. Autozygosity mapping followed by exome sequencing identified a previously reported homozygous missense mutation in PTRH2 (c.254A>C; p.(Gln85Pro)). Sanger sequencing confirmed that the variant segregated with the phenotype. In contrast to the previously reported patient, the affected siblings had normal intelligence, milder microcephaly, delayed puberty, myopia, and moderate insensitivity to pain. Our findings expand the clinical phenotype and further demonstrate the clinical heterogeneity related to PTRH2 variants.


Assuntos
Hidrolases de Éster Carboxílico/genética , Perda Auditiva Neurossensorial/genética , Homozigoto , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Doenças do Sistema Nervoso Periférico/genética , Adolescente , Sequência de Bases , Consanguinidade , Progressão da Doença , Feminino , Expressão Gênica , Heterogeneidade Genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Masculino , Miopia/fisiopatologia , Insensibilidade Congênita à Dor/fisiopatologia , Linhagem , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/fisiopatologia , Fenótipo , Puberdade Tardia/fisiopatologia , Irmãos
14.
Hum Mutat ; 37(3): 250-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26615784

RESUMO

Heterozygous whole gene deletions (WGDs), and intragenic microdeletions, account for a significant proportion of mutations underlying cancer predisposition syndromes. We analyzed the frequency and genotype-phenotype correlations of microdeletions in 12 genes (BRCA1, BRCA2, TP53, MSH2, MLH1, MSH6, PMS2, NF1, NF2, APC, PTCH1, and VHL) representing seven tumor predisposition syndromes in 5,897 individuals (2,611 families) from our center. Overall, microdeletions accounted for 14% of identified mutations. As expected, smaller deletions or duplications were more common (12%) than WGDs (2.2%). Where a WGD was identified in the germline in NF2, the mechanism of somatic second hit was not deletion, as previously described for NF1. For neurofibromatosis type 1 and 2, we compared the mechanism of germline deletion. Unlike NF1, where three specific deletion sizes account for most germline WGDs, NF2 deletion breakpoints were different across seven samples tested. One of these deletions was 3.93 Mb and conferred a severe phenotype, thus refining the region for a potential NF2 modifier gene to a 2.04-Mb region on chromosome 22. The milder phenotype of NF2 WGDs may be due to the apparent absence of chromosome 22 loss as the second hit. These observations of WGD phenotypes will be helpful for interpreting incidental findings from microarray analysis and next-generation sequencing.


Assuntos
Cromossomos Humanos Par 22/genética , Deleção de Genes , Adulto , Proteína BRCA1/genética , Proteína BRCA2/genética , Proteínas de Ligação a DNA/genética , Feminino , Genótipo , Mutação em Linhagem Germinativa/genética , Humanos , Pessoa de Meia-Idade , Proteína 2 Homóloga a MutS/genética , Mutação/genética , Proteína Supressora de Tumor p53/genética
15.
Am J Hum Genet ; 92(2): 259-64, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23313374

RESUMO

Urofacial syndrome (UFS) (or Ochoa syndrome) is an autosomal-recessive disease characterized by congenital urinary bladder dysfunction, associated with a significant risk of kidney failure, and an abnormal facial expression upon smiling, laughing, and crying. We report that a subset of UFS-affected individuals have biallelic mutations in LRIG2, encoding leucine-rich repeats and immunoglobulin-like domains 2, a protein implicated in neural cell signaling and tumorigenesis. Importantly, we have demonstrated that rare variants in LRIG2 might be relevant to nonsyndromic bladder disease. We have previously shown that UFS is also caused by mutations in HPSE2, encoding heparanase-2. LRIG2 and heparanase-2 were immunodetected in nerve fascicles growing between muscle bundles within the human fetal bladder, directly implicating both molecules in neural development in the lower urinary tract.


Assuntos
Glicoproteínas de Membrana/genética , Mutação/genética , Doenças Urológicas/genética , Sequência de Bases , Criança , Pré-Escolar , Análise Mutacional de DNA , Fácies , Família , Feminino , Humanos , Imuno-Histoquímica , Lactente , Masculino , Dados de Sequência Molecular , Linhagem , Bexiga Urinária/patologia , Bexiga Urinaria Neurogênica/genética , Doenças Urológicas/fisiopatologia
16.
Am J Hum Genet ; 92(4): 605-13, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23541340

RESUMO

Perrault syndrome is a genetically and clinically heterogeneous autosomal-recessive condition characterized by sensorineural hearing loss and ovarian failure. By a combination of linkage analysis, homozygosity mapping, and exome sequencing in three families, we identified mutations in CLPP as the likely cause of this phenotype. In each family, affected individuals were homozygous for a different pathogenic CLPP allele: c.433A>C (p.Thr145Pro), c.440G>C (p.Cys147Ser), or an experimentally demonstrated splice-donor-site mutation, c.270+4A>G. CLPP, a component of a mitochondrial ATP-dependent proteolytic complex, is a highly conserved endopeptidase encoded by CLPP and forms an element of the evolutionarily ancient mitochondrial unfolded-protein response (UPR(mt)) stress signaling pathway. Crystal-structure modeling suggests that both substitutions would alter the structure of the CLPP barrel chamber that captures unfolded proteins and exposes them to proteolysis. Together with the previous identification of mutations in HARS2, encoding mitochondrial histidyl-tRNA synthetase, mutations in CLPP expose dysfunction of mitochondrial protein homeostasis as a cause of Perrault syndrome.


Assuntos
Proteases Dependentes de ATP/genética , Endopeptidase Clp/genética , Exoma/genética , Genes Recessivos , Disgenesia Gonadal 46 XX/etiologia , Perda Auditiva Neurossensorial/etiologia , Mitocôndrias/enzimologia , Mutação/genética , Proteases Dependentes de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Feminino , Homozigoto , Humanos , Hibridização In Situ , Masculino , Mitocôndrias/genética , Linhagem , Fenótipo , Adulto Jovem
17.
Am J Med Genet A ; 170A(5): 1216-24, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26789649

RESUMO

The 3MC syndromes are a group of rare autosomal recessive disorders where the main clinical features are cleft lip and palate, hypertelorism, highly arched eyebrows, caudal appendage, postnatal growth deficiency, and genitourinary tract anomalies. Ophthalmological abnormalities, most notably anterior chamber defects may also be seen. We describe the clinical and molecular findings in 13 individuals with suspected 3MC syndrome from 12 previously unreported families. The exclusion of the MASP1 and COLEC11 Loci in two individuals from different consanguineous families and the absence of mutations in four further individuals sequenced for both genes raises the possibility that that there is further genetic heterogeneity of 3MC syndrome.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Colectinas/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Adolescente , Criança , Pré-Escolar , Fenda Labial/fisiopatologia , Fissura Palatina/fisiopatologia , Anormalidades do Olho/genética , Anormalidades do Olho/fisiopatologia , Face/anormalidades , Face/fisiopatologia , Feminino , Humanos , Hipertelorismo/genética , Hipertelorismo/fisiopatologia , Lactente , Masculino , Mutação , Análise de Sequência , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/fisiopatologia
18.
Ann Rheum Dis ; 74(6): 1249-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24442880

RESUMO

OBJECTIVES: Leri's pleonosteosis (LP) is an autosomal dominant rheumatic condition characterised by flexion contractures of the interphalangeal joints, limited motion of multiple joints, and short broad metacarpals, metatarsals and phalanges. Scleroderma-like skin thickening can be seen in some individuals with LP. We undertook a study to characterise the phenotype of LP and identify its genetic basis. METHODS AND RESULTS: Whole-genome single-nucleotide polymorphism genotyping in two families with LP defined microduplications of chromosome 8q22.1 as the cause of this condition. Expression analysis of dermal fibroblasts from affected individuals showed overexpression of two genes, GDF6 and SDC2, within the duplicated region, leading to dysregulation of genes that encode proteins of the extracellular matrix and downstream players in the transforming growth factor (TGF)-ß pathway. Western blot analysis revealed markedly decreased inhibitory SMAD6 levels in patients with LP. Furthermore, in a cohort of 330 systemic sclerosis cases, we show that the minor allele of a missense SDC2 variant, p.Ser71Thr, could confer protection against disease (p<1×10(-5)). CONCLUSIONS: Our work identifies the genetic cause of LP in these two families, demonstrates the phenotypic range of the condition, implicates dysregulation of extracellular matrix homoeostasis genes in its pathogenesis, and highlights the link between TGF-ß/SMAD signalling, growth/differentiation factor 6 and syndecan-2. We propose that LP is an additional member of the growing 'TGF-ß-pathies' group of musculoskeletal disorders, which includes Myhre syndrome, acromicric dysplasia, geleophysic dysplasias, Weill-Marchesani syndromes and stiff skin syndrome. Identification of a systemic sclerosis-protective SDC2 variant lays the foundation for exploration of the role of syndecan-2 in systemic sclerosis in the future.


Assuntos
Cromossomos Humanos Par 8/genética , Duplicação Gênica , Fator 6 de Diferenciação de Crescimento/genética , Deformidades Congênitas da Mão/genética , Artropatias/congênito , Ossificação Heterotópica/genética , Escleroderma Sistêmico/genética , Sindecana-2/genética , Adulto , Idoso , Pré-Escolar , Matriz Extracelular/metabolismo , Fácies , Feminino , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Fator 6 de Diferenciação de Crescimento/metabolismo , Deformidades Congênitas da Mão/metabolismo , Deformidades Congênitas da Mão/fisiopatologia , Humanos , Lactente , Artropatias/genética , Artropatias/metabolismo , Artropatias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/fisiopatologia , Fenótipo , Transdução de Sinais , Sindecana-2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem
19.
J Hum Genet ; 60(12): 781-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26377242

RESUMO

Dubowitz syndrome is a presumed autosomal recessive disorder characterized by multiple congenital abnormalities: microcephaly, learning and developmental delay, growth failure, and a predisposition to allergies and eczema. There have been more than 150 individuals reported to have this diagnosis, but no unifying genetic alteration has been identified indicating genetic heterogeneity. We report on a pair of monozygotic twins diagnosed clinically with Dubowitz syndrome by Professor Dubowitz over 30 years ago and identified to have a de novo heterozygous 3.2-Mb deletion at 19q13.11q13.12. Exome sequencing did not identify either a putative pathogenic variant on the trans allele supporting recessive inheritance or any other causative sequence variants. Comparison of the phenotype in our cases shows considerable overlap with the 19q13.11 microdeletion syndrome, suggesting that a subset of individuals diagnosed with Dubowitz syndrome may be due to deletions at 19q13. Our finding further reinforces the genetic and phenotypic heterogeneity of Dubowitz syndrome.


Assuntos
Alelos , Sequência de Bases , Cromossomos Humanos Par 19/genética , Eczema/genética , Transtornos do Crescimento/genética , Deficiência Intelectual/genética , Microcefalia/genética , Deleção de Sequência , Gêmeos Monozigóticos/genética , Adulto , Eczema/patologia , Fácies , Transtornos do Crescimento/patologia , Humanos , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia
20.
J Hum Genet ; 60(4): 199-202, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25589041

RESUMO

Agnathia-otocephaly complex is a malformation characterized by absent/hypoplastic mandible and abnormally positioned ears. Mutations in two genes, PRRX1 and OTX2, have been described in a small number of families with this disorder. We performed clinical and genetic testing in an additional family. The proband is a healthy female with a complicated pregnancy history that includes two offspring diagnosed with agnathia-otocephaly during prenatal ultrasound scans. Exome sequencing was performed in fetal DNA from one of these two offspring revealing a heterozygous duplication in OTX2: c.271_273dupCAG, p.(Gln91dup). This change leads to the insertion of a glutamine within the OTX2 homeodomain region, and is predicted to alter this signaling molecule's ability to interact with DNA. The same variant was also identified in the proband's clinically unaffected 38-year-old husband and their 9-year-old daughter, who presented with a small mandible, normal ears and velopharyngeal insufficiency due to a short hemi-palate. This unusual presentation of OTX2-related disease suggests that OTX2 might have a role in palatal hypoplasia cases. A previously unreported OTX2 variant associated with extreme intrafamilial variability is described and the utility of exome sequencing as a tool to confirm the diagnosis of agnathia-otocephaly and to inform the reproductive decisions of affected families is highlighted.


Assuntos
Anormalidades Múltiplas/genética , Duplicação Gênica , Fatores de Transcrição Otx/genética , Fases de Leitura , Insuficiência Velofaríngea/genética , Anormalidades Múltiplas/diagnóstico , Adulto , Criança , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Mutação , Fatores de Transcrição Otx/química , Linhagem , Fenótipo , Conformação Proteica , Insuficiência Velofaríngea/diagnóstico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa