RESUMO
Intermittent fasting has become of interest for its possible metabolic benefits and reduction of inflammation and oxidative damage, all of which play a role in the pathophysiology of diabetic nephropathy. We tested in a streptozotocin (60 mg/kg)-induced diabetic apolipoprotein E knockout mouse model whether repeated fasting mimicking diet (FMD) prevents glomerular damage. Diabetic mice received 5 FMD cycles in 10 wk, and during cycles 1 and 5 caloric measurements were performed. After 10 wk, glomerular endothelial morphology was determined together with albuminuria, urinary heparanase-1 activity, and spatial mass spectrometry imaging to identify specific glomerular metabolic dysregulation. During FMD cycles, blood glucose levels dropped while a temporal metabolic switch was observed to increase fatty acid oxidation. Overall body weight at the end of the study was reduced together with albuminuria, although urine production was dramatically increased without affecting urinary heparanase-1 activity. Weight loss was found to be due to lean mass and water, not fat mass. Although capillary loop morphology and endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced together with the presence of UDP-glucuronic acid. Mass spectrometry imaging further revealed reduced protein catabolic breakdown products and increased oxidative stress, not different from diabetic mice. In conclusion, although FMD preserves partially glomerular endothelial glycocalyx, loss of lean mass and increased glomerular oxidative stress argue whether such diet regimes are safe in patients with diabetes.NEW & NOTEWORTHY Repeated fasting mimicking diet (FMD) partially prevents glomerular damage in a diabetic mouse model; however, although endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced in the presence of UDP-glucuronic acid. The weight loss observed was of lean mass, not fat mass, and increased glomerular oxidative stress argue whether such a diet is safe in patients with diabetes.
Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Jejum , Glicocálix , Glomérulos Renais , Estresse Oxidativo , Animais , Glicocálix/metabolismo , Glicocálix/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Glicemia/metabolismo , Albuminúria/metabolismo , Camundongos , Glucuronidase/metabolismo , Camundongos Knockout para ApoE , Camundongos Endogâmicos C57BL , DietaRESUMO
The endothelial glycocalyx is critically involved in vascular integrity and homeostasis, by regulating vascular permeability, regulating mechanotransduction, and reducing inflammation and coagulation. The turnover of the glycocalyx is dynamic to fine-tune these processes. This is in particular true for its main structural component, hyaluronan (HA). Degradation and shedding of the glycocalyx by enzymes, such as hyaluronidase 1 and hyaluronidase 2, are responsible for regulation of the glycocalyx thickness and hence access of circulating cells and factors to the endothelial cell membrane and its receptors. This degradation process will at the same time also allow for resynthesis and adaptive chemical modification of the glycocalyx. The (re)synthesis of HA is dependent on the availability of its sugar substrates, thus linking glycocalyx biology directly to cellular glucose metabolism. It is therefore of particular interest to consider the consequences of dysregulated cellular glucose in diabetes for glycocalyx biology and its implications for endothelial function. This review summarizes the metabolic regulation of endothelial glycocalyx HA and its potential as a therapeutic target in diabetic vascular complications.
Assuntos
Complicações do Diabetes/patologia , Endotélio Vascular/patologia , Glicocálix/patologia , Ácido Hialurônico/metabolismo , Animais , Complicações do Diabetes/metabolismo , Complicações do Diabetes/prevenção & controle , Endotélio Vascular/metabolismo , Glicocálix/metabolismo , HumanosRESUMO
OBJECTIVE: Endothelial cells exposed to laminar shear stress express a thick glycocalyx on their surface that plays an important role in reducing vascular permeability and endothelial anti-inflammatory, antithrombotic, and antiangiogenic properties. Production and maintenance of this glycocalyx layer is dependent on cellular carbohydrate synthesis, but its regulation is still unknown. Approach and Results: Here, we show that biosynthesis of the major structural component of the endothelial glycocalyx, hyaluronan, is regulated by shear. Both in vitro as well as in in vivo, hyaluronan expression on the endothelial surface is increased on laminar shear and reduced when exposed to oscillatory flow, which is regulated by KLF2 (Krüppel-like Factor 2). Using a CRISPR-CAS9 edited small tetracysteine tag to endogenous HAS2 (hyaluronan synthase 2), we demonstrated increased translocation of HAS2 to the endothelial cell membrane during laminar shear. Hyaluronan production by HAS2 was shown to be further driven by availability of the hyaluronan substrates UDP-glucosamine and UDP-glucuronic acid. KLF2 inhibits endothelial glycolysis and allows for glucose intermediates to shuttle into the hexosamine- and glucuronic acid biosynthesis pathways, as measured using nuclear magnetic resonance analysis in combination with 13C-labeled glucose. CONCLUSIONS: These data demonstrate how endothelial glycocalyx function and functional adaptation to shear is coupled to KLF2-mediated regulation of endothelial glycolysis.
Assuntos
Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Glicocálix/metabolismo , Glicólise/fisiologia , Hialuronan Sintases/genética , Fatores de Transcrição Kruppel-Like/genética , Estresse Mecânico , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/patologia , Glicocálix/patologia , Hialuronan Sintases/biossíntese , Fatores de Transcrição Kruppel-Like/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA/genéticaRESUMO
We propose and demonstrate a modulatable all-silicon terahertz absorber based on a cylindrical metamaterial structure. Broadband absorption is obtained from 0.86 to 2.00 THz, with an average absorbance of 94%, indicating a wide absorption bandwidth of 1.14 THz. The maximum absorption, around 1.24 THz, is up to 98%. We employ simulation results to investigate the physical properties of the absorption, and we attribute the broadband absorption to a combination of electric dipole and magnetic dipole modes. Furthermore, the tunable response of the all-silicon terahertz absorber under the optical pump beam, with different fluences, is studied using a hierarchical model for simulating the carrier density of the gradient distribution. Moreover, different polarizations and oblique incidences of terahertz waves are used to verify the polarization and angle-of-incidence insensitivity of the device. The absorber provides a simple method to design a modulated broadband terahertz absorber, and the design scheme is scalable to develop various tunable broadband absorbers at other frequencies. This work holds great potential in modulator applications, imaging devices, and energy conversion.
RESUMO
BACKGROUND: A glycocalyx envelope consisting of proteoglycans and adhering proteins covers endothelial cells, both the luminal and abluminal surface. We previously demonstrated that short-term loss of integrity of the luminal glycocalyx layer resulted in perturbed glomerular filtration barrier function. METHODS: To explore the role of the glycocalyx layer of the endothelial extracellular matrix in renal function, we generated mice with an endothelium-specific and inducible deletion of hyaluronan synthase 2 (Has2), the enzyme that produces hyaluronan, the main structural component of the endothelial glycocalyx layer. We also investigated the presence of endothelial hyaluronan in human kidney tissue from patients with varying degrees of diabetic nephropathy. RESULTS: Endothelial deletion of Has2 in adult mice led to substantial loss of the glycocalyx structure, and analysis of their kidneys and kidney function showed vascular destabilization, characterized by mesangiolysis, capillary ballooning, and albuminuria. This process develops over time into glomerular capillary rarefaction and glomerulosclerosis, recapitulating the phenotype of progressive human diabetic nephropathy. Using a hyaluronan-specific probe, we found loss of glomerular endothelial hyaluronan in association with lesion formation in tissue from patients with diabetic nephropathy. We also demonstrated that loss of hyaluronan, which harbors a specific binding site for angiopoietin and a key regulator of endothelial quiescence and maintenance of EC barrier function results in disturbed angiopoietin 1 Tie2. CONCLUSIONS: Endothelial loss of hyaluronan results in disturbed glomerular endothelial stabilization. Glomerular endothelial hyaluronan is a previously unrecognized key component of the extracelluar matrix that is required for glomerular structure and function and lost in diabetic nephropathy.
Assuntos
Ácido Hialurônico/biossíntese , Glomérulos Renais/anatomia & histologia , Glomérulos Renais/fisiologia , Animais , Endotélio/metabolismo , Humanos , Glomérulos Renais/metabolismo , Camundongos , UrotélioRESUMO
In normal physiology, endothelial cells (ECs) form a vital barrier between the blood and underlying tissue controlling leukocyte diapedesis and vascular inflammation. Emerging data suggest that neuronal guidance cues, typically expressed during development, have roles outside the nervous system in vascular biology and immune responses. In particular, Class III semaphorins have been reported to affect EC migration and angiogenesis. While ECs express high levels of semaphorin 3F (SEMA3F), little is known about its function in mature ECs. Here we show that SEMA3F expression is reduced by inflammatory stimuli and increased by laminar flow. Endothelial cells exposed to laminar flow secrete SEMA3F, which subsequently binds to heparan sulfates on the surface of ECs. However, under pro-inflammatory conditions, reduced levels of SEMA3F make ECs more prone to monocyte diapedesis and display impaired barrier function as measured with an electric cell-substrate impedance sensing system and a microfluidic system. In addition, we demonstrate that SEMA3F can directly inhibit the migration of activated monocytes. Taken together, our data suggest an important homeostatic function for EC-expressed SEMA3F, serving as a mediator of endothelial quiescence.
Assuntos
Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Membrana/metabolismo , Monócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Migração Transendotelial e Transepitelial , Endotélio Vascular/patologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Monócitos/patologiaRESUMO
The bioengineering of a replacement kidney has been proposed as an approach to address the growing shortage of donor kidneys for the treatment of chronic kidney disease. One approach being investigated is the recellularization of kidney scaffolds. In this study, we present several key advances toward successful re-endothelialization of whole kidney matrix scaffolds from both rodents and humans. Based on the presence of preserved glycosoaminoglycans within the decelullarized kidney scaffold, we show improved localization of delivered endothelial cells after preloading of the vascular matrix with vascular endothelial growth factor and angiopoietin 1. Using a novel simultaneous arteriovenous delivery system, we report the complete re-endothelialization of the kidney vasculature, including the glomerular and peritubular capillaries, using human inducible pluripotent stem cell -derived endothelial cells. Using this source of endothelial cells, it was possible to generate sufficient endothelial cells to recellularize an entire human kidney scaffold, achieving efficient cell delivery, adherence, and endothelial cell proliferation and survival. Moreover, human re-endothelialized scaffold could, in contrast to the non-re-endothelialized human scaffold, be fully perfused with whole blood. These major advances move the field closer to a human bioengineered kidney.
Assuntos
Bioengenharia , Endotélio Vascular/citologia , Matriz Extracelular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Transplante de Rim/métodos , Rim/citologia , Alicerces Teciduais/química , Animais , Células Cultivadas , Endotélio Vascular/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rim/metabolismo , Ratos , Ratos Endogâmicos LewRESUMO
Inhibition of monocyte chemotactic protein-1 (MCP-1) with the Spiegelmer emapticap pegol (NOX-E36) shows long-lasting albuminuria-reducing effects in diabetic nephropathy. MCP-1 regulates inflammatory cell recruitment and differentiation of macrophages. Because the endothelial glycocalyx is also reduced in diabetic nephropathy, we hypothesized that MCP-1 inhibition restores glomerular barrier function through influencing macrophage cathepsin L secretion, thus reducing activation of the glycocalyx-degrading enzyme heparanase. Four weeks of treatment of diabetic Apoe knockout mice with the mouse-specific NOX-E36 attenuated albuminuria without any change in systemic hemodynamics, despite persistent loss of podocyte function. MCP-1 inhibition, however, increased glomerular endothelial glycocalyx coverage, with preservation of heparan sulfate. Mechanistically, both glomerular cathepsin L and heparanase expression were reduced. MCP-1 inhibition resulted in reduced CCR2-expressing Ly6Chi monocytes in the peripheral blood, without affecting overall number of kidney macrophages at the tissue level. However, the CD206+/Mac3+ cell ratio, as an index of presence of anti-inflammatory macrophages, increased in diabetic mice after treatment. Functional analysis of isolated renal macrophages showed increased release of IL-10, whereas tumor necrosis factor and cathepsin L release was reduced, further confirming polarization of tissue macrophages toward an anti-inflammatory phenotype during mouse-specific NOX-E36 treatment. We show that MCP-1 inhibition restores glomerular endothelial glycocalyx and barrier function and reduces tissue inflammation in the presence of ongoing diabetic injury, suggesting a therapeutic potential for NOX-E36 in diabetic nephropathy.
Assuntos
Quimiocina CCL2/metabolismo , Nefropatias Diabéticas/metabolismo , Glicocálix/metabolismo , Macrófagos/metabolismo , Podócitos/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/patologia , Rim/patologia , Masculino , Camundongos Knockout , Monócitos/metabolismoRESUMO
Lipoprotein-associated phospholipase A 2 (Lp-PLA2) is associated with the risk of vascular disease. It circulates in human blood predominantly in association with low-density lipoprotein cholesterol (LDL-C) and hydrolyses oxidized phospholipids into pro-inflammatory products. However, in the mouse circulation, it predominantly binds to high-density lipoprotein cholesterol (HDL-C) and exhibits anti-inflammatory properties. To further investigate the effects of Lp-PLA2 in the circulation, we generated over-expressed Lp-PLA2 transgenic swine. The eukaryotic expression plasmid of porcine Lp-PLA2 which driven by EF1α promoter was constructed and generate transgenic swine via SCNT. The expression and activity of Lp-PLA2 in transgenic swine were evaluated, and the total cholesterol (TC), HDL-C, LDL-C and triglyceride (TG) levels in the fasting and fed states were also assessed. Compared with wild-type swine controls, the transgenic swine exhibited elevated Lp-PLA2 mRNA levels and activities, and the activity did not depend on the feeding state. The TC, HDL-C and LDL-C levels were not significantly increased. There was no change in the TG levels in the fasting state between transgenic and control pigs. However, in the fed state, the TG levels of transgenic swine were slightly increased compared with the control pigs and were significantly elevated compared with the fasting state. In addition, inflammatory gene (interleukin [IL]-6, monocyte chemotactic protein [MCP]-1 and tumor necrosis factor [TNF]-α) mRNA levels in peripheral blood mononuclear cells (PBMCs) were significantly increased. The results demonstrated that Lp-PLA2 is associated with triglycerides which may be helpful for understanding the relationship of this protein with cardiovascular disease.
Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/imunologia , Citocinas/imunologia , Leucócitos Mononucleares/imunologia , Suínos/genética , Suínos/imunologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Células Cultivadas , Regulação para Cima/genéticaRESUMO
The hyaluronan (HA) matrix in the tissue microenvironment is crucial for maintaining homeostasis by regulating inflammatory signalling, endothelial-mesenchymal transition and cell migration. During development, covalent modifications and osmotic swelling of HA create mechanical forces that initiate midgut rotation, vascular patterning and branching morphogenesis. Together with its main cell surface receptor, CD44, HA establishes a physicochemical scaffold at the cell surface that facilitates the interaction and clustering of growth factors and receptors that is required for normal physiology. High-molecular-weight HA, tumour necrosis factor-stimulated gene 6, pentraxin 3 and CD44 form a stable pericellular matrix that promotes tissue regeneration and reduces inflammation. By contrast, breakdown of high-molecular-weight HA into depolymerized fragments by hyaluronidases triggers inflammatory signalling, leukocyte migration and angiogenesis, contributing to tissue damage and fibrosis in kidney disease. Targeting HA metabolism is challenging owing to its dynamic regulation and tissue-specific functions. Nonetheless, modulating HA matrix functions by targeting its binding partners holds promise as a therapeutic strategy for restoring tissue homeostasis and mitigating pathological processes. Further research in this area is warranted to enable the development of novel therapeutic approaches for kidney and other diseases characterized by dysregulated HA metabolism.
RESUMO
Tissue homeostasis is intricately linked to cellular metabolism and metabolite exchange within the tissue microenvironment. The orchestration of adaptive cellular responses during injury and repair depends critically upon metabolic adaptation. This adaptation, in turn, shapes cell fate decisions required for the restoration of tissue homeostasis. Understanding the nuances of metabolic processes within the tissue context and comprehending the intricate communication between cells is therefore imperative for unraveling the complexity of tissue homeostasis and the processes of injury and repair. In this review, we focus on mass spectrometry imaging as an advanced platform with the potential to provide such comprehensive insights into the metabolic instruction governing tissue function. Recent advances in this technology allow to decipher the intricate metabolic networks that determine cellular behavior in the context of tissue resilience, injury, and repair. These insights not only advance our fundamental understanding of tissue biology but also hold implications for therapeutic interventions by targeting metabolic pathways critical for maintaining tissue homeostasis.
Assuntos
Homeostase , Metabolômica , Regeneração , Humanos , Metabolômica/métodos , Regeneração/genética , Animais , Redes e Vias Metabólicas/genética , Espectrometria de MassasRESUMO
Improvement of long-term outcomes through targeted treatment is a primary concern in kidney transplant medicine. Currently, the validation of a rejection diagnosis and subsequent treatment depends on the histological assessment of allograft biopsy samples, according to the Banff classification system. However, the lack of (early) disease-specific tissue markers hinders accurate diagnosis and thus timely intervention. This challenge mainly results from an incomplete understanding of the pathophysiological processes underlying late allograft failure. Integration of large-scale multimodal approaches for investigating allograft biopsy samples might offer new insights into this pathophysiology, which are necessary for the identification of novel therapeutic targets and the development of tailored immunotherapeutic interventions. Several omics technologies - including transcriptomic, proteomic, lipidomic and metabolomic tools (and multimodal data analysis strategies) - can be applied to allograft biopsy investigation. However, despite their successful application in research settings and their potential clinical value, several barriers limit the broad implementation of many of these tools into clinical practice. Among spatial-omics technologies, mass spectrometry imaging, which is under-represented in the transplant field, has the potential to enable multi-omics investigations that might expand the insights gained with current clinical analysis technologies.
Assuntos
Rejeição de Enxerto , Transplante de Rim , Proteômica , Humanos , Biópsia , Rejeição de Enxerto/patologia , Rim/patologia , Metabolômica/métodos , Espectrometria de Massas , Lipidômica/métodosRESUMO
The growing disparity between the demand for transplants and the available donor supply, coupled with an aging donor population and increasing prevalence of chronic diseases, highlights the urgent need for the development of platforms enabling reconditioning, repair, and regeneration of deceased donor organs. This necessitates the ability to preserve metabolically active kidneys ex vivo for days. However, current kidney normothermic machine perfusion (NMP) approaches allow metabolic preservation only for hours. Here we show that human kidneys discarded for transplantation can be preserved in a metabolically active state up to 4 days when perfused with a cell-free perfusate supplemented with TCA cycle intermediates at subnormothermia (25 °C). Using spatially resolved isotope tracing we demonstrate preserved metabolic fluxes in the kidney microenvironment up to Day 4 of perfusion. Beyond Day 4, significant changes were observed in renal cell populations through spatial lipidomics, and increases in injury markers such as LDH, NGAL and oxidized lipids. Finally, we demonstrate that perfused kidneys maintain functional parameters up to Day 4. Collectively, these findings provide evidence that this approach enables metabolic and functional preservation of human kidneys over multiple days, establishing a solid foundation for future clinical investigations.
Assuntos
Rim , Preservação de Órgãos , Perfusão , Humanos , Rim/metabolismo , Preservação de Órgãos/métodos , Perfusão/métodos , Transplante de Rim , Masculino , Soluções para Preservação de Órgãos , Feminino , Pessoa de Meia-Idade , Sistema Livre de Células , Ciclo do Ácido Cítrico , Adulto , Nutrientes/metabolismo , Lipidômica/métodos , IdosoRESUMO
BACKGROUND: This study aimed to summarize the clinical features of Autoimmune Glial Fibrillary Acidic Protein Astrocytosis mimicking tuberculosis meningitis to improve clinicians' understanding of this disease. METHODS: We retrospectively analyzed the clinical manifestations, cerebrospinal fluid results, and imaging data of five patients with Autoimmune Glial Fibrillary Acidic Protein Astrocytosis mimicking tuberculous meningitis who were admitted to Xiangya Hospital Central South University between October 2021 and July 2022. RESULTS: Five patients were aged 31-59 years, with a male-to-female ratio of 4:1. Among the cases reviewed, four had a history of prodromal infections manifesting as fever and headache. One patient developed limb weakness and numbness with clinical manifestations of meningitis, meningoencephalitis, encephalomyelitis, or meningomyelitis. Cerebrospinal fluid analysis revealed an increased cell count in five cases, with a lymphocyte majority. All five cases had a CSF protein level > 1.0 g/L, CSF/blood glucose ratio < 0.5, and two patients had CSF glucose < 2.2 mmol/L. Decreased CSF chloride was observed in three cases, while increased ADA was observed in one case. Both serum and cerebrospinal fluid were positive for anti-GFAP antibodies in three cases, while in two cases, only CSF was positive for anti-GFAP antibodies. Additionally, hyponatremia and hypochloremia were observed in three cases. No tumors were detected in any of the five patients during tumor screening, and all five cases had a good prognosis following immunotherapy. CONCLUSION: Anti-GFAP antibody testing should be routinely performed in patients with suspected tuberculosis meningitis to avoid misdiagnosis.
Assuntos
Meningoencefalite , Tuberculose Meníngea , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Glial Fibrilar Ácida , Gliose , Meningoencefalite/diagnóstico , Estudos Retrospectivos , Tuberculose Meníngea/diagnósticoRESUMO
Diabetes is a main risk factor for kidney disease, causing diabetic nephropathy in close to half of all patients with diabetes. Metabolism has recently been identified to be decisive in cell fate decisions and repair. Here we used mass spectrometry imaging (MSI) to identify tissue specific metabolic dysregulation, in order to better understand early diabetes-induced metabolic changes of renal cell types. In our experimental diabetes mouse model, early glomerular glycocalyx barrier loss and systemic metabolic changes were observed. In addition, MSI targeted at small molecule metabolites and glycero(phospho)lipids exposed distinct changes upon diabetes in downstream nephron segments. Interestingly, the outer stripe of the outer medullar proximal tubular segment (PT_S3) demonstrated the most distinct response compared to other segments. Furthermore, phosphatidylinositol lipid metabolism was altered specifically in PT_S3, with one of the phosphatidylinositol fatty acid tails being exchanged from longer unsaturated fatty acids to shorter, more saturated fatty acids. In acute kidney injury, the PT_S3 segment and its metabolism are already recognized as important factors in kidney repair processes. The current study exposes early diabetes-induced changes in membrane lipid composition in this PT_S3 segment as a hitherto unrecognized culprit in the early renal response to diabetes.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais/metabolismo , Nefropatias Diabéticas/metabolismo , Metabolismo dos Lipídeos , Diabetes Mellitus/metabolismoRESUMO
A common drawback of metabolic analyses of complex biological samples is the inability to consider cell-to-cell heterogeneity in the context of an organ or tissue. To overcome this limitation, we present an advanced high-spatial-resolution metabolomics approach using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) combined with isotope tracing. This method allows mapping of cell-type-specific dynamic changes in central carbon metabolism in the context of a complex heterogeneous tissue architecture, such as the kidney. Combined with multiplexed immunofluorescence staining, this method can detect metabolic changes and nutrient partitioning in targeted cell types, as demonstrated in a bilateral renal ischemia-reperfusion injury (bIRI) experimental model. Our approach enables us to identify region-specific metabolic perturbations associated with the lesion and throughout recovery, including unexpected metabolic anomalies in cells with an apparently normal phenotype in the recovery phase. These findings may be relevant to an understanding of the homeostatic capacity of the kidney microenvironment. In sum, this method allows us to achieve resolution at the single-cell level in situ and hence to interpret cell-type-specific metabolic dynamics in the context of structure and metabolism of neighboring cells.
Assuntos
Metabolômica , Traumatismo por Reperfusão , Carbono , Humanos , Rim , Metabolômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodosRESUMO
Accumulating evidence demonstrates important roles for metabolism in cell fate determination. However, it is a challenge to assess metabolism at a spatial resolution that acknowledges both heterogeneity and cellular dynamics in its tissue microenvironment. Using a multi-omics platform to study cell-type-specific dynamics in metabolism in complex tissues, we describe the metabolic trajectories during nephrogenesis in the developing human kidney. Exploiting in situ analysis of isotopic labeling, a shift from glycolysis toward fatty acid ß-oxidation was observed during the differentiation from the renal vesicle toward the S-shaped body and the proximal tubules. In addition, we show that hiPSC-derived kidney organoids are characterized by a metabolic immature phenotype that fails to use mitochondrial long-chain fatty acids for energy metabolism. Furthermore, supplementation of butyrate enhances tubular epithelial differentiation and maturation in cultured kidney organoids. Our findings highlight the relevance of understanding metabolic trajectories to efficiently guide stem cell differentiation.
Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Metabolismo Energético , Metabolômica , Rim/metabolismoRESUMO
In this paper, a terahertz (THz) biosensor based on all-metal metamaterial is theoretically investigated and experimentally verified. This THz metamaterial biosensor uses stainless steel materials that are manufactured via laser-drilling technology. The simulation results show that the maximum refractive index sensitivity and the figure of merit of this metamaterial sensor are 294.95 GHz/RIU and 4.03, respectively. Then, bovine serum albumin was chosen as the detection substance to assess this biosensor's effectiveness. The experiment results show that the detection sensitivity is 72.81 GHz/(ng/mm2) and the limit of detection is 0.035 mg/mL. This THz metamaterial biosensor is simple, cost-effective, easy to fabricate, and has great potential in various biosensing applications.
RESUMO
We recently reported that loss of hyaluronan (HA) from the endothelial glycocalyx leads to loss of vessel stability in specific microcirculatory vascular beds. Here we hypothesized that such derangements in the glycocalyx may also impair the adaptive response to vascular ischemia. Endothelial specific conditional hyaluronan synthase 2-KO (Has2-cKO) mice revealed reduced endothelial HA expression and lower hindlimb perfusion at baseline compared to control mice. After a single ligation of the common femoral artery in these mice, we observed dysregulated angiogenesis in the gastrocnemius muscle which did not restore capillary perfusion. Mechanistically, decreased endothelial binding of the pericyte-derived molecule angiopoietin1 (Ang1) could be observed in the Has2-cKO mouse. In vitro angiogenesis assays with an endothelial cell-pericyte coculture confirmed such disturbed Ang1-TIE2 signaling resulting in excessive angiogenesis upon loss of HA. These data could be of relevance to diabetes patients, where we confirm loss of endothelial HA in the microcirculation of muscle tissue, indicating that this may contribute to the known disturbed adaptation to ischemia in these patients. In summary, loss of endothelial HA results in impaired microvascular perfusion and endothelial stability in ischemic gastrocnemius muscle. Endothelial HA is a potential target to improve angiogenic therapy in diabetic patients with critical limb ischemia.
Assuntos
Células Endoteliais/metabolismo , Artéria Femoral/patologia , Artéria Femoral/fisiopatologia , Glicocálix/metabolismo , Isquemia/patologia , Isquemia/fisiopatologia , Remodelação Vascular , Angiopoietina-1/metabolismo , Animais , Diabetes Mellitus Experimental/patologia , Membro Posterior/patologia , Humanos , Ácido Hialurônico/metabolismo , Ligadura , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculos/patologia , Neovascularização Fisiológica , PerfusãoRESUMO
Differentiation of human-induced pluripotent stem cells (hiPSCs) into vascular endothelium is of great importance to tissue engineering, disease modeling, and use in regenerative medicine. Although differentiation of hiPSCs into endothelial-like cells (hiPSC-derived endothelial cells [hiPSC-ECs]) has been demonstrated before, controversy exists as to what extent these cells faithfully reflect mature endothelium. To address this issue, we investigate hiPSC-ECs maturation by their ability to express von Willebrand factor (VWF) and formation of Weibel-Palade bodies (WPBs). Using multiple hiPSCs lines, hiPSC-ECs failed to form proper VWF and WPBs, essential for angiogenesis, primary and secondary homeostasis. Lowering the increased intracellular pH (pHi) of hiPSC-ECs with acetic acid did result in the formation of elongated WPBs. Nuclear magnetic resonance data showed that the higher pHi in hiPSC-ECs occurred in association with decreased intracellular lactate concentrations. This was explained by decreased glycolytic flux toward pyruvate and lactate in hiPSC-ECs. In addition, decreased expression of monocarboxylate transporter member 1, a member of the solute carrier family (SLC16A1), which regulates lactate and H+ uptake, contributed to the high pHi of hiPSC-EC. Mechanistically, pro-VWF dimers require the lower pH environment of the trans-Golgi network for maturation and tubulation. These data show that while hiPSC-ECs may share many features with mature EC, they are characterized by metabolic immaturity hampering proper EC function.