Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Sci Food Agric ; 102(13): 5660-5669, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35373358

RESUMO

BACKGROUND: The purpose of the present study was to examine the inactivation of Salmonella enterica (50 µL; 109 CFU g-1 ), Listeria monocytogenes (50 µL; 109 CFU g-1 ), and murine norovirus (MNV-1; 50 µL; 107 50% tissue culture infectious dose (TCID50 ) mL-1 ) on whole and fresh-cut strawberries after 2 min disinfection treatments (water (H2 O), chlorine 200 mg L-1 (NaClO), water-assisted ultraviolet-C (UV-C) (WUV), and the combination WUV and 40 mg L-1 of PA (WUV + PA)) in a water tank (15 L) equipped with 4 UV-C lamps (17.2 W each), and after 7 days of cold storage (4 and 10 °C). For MNV-1, dry UV-C treatment (DUV) was also tested. For all UV-C treatments, an irradiation dose of 1.3 kJ m-2 was used. RESULTS: When strawberries were washed with WUV, L. monocytogenes and S. enterica were reduced by 2.8 and 2.2 log CFU g-1 , respectively. The addition of 40 mg L-1 of PA to WUV (WUV + PA) increased the reduction range of L. monocytogenes and S. enterica by 1.9 and 0.8 log, respectively. Regarding the wash water, no pathogens were recovered after the WUV + PA treatment (detection limit 50 CFU mL-1 ). Depending on storage conditions (7 days at 4 or 10 °C), reductions observed were 0.5 to 2.0 log for S. enterica and 0.5 to 3.0 log for L. monocytogenes. The reductions in MNV-1 titer after disinfection treatments ranged from 1.3 to 1.7 log. No significant differences between storage conditions were observed for MNV-1: titers did not decline or were reduced up to 0.3 log after 7 days of cold storage. CONCLUSION: The three-way action for disinfecting strawberries by UV-C irradiation and PA, plus the physical removal of the microorganisms by agitated water, are effective against foodborne pathogens on strawberries and water wash. During storage, WUV had a larger impact on the inactivation kinetics of S. enterica. Storage had little impact on MNV-1 inactivation. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Fragaria , Listeria monocytogenes , Norovirus , Salmonella enterica , Animais , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Frutas , Camundongos , Ácido Peracético/farmacologia , Água/farmacologia
2.
Food Microbiol ; 83: 159-166, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31202407

RESUMO

The risk posed by outbreaks associated with strawberries together with the safety issues of by-products from chlorine disinfection in the fruit industry has led to a search for alternative sanitizers. The disinfection capacity of peracetic acid (PA) at three concentrations (20, 40 and 80 ppm) and washing times (1 and 2 min) was compared to sodium hypochlorite (200 ppm) (NaClO) treatments and a water control, and its influence on the physico-chemical, biochemical and nutritional quality of strawberries was also studied. Counts on total aerobic mesophilic microorganisms were comparable between NaClO and PA. For yeasts and molds, only NaClO and 80 ppm PA reduced contamination in washing water, but no differences wereobserved in strawberries. Artificially inoculated L.innocua was reduced by at least 4 log cfu/g in strawberry by all the PA treatments, except at 20 ppm PA for 1 min. Total soluble solids, pH, titratable acidity, antioxidant activity and total phenolic content values were maintained after all treatments. Only anthocyanin content was affected. Treatments of 20 and 40 ppm PA did not significantly affect fruit color, and there were no losses on strawberry firmness. PA, as a GRAS substance that has shown potential to reduce microorganisms present in strawberries without any major physicochemical or sensorial alteration, could be a suitable alternative to chlorine disinfection.


Assuntos
Desinfetantes/farmacologia , Desinfecção/métodos , Qualidade dos Alimentos , Fragaria/efeitos dos fármacos , Ácido Peracético/farmacologia , Contagem de Colônia Microbiana , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Fragaria/microbiologia , Frutas/efeitos dos fármacos , Frutas/microbiologia , Listeria/efeitos dos fármacos
3.
Food Microbiol ; 76: 226-236, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30166146

RESUMO

The application of microorganisms to control the growth of foodborne pathogens is an alternative to the use of chemical additives. In this work, Pseudomonas graminis CPA-7 was tested as a biocontrol agent against Salmonella enterica and Listeria monocytogenes on fresh-cut pear under conditions that simulate its commercial application at 5 ±â€¯1 °C (under a modified atmosphere and antioxidant solution). The quality of the fresh-cut fruit, including the ethanol and acetaldehyde contents and the volatile profile, was determined. After the storage period, the L. monocytogenes population was reduced by 1-log unit by the presence of CPA-7; however, CPA-7 was not found to have antagonistic activity against S. enterica. The fruit quality (total soluble solids content and titratable acidity) was not negatively affected by CPA-7. The ethanol and acetaldehyde contents increased during the shelf-life of the fruit regardless of the presence of CPA-7. Some volatile compounds were key factors for discriminating samples from the two groups (the control group and the group that was inoculated with CPA-7). Some components are common in the volatile profile of pear (methyl acetate, 3-methylbutyl acetate, 1-butanol, 1-hexanol, and hexanal), and thus increases in their contents could enhance consumers flavour perception.


Assuntos
Antibiose , Agentes de Controle Biológico/farmacologia , Listeria monocytogenes/fisiologia , Pseudomonas/fisiologia , Pyrus/microbiologia , Salmonella enterica/fisiologia , Acetaldeído/análise , Contagem de Colônia Microbiana , Etanol/análise , Aromatizantes/análise , Microbiologia de Alimentos , Frutas/química , Frutas/microbiologia , Humanos , Listeria monocytogenes/patogenicidade , Pyrus/química , Salmonella enterica/patogenicidade , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo
4.
Food Microbiol ; 69: 123-135, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28941893

RESUMO

Blue mould disease caused by Penicillium expansum infection is one of the most important diseases of pome fruit accounting for important economic losses. In the present study, the PeSte12 transcription factor gene was identified, and deletant mutants were produced by gene replacement. Knockout mutants showed a significant decrease of virulence during apple fruit infection. Virulence was affected by the maturity stage of the fruit (immature, mature and over-mature), and disease severity was notably reduced when the apples were stored at 0 °C. The ΔPeSte12 mutants resulted defective in asexual reproduction, producing less conidia, but this characteristic did not correlate with differences in microscopic morphology. In addition, the ΔPeSte12 mutants produced higher quantity of hydrogen peroxide than the wild type strain. Gene expression analysis revealed that PeSte12 was induced over time during apple infection compared to axenic growth, particularly from 2 dpi, reinforcing its role in virulence. Analysis of transcriptional abundance of several genes in ΔPeSte12 mutants showed that in most of the evaluated genes, PeSte12 seemed to act as a negative regulator during axenic growth, as most of them exhibited an increasing expression pattern along the time period evaluated. The highest expression values corresponded to detoxification, ATPase activity, protein folding and basic metabolism. Gene expression analysis during apple infection showed that 3 out of 9 analysed genes were up regulated; thus, PeSte12 seemed to exert a positive control to particular type of aldolase. These results demonstrate the PeSte12 transcription factor could play an important role in P. expansum's virulence and asexual reproduction.


Assuntos
Frutas/microbiologia , Proteínas Fúngicas/metabolismo , Malus/microbiologia , Penicillium/metabolismo , Doenças das Plantas/microbiologia , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Penicillium/genética , Penicillium/crescimento & desenvolvimento , Penicillium/patogenicidade , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Esporos Fúngicos/patogenicidade , Fatores de Transcrição/genética , Virulência
5.
J Sci Food Agric ; 98(13): 4978-4987, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29577335

RESUMO

BACKGROUND: Biological preservation with probiotic bacteria has arisen as an alternative to control the growth of foodborne pathogens on food. The objective of this work was to evaluate the effect of postharvest calcium application and biopreservation with Lactobacillus rhamnosus GG on the quality and bioaccessibility of total phenolic content and antioxidant activity in fresh-cut pears. RESULTS: The immersion of whole pears in a calcium chloride solution did not provide added value. Despite the increase in observed activity of PME and PPO enzymes in fresh-cut pears during storage, the browning index and firmness values were constant for all samples. The antioxidant properties, including antioxidant activity, total phenolic content and vitamin C content, were maintained during storage, but a significant decrease was observed after in vitro simulated digestion. Ca/LGG samples showed the lowest calcium content (1.75 ± 0.00 g kg-1 ) after 9 d of storage at 4 °C. In general, the overall visual quality scores were higher in fresh-cut pears treated with L. rhamnosus GG than in non-treated pears, with the highest values in the NoCa/LGG (7.7 ± 0.2) samples after 9 d at 4 °C. CONCLUSION: Fresh-cut pears with a postharvest treatment of calcium and immersed in a solution containing antioxidant agents and probiotic bacteria could be a suitable alternative to dairy products for maintaining the overall quality of fruit for up to 9 d of storage. © 2018 Society of Chemical Industry.


Assuntos
Cloreto de Cálcio/farmacologia , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Frutas/química , Lacticaseibacillus rhamnosus/fisiologia , Pyrus/química , Antibiose , Ácido Ascórbico/análise , Armazenamento de Alimentos , Frutas/microbiologia , Fenóis/análise , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pyrus/microbiologia , Controle de Qualidade
6.
J Food Sci Technol ; 55(6): 1973-1981, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29892097

RESUMO

Brassica vegetables, which include broccoli, kale, cauliflower, and Brussel sprouts, are known for their high glucosinolate content. Glucosinolates and their derived forms namely isothiocyanates are of special interest in the pharmaceutical and food industries due to their antimicrobial, neuroprotective, and anticarcinogenic properties. These compounds are water soluble and heat-sensitive and have been proved to be heavily lost during thermal processing. In addition, previous studies suggested that novel non-thermal technologies such as high pressure processing, pulsed electric fields, or ultraviolet irradiation can affect the glucosinolate content of cruciferous vegetables. The objective of this paper was to review current knowledge about the effects of both thermal and non-thermal processing technologies on the content of glucosinolates and their derived forms in brassica vegetables. This paper also highlights the importance of the incorporation of brassica vegetables into our diet for their health-promoting properties beyond their anticarcinogenic activities.

7.
Food Microbiol ; 62: 275-281, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27889159

RESUMO

Survival and virulence of foodborne pathogens can be influenced by environmental factors such as the intrinsic properties of food as well as the extrinsic properties that contribute to food shelf life (e.g., temperature and gas atmosphere). The direct contribution of food matrix characteristics on the survival of L. monocytogenes during fresh-cut fruit shelf life is not very well understood. In addition, the gastrointestinal tract is the primary route of listeriosis infection and penetration of the intestinal epithelial cell barrier is the first step in the infection process. Hence, the pathogenic potential of L. monocytogenes, measured as the capability for the organism to survive a simulated gastrointestinal tract and the proportion of cells able to subsequently adhere to and invade differentiated Caco-2 cells, subjected to fresh-cut pear and melon shelf life, was investigated. Samples were inoculated, stored at 10 °C for 7 days and evaluated after inoculation and again after 2 and 7 days of storage. A decrease in L. monocytogenes' capacity to survive a simulated gastrointestinal tract was observed with increasing storage time, regardless of the fruit matrix evaluated. Furthermore, L. monocytogenes placed on fresh-cut pear and melon was subjected to an attachment and invasion assay after crossing the simulated gastrointestinal tract. After inoculation, pathogen on fresh-cut pear showed 5-fold more capacity to adhere to Caco-2 cells than pathogen on fresh-cut melon. After 2 days of storage, L. monocytogenes grown on fresh-cut melon showed similar adhesive capacity (1.11%) than cells grown on pear (1.83%), but cells grown on melon had the higher invasive capacity (0.0093%). We can conclude that minimally processed melon could represent a more important hazard than pear under the studied shelf life.


Assuntos
Cucurbitaceae/microbiologia , Conservação de Alimentos , Armazenamento de Alimentos , Frutas/microbiologia , Listeria monocytogenes/patogenicidade , Pyrus/microbiologia , Aderência Bacteriana , Células CACO-2 , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos , Microbiologia de Alimentos , Humanos , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/isolamento & purificação , Temperatura
8.
J Sci Food Agric ; 97(9): 3077-3080, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27813092

RESUMO

BACKGROUND: In recent years, improved detection methods and increased fresh-cut processing of produce have led to an increased number of outbreaks associated with fresh fruits and vegetables. During fruit and vegetable processing, natural protective barriers are removed and tissues are cut, causing nutrient rich exudates and providing attachment sites for microbes. Consequently, fresh-cut produce is more susceptible to microbial proliferation than whole produce. RESULTS: The aim of this study was to examine the impact of storage temperature on the growth and survival of Listeria monocytogenes and Salmonella enterica on a fresh-cut 'Conference' pear over an 8 day storage period. Pears were cut, dipped in antioxidant solution, artificially inoculated with L. monocytogenes and S. enterica, packed under modified atmospheric conditions simulating commercial applications and stored in properly refrigerated conditions (constant storage at 4 °C for 8 days) or in temperature abuse conditions (3 days at 4 °C plus 5 days at 8 °C). After 8 days of storage, both conditions resulted in a significant decrease of S. enterica populations on pear wedges. In contrast, when samples were stored at 4 °C for 8 days, L. monocytogenes populations increased 1.6 logarithmic units, whereas under the temperature abuse conditions, L. monocytogenes populations increased 2.2 logarithmic units. CONCLUSION: Listeria monocytogenes was able to grow on fresh-cut pears processed under the conditions described here, despite low pH, refrigeration and use of modified atmosphere. © 2016 Society of Chemical Industry.


Assuntos
Manipulação de Alimentos/métodos , Frutas/química , Listeria monocytogenes/crescimento & desenvolvimento , Pyrus/microbiologia , Salmonella enterica/crescimento & desenvolvimento , Contaminação de Alimentos/prevenção & controle , Conservação de Alimentos , Armazenamento de Alimentos , Frutas/microbiologia , Viabilidade Microbiana , Pyrus/química , Refrigeração
9.
Food Microbiol ; 49: 116-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25846921

RESUMO

There are several factors that affect the shelf life of fresh-cut fruit, including the cultivar, the ripeness stage of the fruit during processing and the fruit's storage atmosphere and temperature. The effect of fruit ripeness during processing on the survival and growth of Listeria monocytogenes on fresh-cut 'Conference' pear slices at different temperatures (5, 10 and 20 °C) was studied. The four ripeness stages studied in this work (assessed by a fruit's firmness) were mature-green (54-60 N), partially ripe (43-53 N), ripe (31-42 N) and overripe (<31 N). In our studies, pH, acidity and soluble solids content did not significantly change during conditioning at 20 °C. L. monocytogenes grew under all experimental conditions, showing an increase of approximately 2 log CFU g(-1) after 8 days of storage at 5 °C. There were significant differences in the L. monocytogenes population between different ripeness stages at the end of the experiments at 10 and 20 °C. Regardless of the ripeness stage of a fresh-cut pear, the growth potential of L. monocytogenes increased with increasing temperature. A pear's ripeness stage during processing is an important consideration to ensure the quality of a fresh-cut pear, but it is not as important for preventing L. monocytogenes growth at common storage temperatures.


Assuntos
Frutas/crescimento & desenvolvimento , Listeria monocytogenes/crescimento & desenvolvimento , Pyrus/microbiologia , Manipulação de Alimentos , Conservação de Alimentos , Frutas/química , Frutas/microbiologia , Concentração de Íons de Hidrogênio , Pyrus/química , Pyrus/crescimento & desenvolvimento , Temperatura
10.
Molecules ; 20(3): 3942-54, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25738537

RESUMO

The effects of various pulsed electric field (PEF) parameters on the extraction of polyacetylenes from carrot slices were investigated. Optimised conditions with regard to electric field strength (1-4 kV/cm), number of pulses (100-1500), pulse frequency (10-200 Hz) and pulse width (10-30 µs) were identified using response surface methodology (RSM) to maximise the extraction of falcarinol (FaOH), falcarindiol (FaDOH) and falcarindiol-3-acetate (FaDOAc) from carrot slices. Data obtained from RSM and experiments fitted significantly (p < 0.0001) the proposed second-order response functions with high regression coefficients (R2) ranging from 0.82 to 0.75. Maximal FaOH (188%), FaDOH (164.9%) and FaDOAc (166.8%) levels relative to untreated samples were obtained from carrot slices after applying PEF treatments at 4 kV/cm with 100 number of pulses of 10 µs at 10 Hz. The predicted values from the developed quadratic polynomial equation were in close agreement with the actual experimental values with low average mean deviations (E%) ranging from 0.68% to 3.58%.


Assuntos
Daucus carota/química , Extratos Vegetais/química , Poli-Inos/química , Di-Inos/química , Eletricidade , Álcoois Graxos/química
11.
Food Microbiol ; 33(2): 139-48, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23200645

RESUMO

Recently, we reported that the application of the strain CPA-7 of Pseudomonas graminis, previously isolated from apple, could reduce the population of foodborne pathogens on minimally processed (MP) apples and peaches under laboratory conditions. Therefore, the objective of the present work was to find an antioxidant treatment and a packaging atmosphere condition to improve CPA-7 efficacy in reducing a cocktail of four Salmonella and five Listeria monocytogenes strains on MP apples under simulated commercial processing. The effect of CPA-7 application on apple quality and its survival to simulated gastric stress were also evaluated. Ascorbic acid (2%, w/v) and N-acetyl-l-cysteine (1%, w/v) as antioxidant treatments reduced Salmonella, L. monocytogenes and CPA-7 recovery, meanwhile no reduction was observed with NatureSeal(®) AS1 (NS, 6%, w/v). The antagonistic strain was effective on NS-treated apple wedges stored at 10 °C with or without modified atmosphere packaging (MAP). Then, in a semi-commercial assay, efficacy of CPA-7 inoculated at 10(5) and 10(7) cfu mL(-1) against Salmonella and L. monocytogenes strains on MP apples with NS and MAP and stored at 5 and 10 °C was evaluated. Although high CPA-7 concentrations/populations avoided Salmonella growth at 10 °C and lowered L. monocytogenes population increases were observed at both temperatures, the effect was not instantaneous. No effect on apple quality was detected and CPA-7 did not survived to simulated gastric stress throughout storage. Therefore, CPA-7 could avoid pathogens growth on MP apples during storage when use as part of a hurdle technology in combination with disinfection techniques, low storage temperature and MAP.


Assuntos
Antibiose , Conservação de Alimentos/métodos , Malus/microbiologia , Pseudomonas/fisiologia , Conservação de Alimentos/economia , Frutas/economia , Frutas/microbiologia , Listeria monocytogenes/crescimento & desenvolvimento , Prunus/microbiologia , Pseudomonas/crescimento & desenvolvimento , Salmonella/crescimento & desenvolvimento
12.
Food Microbiol ; 34(2): 390-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23541207

RESUMO

The consumption of fresh-cut fruit has substantially risen over the last few years, leading to an increase in the number of outbreaks associated with fruit. Moreover, consumers are currently demanding wholesome, fresh-like, safe foods without added chemicals. As a response, the aim of this study was to determine if the naturally occurring microorganisms on fruit are "competitive with" or "antagonistic to" potentially encountered pathogens. Of the 97 and 107 isolates tested by co-inoculation with Escherichia coli O157:H7, Salmonella and Listeria innocua on fresh-cut apple and peach, respectively, and stored at 20 °C, seven showed a strong antagonistic capacity (more than 1-log unit reduction). One of the isolates, CPA-7, achieved the best reduction values (from 2.8 to 5.9-log units) and was the only isolate able to inhibit E. coli O157:H7 at refrigeration temperatures on both fruits. Therefore, CPA-7 was selected for further assays. Dose-response assays showed that CPA-7 should be present in at least the same amount as the pathogen to adequately reduce the numbers of the pathogen. From the results obtained in in vitro assays, competition seemed to be CPA-7's mode of action against E. coli O157:H7. The CPA-7 strain was identified as Pseudomonas graminis. Thus, the results support the potential use of CPA-7 as a bioprotective agent against foodborne pathogens in minimally processed fruit.


Assuntos
Antibiose , Escherichia coli O157/crescimento & desenvolvimento , Conservação de Alimentos/métodos , Listeria/crescimento & desenvolvimento , Malus/microbiologia , Prunus/microbiologia , Pseudomonas/fisiologia , Salmonella/crescimento & desenvolvimento , Escherichia coli O157/fisiologia , Frutas/microbiologia , Listeria/fisiologia , Salmonella/fisiologia
13.
Antibiotics (Basel) ; 12(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36830324

RESUMO

In ready-to-eat products, such as cooked ham, fresh cheese, and fuet in which Listeria monocytogenes is a concern, the use of biopreservation techniques represents an additional hurdle to inhibit pathogen growth during storage. The objective of this study was to apply several biopreservation techniques in three different food matrices to reduce the growth of Listeria innocua, used as a surrogate of L. monocytogenes. Several lactic acid bacteria, the bacteriocin nisin, the bacteriophage PhageGuard ListexTM P100, and the enzyme lysozyme were evaluated. Cooked ham treated with the bacteriophage PhageGuard ListexTM at 0.5% or with the lactic acid bacteria SafePro® B-SF-43 (25 g/100 kg) reduced L. innocua population to below the detection limit after 7 days of storage (4 °C plus modified atmosphere packaging). In fresh cheese, the application of PhageGuard ListexTM at 0.2 and 0.5% reduced L. innocua counts by more than 3.4 logarithmic units after 6 days at 4 °C. In fuet, the 1.0% of PhageGuard ListexTM reduced L. innocua population by 0.7 ± 0.2 logarithmic units in front of control with no significant differences to other evaluated biopreservative agents. The present results confirm that the application of biopreservation techniques was able to inhibit L. innocua in fuet, cooked ham, and fresh cheese, and suggest that the type of food matrix and its physicochemical characteristics influence the biopreservative efficacy.

14.
Int J Food Microbiol ; 396: 110197, 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37084662

RESUMO

In recent years, acidophilic, heat-resistant, and spore-forming spoilage bacteria have been identified in pasteurized or treated by high hydrostatic pressure (HPP) fruit juices. Alicyclobacillus acidoterrestris is the bacteria more frequently linked to the spoilage of this type of product because its spores can survive conventional pasteurization and HPP treatments. Under favourable conditions, such as an acidic pH, its spores can germinate and multiply, with the consequent production of guaiacol. Guaiacol is a compound with an undesirable odour ("medicinal", "smoked" or "antiseptic"). In this context, our objective was to determine the prevalence of A. acidoterrestris in 150 Spanish pasteurized and HPP-treated fruit juices purchased from supermarkets or received from manufacturers. Then, the isolates and the reference strain (CECT 7094 T) were characterized to establish differences in terms of (i) growth capacity at different pH and temperatures, and in (ii) guaiacol production capacity. The results showed a high incidence of A. acidoterrestris (18.0 %) in the analysed juices. The 44.4 % of the isolates came from blends of fruit juices. Within juice blends, 9 juices contained apple juice among their ingredients. This represents a 18.8 % of incidence with respect to the total of blended juices with apple. A high incidence in monovarietal apple juices was also observed (3 out of 14 samples). Regarding the characterization of the isolates, EC1 (isolated from an apple concentrate) showed the highest growth capacity at pH 4.0 at temperatures from 20 to 55 °C. Besides, three strains (R42, EC10, and EZ13, isolated from clementine, plum and white grape juice, respectively) could grow at room temperatures (20 and 25 °C). For pH, only EZ13, isolated from white grape juice, was able to grow significantly at pH 2.5. Finally, the production of guaiacol ranged from 74.1 to 145.6 ppm, being the isolate EC1 the one that produced more guaiacol after 24 h of incubation at 45 °C (145.6 ppm). As we have observed, there is a high incidence of A. acidoterrestris in marketed juices and intermediate products despite the treatments received (pasteurization or HPP). Under favourable conditions for the development of this microorganism, it could produce enough guaiacol to spoil the juices before their consumption. Therefore, in order to improve the quality of fruit juices it is necessary to investigate in more detail the origin of this microorganism and to find strategies to reduce its presence in final products.


Assuntos
Alicyclobacillus , Malus , Sucos de Frutas e Vegetais/análise , Pressão Hidrostática , Frutas/microbiologia , Malus/microbiologia , Guaiacol/análise , Esporos Bacterianos , Bebidas/microbiologia
15.
Int J Food Microbiol ; 364: 109535, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35033977

RESUMO

Following the market trends, the consumption of fresh and cold-pressed juice in Europe is increasing. However, a primary concern - particularly in apple juice - is the related outbreaks caused by food-borne pathogens. One of the challenges is to find methods able to reduce pathogenic loads while avoiding deterioration of nutritional properties and bioactive compounds that occur in thermal pasteurization processes. In this study, the inactivation of Escherichia coli, Salmonella enterica and Listeria monocytogenes was evaluated under different ultraviolet C (UVC254nm) light treatments (up to 10,665.9 ± 28.1 mJ/cm2), in two different steps of the production chain (before and after juice processing): on apple peel discs and in apple juice. The systems proposed were a horizontal chamber with UVC254nm emitting lamps treating the product disposed at a distance of 12 cm, and a tank containing UVC254nm lamps and in which the product is immersed and agitated. Final reductions ranged from 3.3 ± 0.5 to 5.3 ± 0.4 logarithmic units, depending on the microorganism, matrix and used device. The survival curves were adjusted to Weibull and biphasic models (R2-adj ≥ 0.852), and UVC doses needed for the first decimal reduction were calculated, being lower for the apple peel discs (0.20 to 83.83 mJ/cm2) than they were for apple juice (174.60 to 1273.31 mJ/cm2), probably for the low transmittance of the apple juice compared to the surface treatment occurring on the peels. Within the treatments evaluated, the UVC254nm irradiation of apple peels immersed in water was the best option as it resulted in a reduction of the tested microorganisms of ca. 2-3 log units at lower UVC254nm doses (< 500 mJ/cm2) when compared to those occurring in apple peel treated with the UVC chamber and in juice. As contamination can proceed from apples, the sanitization of these fruit prior to juice production may be helpful in reducing the safety risks of the final product, reducing the drawbacks related to the poor transmittance of the fruit juices.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Malus , Salmonella enterica , Bebidas , Microbiologia de Alimentos , Sucos de Frutas e Vegetais , Salmonella typhimurium , Raios Ultravioleta
16.
Food Microbiol ; 28(1): 59-66, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21056776

RESUMO

The effectiveness as protective culture of the probiotic Lactobacillus rhamonosus GG (L. rham. GG) against Salmonella and Listeria monocytogenes on minimally-processed apples throughout storage as well as its effect on apple quality and natural microflora was evaluated. Survival to subsequent exposure to gastric stress was also reported. Apples were cut into wedges and dipped in a solution containing Salmonella and L. monocytogenes (10(5) cfu mL(-1)) and/or L. rham. GG (10(8) cfu mL(-1)). Apple wedges were packed and stored at 5 and 10 °C. Periodically, microbial population, bacterial survival to gastric stress and quality of apple wedges were evaluated. Although Salmonella was not affected by co-inoculation with L. rham. GG, L. monocytogenes population was 1-log units lower in the presence of L. rham. GG. L. rham. GG population maintained over recommended levels for probiotic action (10(6) cfu g(-1)) along storage, however, viable cells after gastric stress were only above this level during the first 14 days. Pathogen survival after gastric stress was <1% after 7 days at 5 °C. Moreover, apple wedges quality was not affected by L. rham. GG addition. Thus, L. rham. GG could be a suitable probiotic for minimally-processed apples capable to reduce L. monocytogenes growth; nevertheless shelf life should not be higher to 14 days to guarantee the probiotic effect.


Assuntos
Conservação de Alimentos , Lacticaseibacillus rhamnosus/metabolismo , Malus/microbiologia , Probióticos/metabolismo , Contagem de Colônia Microbiana , Aditivos Alimentares/metabolismo , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Listeria monocytogenes/patogenicidade , Salmonella/patogenicidade
17.
Foods ; 10(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920777

RESUMO

Spore-forming bacteria are a great concern for fruit juice processors as they can resist the thermal pasteurization and the high hydrostatic pressure treatments that fruit juices receive during their processing, thus reducing their microbiological quality and safety. In this context, our objective was to evaluate the efficacy of Ultraviolet-C (UV-C) light at 254 nm on reducing bacterial spores of Alicyclobacillus acidoterrestris, Bacillus coagulans and Bacillus cereus at two stages of orange juice production. To simulate fruit disinfection before processing, the orange peel was artificially inoculated with each of the bacterial spores and submitted to UV-C light (97.8-100.1 W/m2) with treatment times between 3 s and 10 min. The obtained product, the orange juice, was also tested by exposing the artificially inoculated juice to UV-C light (100.9-107.9 W/m2) between 5 and 60 min. A three-minute treatment (18.0 kJ/m2) reduced spore numbers on orange peel around 2 log units, while more than 45 min (278.8 kJ/m2) were needed to achieve the same reduction in orange juice for all evaluated bacterial spores. As raw fruits are the main source of bacterial spores in fruit juices, reducing bacterial spores on fruit peels could help fruit juice processors to enhance the microbiological quality and safety of fruit juices.

18.
Food Microbiol ; 27(7): 862-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20688227

RESUMO

Consumption of fresh-cut produce has sharply increased recently causing an increase of foodborne illnesses associated with these products. As generally, acidic fruits are considered 'safe' from a microbiological point of view, the aim of this work was to study the growth and survival of Escherichia coli O157:H7, Salmonella and Listeria innocua on minimally-processed peaches. The three foodborne pathogens population increased more than 2 log(10)units on fresh-cut peach when stored at 20 and 25 degrees C after 48 h. At 10 degrees C only L. innocua grew more than 1 log(10)unit and it was the only pathogen able to grow at 5 degrees C. Differences in growth occurred between different peach varieties tested, with higher population increases in those varieties with higher pH ('Royal Glory' 4.73+/-0.25 and 'Diana' 4.12+/-0.18). The use of common strategies on extending shelf life of fresh-cut produce, as modified atmosphere packaging and the use of the antioxidant substance, ascorbic acid (2%w/v), did not affect pathogens' growth at any of the temperatures tested (5 and 25 degrees C). Minimally-processed peaches have shown to be a good substrate for foodborne pathogens' growth regardless use of modified atmosphere and ascorbic acid. Therefore, maintaining cold chain and avoiding contamination is highly necessary.


Assuntos
Escherichia coli O157/crescimento & desenvolvimento , Conservação de Alimentos/métodos , Listeria/crescimento & desenvolvimento , Prunus/microbiologia , Salmonella/crescimento & desenvolvimento , Ácido Ascórbico/metabolismo , Dióxido de Carbono/metabolismo , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Contaminação de Alimentos/prevenção & controle , Manipulação de Alimentos , Microbiologia de Alimentos , Embalagem de Alimentos , Humanos , Concentração de Íons de Hidrogênio , Oxigênio/metabolismo , Temperatura , Fatores de Tempo
19.
Food Microbiol ; 27(1): 70-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19913695

RESUMO

Escherichia coli O157:H7, Salmonella and Listeria innocua increased by more than 2 log(10) units over a 24 h period on fresh-cut 'Golden Delicious' apple plugs stored at 25 and 20 degrees C. L. innocua reached the same final population level at 10 degrees C meanwhile E. coli and Salmonella only increased 1.3 log(10) units after 6 days. Only L. innocua was able to grow at 5 degrees C. No significant differences were observed between the growth of foodborne pathogens on fresh-cut 'Golden Delicious', 'Granny Smith' and 'Shampion' apples stored at 25 and 5 degrees C. The treatment of 'Golden Delicious' and 'Granny Smith' apple plugs with the antioxidants, ascorbic acid (2%) and NatureSeal (6%), did not affect pathogen growth. The effect of passive modified atmosphere packaging (MAP) on the growth of E. coli, Salmonella and L. innocua on 'Golden Delicious' apple slices was also tested. There were no significant differences in growth of pathogens in MAP conditions compared with air packaging of 'Golden Delicious' apple plugs, but the growth of mesophilic and psychrotrophic microorganisms was inhibited. These results highlight the importance of avoiding contamination of fresh-cut fruit with foodborne pathogens and the maintenance of the cold chain during storage until consumption.


Assuntos
Escherichia coli O157/crescimento & desenvolvimento , Manipulação de Alimentos , Listeria/crescimento & desenvolvimento , Malus/microbiologia , Salmonella/crescimento & desenvolvimento , Antioxidantes/farmacologia , Escherichia coli O157/efeitos dos fármacos , Frutas/microbiologia , Listeria/efeitos dos fármacos , Salmonella/efeitos dos fármacos , Temperatura
20.
Food Chem ; 315: 126283, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32000076

RESUMO

Patulin is a toxic mycotoxin usually associated with apple products. Due to its unhealthy effects for humans, its content is regulated by the food safety authorities. The removal or degradation of this mycotoxin in contaminated apple juices has been studied with different approaches with uneven effectiveness. However, a strategy based on the chemical reaction between patulin and glutathione (GSH), in order to generate the conjugates that are formed during cell detoxification process, is an innovative approach yet to be evaluated. In this work, the formation of patulin-GSH conjugates activated by the application of pulsed light treatments and catalyzed by Fe2+ ions was evaluated. The study of patulin degradation and effect of the GSH/Fe2+ molar ratio showed that a molar ratio of 5 allows an adequate catalytic effect of the metal ions. In addition, mono-substituted patulin-glutathione adducts were identified as the main type of generated conjugates.


Assuntos
Sucos de Frutas e Vegetais/análise , Glutationa/química , Malus/química , Patulina/química , Contaminação de Alimentos/análise , Patulina/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa