Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 88(7): 892-911, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37751862

RESUMO

Leukemia is a blood cancer originating in the blood and bone marrow. Therapy-related leukemia is associated with prior chemotherapy. Although cancer therapy with DNA topoisomerase II inhibitors is one of the most effective cancer treatments, its side effects include development of secondary leukemia characterized by the chromosomal rearrangements affecting AML1 or MLL genes. Recurrent chromosomal translocations in the therapy-related leukemia differ from chromosomal rearrangements associated with other neoplasias. Here, we reviewed the factors that drive chromosomal translocations induced by cancer treatment with DNA topoisomerase II inhibitors, such as mobility of ends of double-strand DNA breaks formed before the translocation and gain of function of fusion proteins generated as a result of translocation.


Assuntos
Neoplasias Hematológicas , Leucemia , Humanos , Inibidores da Topoisomerase II/efeitos adversos , Translocação Genética , Leucemia/induzido quimicamente , Leucemia/tratamento farmacológico , Leucemia/genética , Quebras de DNA de Cadeia Dupla
2.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077220

RESUMO

Topoisomerase inhibitors are widely used in cancer chemotherapy. However, one of the potential long-term adverse effects of such therapy is acute leukemia. A key feature of such therapy-induced acute myeloid leukemia (t-AML) is recurrent chromosomal translocations involving AML1 (RUNX1) or MLL (KMT2A) genes. The formation of chromosomal translocation depends on the spatial proximity of translocation partners and the mobility of the DNA ends. It is unclear which of these two factors might be decisive for recurrent t-AML translocations. Here, we used fluorescence in situ hybridization (FISH) and chromosome conformation capture followed by sequencing (4C-seq) to investigate double-strand DNA break formation and the mobility of broken ends upon etoposide treatment, as well as contacts between translocation partner genes. We detected the separation of the parts of the broken AML1 gene, as well as the increased mobility of these separated parts. 4C-seq analysis showed no evident contacts of AML1 and MLL with loci, implicated in recurrent t-AML translocations, either before or after etoposide treatment. We suggest that separation of the break ends and their increased non-targeted mobility-but not spatial predisposition of the rearrangement partners-plays a major role in the formation of these translocations.


Assuntos
Leucemia Mieloide Aguda , Translocação Genética , DNA , Quebras de DNA de Cadeia Dupla , Etoposídeo/efeitos adversos , Humanos , Hibridização in Situ Fluorescente , Leucemia Mieloide Aguda/genética , Inibidores da Topoisomerase II/efeitos adversos
3.
Crit Rev Clin Lab Sci ; 58(3): 180-206, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33205680

RESUMO

Acute leukemias (ALs) are often associated with chromosomal translocations, in particular, KMT2A/MLL gene rearrangements. Identification or confirmation of these translocations is carried out by a number of genetic and molecular methods, some of which are routinely used in clinical practice, while others are primarily used for research purposes. In the clinic, these methods serve to clarify diagnoses and monitor the course of disease and therapy. On the other hand, the identification of new translocations and the confirmation of known translocations are of key importance in the study of disease mechanisms and further molecular classification. There are multiple methods for the detection of rearrangements that differ in their principle of operation, the type of problem being solved, and the cost-result ratio. This review is intended to help researchers and clinicians studying AL and related chromosomal translocations to navigate this variety of methods. All methods considered in the review are grouped by their principle of action and include karyotyping, fluorescence in situ hybridization (FISH) with probes for whole chromosomes or individual loci, PCR and reverse transcription-based methods, and high-throughput sequencing. Another characteristic of the described methods is the type of problem being solved. This can be the discovery of new rearrangements, the determination of unknown partner genes participating in the rearrangement, or the confirmation of the proposed rearrangement between the two genes. We consider the specifics of the application, the basic principle of each method, and its pros and cons. To illustrate the application, examples of studying the rearrangements of the KMT2A/MLL gene, one of the genes that are often rearranged in AL, are mentioned.


Assuntos
Proteína de Leucina Linfoide-Mieloide , Translocação Genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Hibridização in Situ Fluorescente , Biologia Molecular , Proteína de Leucina Linfoide-Mieloide/genética , Translocação Genética/genética
4.
J Cell Biochem ; 120(3): 4472-4484, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30260032

RESUMO

Enhanced glucose uptake by cancer cells was demonstrated in many studies in vitro and in vivo. Glycolysis is one of the main ways of obtaining energy in hypoxia conditions. However, in addition to energy exchange, carbohydrates are also necessary for the posttranslational modification of the protein molecules. Cancer cells are often characterized by an enhanced expression of different glycoproteides. Correct glycosylation defines the structure and activity of such molecules. We demonstrated that under the same cultivation conditions, the intensity of glycosylation does not depend on the total number of potential O-glycosylation sites in one molecule. As a model for the investigation, the tandem repeat region (region with variable number of tandem repeats) of the human mucin MUC1, in which each of the repeats carries four potential O-glycosylation sites, was used. An increase of the tandem repeat number in the recombinant protein did not lead to a proportional increase in the level of sLea glycosides. A consequence of this was a reduction in the number of recombinant proteins associated with the cytoplasmic membrane at an overall high expression level. Prolongation of the cultivation duration led to a reduction in the expression level of the recombinant proteins by up to 30% of the initial level, and the intensity of this reduction was in a direct ratio to the number of tandem repeats in the protein molecule.


Assuntos
Regulação para Baixo , Mucina-1 , Sequências Repetitivas de Aminoácidos , Linhagem Celular , Glicosilação , Humanos , Mucina-1/biossíntese , Mucina-1/genética
5.
Cells ; 11(24)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552850

RESUMO

Over the years, our vision of the genome has changed from a linear molecule to that of a complex 3D structure that follows specific patterns and possesses a hierarchical organization. Currently, genomics is becoming "four-dimensional": our attention is increasingly focused on the study of chromatin dynamics over time, in the fourth dimension. Recent methods for visualizing the movements of chromatin loci in living cells by targeting fluorescent proteins can be divided into two groups. The first group requires the insertion of a special sequence into the locus of interest, to which proteins that recognize the sequence are recruited (e.g., FROS and ParB-INT methods). In the methods of the second approach, "programmed" proteins are targeted to the locus of interest (i.e., systems based on CRISPR/Cas, TALE, and zinc finger proteins). In the present review, we discuss these approaches, examine their strengths and weaknesses, and identify the key scientific problems that can be studied using these methods.


Assuntos
Cromatina , Genoma , Genômica , Diagnóstico por Imagem
6.
MethodsX ; 7: 101104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134100

RESUMO

CRISPR/Cas systems (Clustered regularly interspaced palindromic repeats / CRISPR-associated) are rapidly becoming a commonplace and popular tool for gene editing in research and clinical contexts. However, the quality of CRISPR/Cas experiments depends heavily on the guide RNA (gRNA) design; therefore, a reliable, easy, and rapid method for verifying gRNA cleavage efficacy is necessary. Engineered nuclease-induced translocations (ENIT) are an easy and cost-efficient method for the verification of gRNA efficacy, which involves tracking induced chromosomal mutations, using polymerase chain reaction (PCR). We have customized this method using both direct PCR and nested PCR approaches and have been able to reduce the sample preparation time. We present a simple and reliable gRNA testing approach that requires no specific enzymes or equipment.•The approach requires only routinely used enzymes and equipment.•Cost- and time-efficient, requiring approximately 30 min for PCR sample preparation, without requiring DNA purification.•High sensitivity, with induced translocation detected in 100 of 10,000 cells in the general population.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa