Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
IUBMB Life ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551358

RESUMO

Mitoribosomes are essential for the production of biological energy. The Human Mitoribosomal Small Subunit unit (MRPS) family, responsible for encoding mitochondrial ribosomal small subunits, is actively engaged in protein synthesis within the mitochondria. Intriguingly, MRPS family genes appear to play a role in cancer. A multistep process was employed to establish a risk model associated with MRPS genes, aiming to delineate the immune and pharmacogenomic landscapes in clear cell renal cell carcinoma (ccRCC). MRPScores were computed for individual patients to assess their responsiveness to various treatment modalities and their susceptibility to different therapeutic targets and drugs. While MRPS family genes have been implicated in various cancers as oncogenes, our findings reveal a contrasting tumor suppressor role for MRPS genes in ccRCC. Utilizing an MRPS-related risk model, we observed its excellent prognostic capability in predicting survival outcomes for ccRCC patients. Remarkably, the subgroup with high MRPS-related scores (MRPScore) displayed poorer prognosis but exhibited a more robust response to immunotherapy. Through in silico screening of 2183 drug targets and 1646 compounds, we identified two targets (RRM2 and OPRD1) and eight agents (AZ960, carmustine, lasalocid, SGI-1776, AZD8055_1059, BPD.00008900_1998, MK.8776_2046, and XAV939_1268) with potential therapeutic implications for high-MRPScore patients. Our study represents the pioneering effort in proposing that molecular classification, diagnosis, and treatment strategies can be formulated based on MRPScores. Indeed, a high MRPScore profile appears to elevate the risk of tumor progression and mortality, potentially through its influence on immune regulation. This suggests that the MRPS-related risk model holds promise as a prognostic predictor and may offer novel insights into personalized therapeutic strategies.

2.
Prostate ; 83(15): 1415-1429, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565264

RESUMO

BACKGROUND: The discovery of androgen receptor (AR) having transrepression effects completes the circle of its functionalities as a typical transcription factor, which intrinsically bears dual functions of activation and repression linked to co-factor competition and redistribution. Indeed, AR dual functions are exemplified by locus-wide regulation of the oncogenic 8q24-MYC region. METHODS: RT-qPCR assay and public RNA-profiling datasets were used to assess MYC transcription in androgen-sensitive cell lines. Public ChIP-seq and RNA-Seq datasets were computed to evaluate AR-MYC direct and indirect signatures. Gene sets in typical MYC and AR pathways were monitored to validate their cross-talks. Bio-informatics and chromosome conformation capture (3C) assay were performed in the AR gene locus to examine androgen-elicited distal regulation. Finally, co-factor re-distribution were globally tracked between AR and MYC binding sites. RESULTS: In this report, we found MYC responded negatively to androgen with hypersensitivity, rivaling AR natural functions as an innate androgen effector. Furthermore, both direct and indirect AR and MYC transcriptional programs were actively in equilibration. With established androgen-mediated versus MYC-mediated gene subsets, we validated AR and MYC pathways were both bidirectional and extensively entangled. In addition, we determined that the AR gene locus resembled the MYC gene region and both loci were androgen-repressed via epigenetics and chromatin architectural alterations. Significantly, transcriptional factor profiling along the prostate cancer (PCa) genome exposed that PCa transcriptomes were dynamically equilibrated between AR-binding site and MYC-binding site. CONCLUSION: Together, our findings stratified AR-MYC interactions that are extensively wired and intricately organized to compensate for essential PCa transcriptional programs and neutralize excessive signaling.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Androgênios/metabolismo , Transcriptoma , Linhagem Celular Tumoral , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/genética , Regulação Neoplásica da Expressão Gênica
3.
J Transl Med ; 21(1): 716, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828515

RESUMO

BACKGROUND: Androgen receptor (AR) activation and repression dual-functionality only became known recently and still remains intriguing in prostate cancer (PCa). MYC is a prominent oncogene that functionally entangles with AR signaling in PCa. Further exploration of AR regulatory mechanisms on MYC gene transcription bears clinical and translation significance. METHODS: Bioinformatics analysis of PCa cell line and clinical RNA-Seq and ChIP-Seq (chromatin immunoprecipitation-sequencing) datasets to anchor interactions of AR and MYC transcriptional networks. ChIP-qPCR and 3C (chromosome conformation capture) analyses to probe MYC distal regulation by AR binding sites (ABSs). CRISPR/Cas9-mediated genome-editing to specify functions of ABS within the 8q24-MYC locus on androgen-mediated MYC transcription. Global FoxA1 and HoxB13 distribution profiling to advance AR transcriptional mechanisms. RESULTS: Here we recognize AR bi-directional transcription mechanisms by exploiting the prominent 8q24-MYC locus conferring androgen hyper-sensitivity. At ~ 25 Kb downstream of the MYC gene, we identified an undefined ABS, P10. By chromatin analyses, we validated androgen-dependent spatial interaction between P10 and MYC-Promoter (MYC-Pro) and temporal epigenetic repression of these MYC-proximal elements. We next designed a CRISPR/Cas9-mediated double genomic knock-out (KO) strategy to show that P10-KO slightly lessened androgen-elicited MYC transrepression in LNCaP-AR cells. In similar genomic editing assays, androgen-mediated MYC repression became slightly deepened upon KO of P11, an ABS in the PVT1 gene locus highly enriched in AR-binding motifs and peaks. We also investigated multiple ABSs in the established PCAT1 super-enhancer that distally interacts with MYC-Pro for transactivation, with each KO pool consistently shown to relieve androgen-elicited MYC repression. In the end, we systemically assessed androgen effects in the 8q24-MYC locus and along PCa genome to generalize H3K27ac and BRD4 re-distribution from pioneer factors (FoxA1 and HoxB13) to AR sites. CONCLUSION: Together, we reconciled these observations by unifying AR dual-functions that are mechanistically coupled to and equilibrated by co-factor redistribution.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-myc , Receptores Androgênicos , Humanos , Masculino , Androgênios , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética
4.
J Nanobiotechnology ; 21(1): 3, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597108

RESUMO

The kidney is a vital organ responsible for maintaining homeostasis in the human body. However, renal cell carcinoma (RCC) is a common malignancy of the urinary system and represents a serious threat to human health. Although the overall survival of RCC has improved substantially with the development of cancer diagnosis and management, there are various reasons for treatment failure. Firstly, without any readily available biomarkers, timely diagnosis has been greatly hampered. Secondly, the imaging appearance also varies greatly, and its early detection often remains difficult. Thirdly, chemotherapy has been validated as unavailable for treating renal cancer in the clinic due to its intrinsic drug resistance. Concomitant with the progress of nanotechnological methods in pharmaceuticals, the management of kidney cancer has undergone a transformation in the recent decade. Nanotechnology has shown many advantages over widely used traditional methods, leading to broad biomedical applications ranging from drug delivery, prevention, diagnosis to treatment. This review focuses on nanotechnologies in RCC management and further discusses their biomedical translation with the aim of identifying the most promising nanomedicines for clinical needs. As our understanding of nanotechnologies continues to grow, more opportunities to improve the management of renal cancer are expected to emerge.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Nanomedicina/métodos , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/tratamento farmacológico , Nanotecnologia/métodos , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/tratamento farmacológico , Rim , Sistemas de Liberação de Medicamentos/métodos
5.
World J Surg Oncol ; 20(1): 161, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35590327

RESUMO

BACKGROUND: The effective components contained in compound Kushen injection (CKI) and the genes and signalling pathways related to gastric cancer (GC) were analyzed through the network pharmacology method of traditional Chinese medicine, and various possible mechanisms by which CKI affects the proliferation, differentiation, survival, and metastasis of GC cells were discussed. The PI3K/AKT signalling pathway is considered to be one of the most important pathways targeted by CKI in the regulation of GC cells. The implementation of related cell experiments also confirmed the information we revealed. METHODS: Effective drug components of Kushen and Baituling in CKI were identified from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP). Genes related to GC were identified using the GENECARD and OMIM databases. The common target genes related to the effective components of the drug and GC were identified using the intersection method and visualized using software. A protein-protein interaction network (PPI) was established using STRING online software to confirm the key genes. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to predict the key pathways of CKI in GC treatment. BGC-803 and MKN-28 GC cells were used to verify the signalling pathway. Cell proliferation, apoptosis, migration ability, and invasion ability were assessed using CCK8, flow cytometry, scratch, and transwell assays. Immunofluorescence assays and western blotting were used to detect the expression of related proteins. RESULTS: CKI regulated GC cells through 35 effective drug components of GC-related target genes. In total, 194 genes were common targets of CKI and GC. The most significant function of the enriched genes was DNA-binding transcription activator activity as demonstrated by GO enrichment analysis. The metabolic pathway with the highest enrichment was the PI3K/AKT signalling pathway as demonstrated by KEGG enrichment analysis. Our cell experimental evidence also shows that CKI inhibits GC cell growth and migration and induce GC cell apoptosis. In addition, CKI inhibits the EMT process in GC cells through the PI3K/AKT signalling pathway. CONCLUSION: AKT1 is a key gene for CKI treatment of GC. CKI inhibited GC cell growth and migration and induced GC cell apoptosis. In addition, CKI regulated the EMT process in GC cells through the PI3K/AKT signalling pathway.


Assuntos
Antineoplásicos , Medicamentos de Ervas Chinesas , Neoplasias Gástricas , Antineoplásicos/uso terapêutico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
6.
Mol Ther ; 28(5): 1299-1313, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32209435

RESUMO

Recently, cytoophidium, a nonmembrane-bound intracellular polymeric structure, has been shown to exist in various organisms, including tumor tissues, but its function and mechanism have not yet been examined. Examination of cytoophidia-assembled gene inosine monophosphate dehydrogenase (IMPDH) and cytidine triphosphate synthetase (CTPS) mRNA levels showed that only IMPDH1 levels were significantly higher in the clear cell renal cell carcinoma (ccRCC). IMPDH1 was positively correlated with the metastasis-related gene Y-box binding protein 1 (YB-1) and served as an independent prognostic factor in ccRCC. Kaplan-Meier analysis indicated that patients with tumors that expressed high IMPDH1 levels had a shorter overall survival (OS) and disease-free survival (DFS). Furthermore, detection of cytoophidia by immunofluorescence staining in ccRCC tissues showed that IMPDH1-assembled cytoophidia are positively associated with tumor metastasis. Mechanistically, IMPDH1 and YB-1 formed an autoregulatory positive feedback loop: IMPDH1 maintained YB-1 protein stabilization; YB-1 induced IMPDH1 expression by binding to the IMPDH1 promoter motif. Functionally, IMPDH1-assembled cytoophidia physically interacted with YB-1 and translocated YB-1 into the cell nucleus, thus correlating with ccRCC metastasis. Our findings provide the first solid theoretical rationale for targeting the IMPDH1/YB-1 axis to improve metastatic renal cancer treatment.


Assuntos
Carcinoma de Células Renais/metabolismo , Retroalimentação Fisiológica , IMP Desidrogenase/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Intervalo Livre de Doença , Feminino , Humanos , IMP Desidrogenase/genética , Estimativa de Kaplan-Meier , Neoplasias Renais/patologia , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Plasmídeos/genética , RNA Mensageiro/metabolismo , Transfecção , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína 1 de Ligação a Y-Box/genética
7.
J Cell Physiol ; 235(2): 1235-1246, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31267540

RESUMO

Prostate cancer (PCa) is the second leading cause of death among American men. Increasing evidence has shown that long noncoding RNAs (lncRNAs) play important roles in tumorigenesis of PCa. In this study, we explored the biological functions of small nucleolar RNA host gene 12 (SNHG12) and investigated the interaction between miR-133b and SNHG12 in the progression of PCa. Data was downloaded from The Cancer Genome Atlas and Human Cancer Metastasis Database, and clinicopathological characteristics were analyzed with relapse-free survival rate. We detected SNHG12 expression level in PCa cells and tissues, and then analyzed its clinical significance, which revealed that SNHG12 has the potent to predict prognosis of PCa. Bioinformatic analysis revealed that SNHG12 was closely related to the progression of PCa and could target candidate microRNA (miR-133b). After transfecting SNHG12 silencing plasmid and miR-133b mimic/sponge, biological function assays were conducted and results illustrated that SNHG12 associated with miR-133b exerted biological effects on cancer cell growth, migration, and invasion. Direct interactions between miR-133b and SNHG12 have been found and SNHG12 acts as an oncogene to promote tumorigenesis of PCa by sponging tumor suppressor gene miR-133b.


Assuntos
Carcinogênese , MicroRNAs/metabolismo , Neoplasias da Próstata/metabolismo , RNA Longo não Codificante/metabolismo , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Invasividade Neoplásica , Prognóstico , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Regulação para Cima
8.
Crit Rev Eukaryot Gene Expr ; 30(2): 153-168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32558494

RESUMO

Prostate cancer (PCa) is one of the most common malignancies affecting men's health worldwide. The aim of this study is to identify key genes and their regulatory networks and evaluate the usefulness of these genes on diagnosis of and prognosis for prostate cancer. The gene expression microarray dataset GSE55945 was downloaded for analysis. The differentially expressed genes (DEGs) were accessed with RStudio. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the database for annotation, visualization and integrated discovery (DAVID) database. A protein-protein interaction network was carried out using STRING. The survival and diagnostic analysis of hub genes were conducted using the cancer genome atlas (TCGA) data. Finally, we identified 387 DEGs. GO and KEGG analyses reveled that the DEGs in PCa were mainly enriched in the bone morphogenetic protein (BMP) signaling pathway and cytochrome P450. Among 15 hub genes, we found that only a different expression level of MYH11 affected patient survival. And further gene set enrichment analysis (GSEA) showed that low expression of MYH11 was associated with the cell cycle, DNA replication, TGF-P1 signal pathway, and PCa. In conclusion, we identified 387 DEGs that may be involved in core pathways such as the BMP pathway and cytochrome P450, which may contribute to the progression of PCa. In addition, hub gene MYH11 has the potential to be a novel biomarker for diagnosing and determining the prognosis for PCa.


Assuntos
Biomarcadores Tumorais/genética , Cadeias Pesadas de Miosina/genética , Prognóstico , Neoplasias da Próstata/genética , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Redes Reguladoras de Genes/genética , Humanos , Masculino , Neoplasias da Próstata/patologia , Mapas de Interação de Proteínas/genética , Transcriptoma
9.
Exp Cell Res ; 376(2): 181-191, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30731073

RESUMO

Renal cell carcinomas are a group of most common renal malignancies whose clinical intervention is complicated by the lack of early diagnosis and reliable prognosis biomarkers, insensitive radiotherapy and chemotherapy and expensive molecular-targeted drugs. Transcriptional coactivator TAZ has been implicated in the formation and development of various malignancies. However, the biological characteristics and function of TAZ in renal cell carcinoma are still unclear. We attempted to evaluate the potential of TAZ as a promising diagnostic and prognostic molecular marker for renal cell carcinoma. In our study, we confirmed that TAZ was frequently elevated in renal cancer tissues and cells, consistent with the results of the publicly available cancer database. Moreover, elevated TAZ expression was positively correlated with poor overall survival time, high Fuhrman grade and distant metastasis. Our receiver operating characteristic curves analysis showed that high TAZ expression could distinguish renal cancer patients from normal persons (p < 0.0001). Kaplan-Meier curves demonstrated that high TAZ expression predicted poor overall survival (p < 0.0001). Multivariate regression analysis indicated that TAZ expression could be an independent prognostic factor (p = 0.002) in patients with renal cancer. Finally, the functional roles of TAZ knockdown were examined in renal cancer cell lines and nude mice subcutaneous tumor models. In conclusion, our results suggest that TAZ may serve as a promising diagnostic and prognostic molecular marker for patients with renal cancer. Moreover, TAZ may represent a novel clinical therapeutic target.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Renais/diagnóstico , Transativadores/metabolismo , Animais , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Estadiamento de Neoplasias , Transplante de Neoplasias , Prognóstico , Transativadores/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
10.
J Pineal Res ; 67(4): e12607, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31469445

RESUMO

Metabolic adaptations are emerging hallmarks of cancer progression and cellular transformation. Clear cell renal cell carcinoma (ccRCC) is a metabolic disease defined histologically by lipid accumulation and lipid storage, which promote tumor cell survival; however, the significance of eliminating the lipid remains unclear. Here, we demonstrate that melatonin activates transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1A (PGC1A) and uncoupling protein 1 (UCP1)-dependent lipid autophagy and a lipid browning program to elicit a catabolic state called "tumor slimming," thus suppressing tumor progression. Metabolic coregulator data analysis revealed that PGC1A expression was decreased in ccRCC tissues versus normal tissues, and poor patient outcome was associated with lower expression of PGC1A in The Cancer Genome Atlas (TCGA-KIRC). PGC1A was downregulated in ccRCC and associated with disease progression. Restoration of PGC1A expression by melatonin in ccRCC cells significantly repressed tumor progression and eliminated the abnormal lipid deposits. Furthermore, a phenomenon called "tumor slimming" was observed, in which tumor cell volume was reduced and lipid droplets transformed into tiny pieces. Additional studies indicated that melatonin promoted "tumor slimming" and suppressed ccRCC progression through PGC1A/UCP1-mediated autophagy and lipid browning. During this process, autophagy and lipid browning eliminate lipid deposits without providing energy. These studies demonstrate that the novel "tumor slimming" pathway mediated by melatonin/PGC1A/UCP1 exhibits prognostic potential in ccRCC, thus revealing the significance of monitoring and manipulating this pathway for cancer therapy.


Assuntos
Morte Celular Autofágica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Melatonina/farmacologia , Proteínas de Neoplasias/metabolismo , Neoplasias , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína Desacopladora 1/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Camundongos , Proteínas de Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteína Desacopladora 1/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Exp Cell Res ; 372(2): 118-128, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30267660

RESUMO

Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors in the urinary system, and its incidence continues to increase. Regulator of calcineurin 1 (RCAN1), one of the genes on chromosome 21, is a crucial mediator of tumor inhibition. RCAN1.4 is best characterized as an endogenous inhibitor of the phosphatase calcineurin, and it has been observed to be downregulated in numerous types of cancer. However, its essential function remains unclear in ccRCC. In the present study, we found that RCAN1.4 expression was frequently downregulated in renal cell carcinoma tissues and cells and was inversely correlated with various clinicopathological parameters. Low RCAN1.4 expression was associated with poor overall survival and disease-free survival and could act as a diagnostic indicator in ccRCC patients. Furthermore, the overexpression of RCAN1.4 inhibited cell proliferation, migration and invasion, whereas RCAN1.4 knockdown promoted these functions in ccRCC cell lines. In addition, RCAN1.4 expression was downregulated in sunitinib-resistant renal cancer cell lines, and inhibition of RCAN1.4 promoted sunitinib resistance. We also found that RCAN1.4 could regulate epithelial-mesenchymal transition (EMT) and the expression of HIF2α in sunitinib-resistant cell lines. Taken together, these findings indicate that downregulation of RCAN1.4 may be crucial for the metastasis of ccRCC and may induce sunitinib resistance. RCAN1.4 may act as a prognostic indicator and potential therapeutic target for ccRCC.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/genética , Idoso , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Sunitinibe/administração & dosagem , Sunitinibe/efeitos adversos , Proteínas Supressoras de Tumor/genética
12.
Exp Cell Res ; 358(2): 269-278, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28684115

RESUMO

Caveolin-1 (CAV1) has been identified to be up-regulated in many cancers, including clear cell renal cell carcinoma (ccRCC). However, its potential function is still unclear in ccRCC. In this study, we demonstrated that CAV1 was frequently overexpressed in renal cell carcinoma tissues and cells, and was significantly associated with various clinicopathological parameters. In addition, high CAV1 expression was associated with poor disease-free survival (DFS) rate and could serve as a useful diagnostic indicator in ccRCC patients with different clinicopathological stages. Functional experiments demonstrated that CAV1 knockdown inhibited cell migration and invasion, whereas overexpression of CAV1 promoted cell migration and invasion in ccRCC. Moreover, CAV1 expression was up-regulated in sunitinib-resistant renal cancer cell lines, and its overexpression promoted sunitinib resistance. In general, our results confirm that CAV1 plays an important role in the metastasis of kidney cancer and induces sunitinib resistance, so CAV1 function suppression may become a promising clinical treatment strategy during renal cell carcinoma metastasis and sunitinib resistance.


Assuntos
Carcinoma de Células Renais/metabolismo , Caveolina 1/metabolismo , Movimento Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/genética , Indóis/farmacologia , Neoplasias Renais/metabolismo , Pirróis/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Caveolina 1/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Feminino , Técnicas de Silenciamento de Genes/métodos , Humanos , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Sunitinibe , Adulto Jovem
14.
Biomater Sci ; 12(10): 2480-2503, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38592730

RESUMO

Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.


Assuntos
Terapia Fototérmica , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Animais , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Imunoterapia , Fototerapia/métodos
15.
Research (Wash D C) ; 7: 0322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390305

RESUMO

Recent studies have highlighted the notable involvement of the crosstalk between hypoxia-inducible factor 2 alpha (HIF2α) and Wnt signaling components in tumorigenesis. However, the cellular function and precise regulatory mechanisms of HIF2α and Wnt signaling interactions in clear cell renal cell carcinoma (ccRCC) remain elusive. To analyze the correlation between HIF2α and Wnt signaling, we utilized the Cancer Genome Atlas - Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) public database, HIF2α RNA sequencing data, and conducted luciferase reporter assays. A Wnt-related gene set was employed to identify key regulators of Wnt signaling controlled by HIF2α in ccRCC. Furthermore, we assessed the biological effects of TCF7L2 on ccRCC metastasis and lipid metabolism in both in vivo and in vitro settings. Our outcomes confirm TCF7L2 as a key gene involved in HIF2α-mediated regulation of the canonical Wnt pathway. Functional studies demonstrate that TCF7L2 promotes metastasis in ccRCC. Mechanistic investigations reveal that HIF2α stabilizes TCF7L2 mRNA in a method based on m6A by transcriptionally regulating METTL3. Up-regulation of TCF7L2 enhances cellular fatty acid oxidation, which promotes histone acetylation. This facilitates the transcription of genes connected to epithelial-mesenchymal transition and ultimately enhances metastasis of ccRCC. These outcomes offer a novel understanding into the involvement of lipid metabolism in the signaling pathway regulation, offering valuable implications for targeted treatment in ccRCC.

16.
Food Chem ; 424: 136380, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37201471

RESUMO

This study explored the effect of yolk sphere on gel state and taste differences between whole boiled egg yolk (WBEY) and stirred boiled egg yolks (SBEYs). Optical microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM) indicated that the WBEY was formed via the accumulation of yolk spheres, whereas the SBEY was a gel with a tight and ordered microstructure. The stirring disrupted the yolk sphere structure, leading to a homogeneous distribution of proteins and lipids in SBEYs, and a cross-linked network in gel was established with higher hardness and springiness. In the oral sensation simulation, WBEY had a higher saliva adsorption capacity and frictional force to oral soft tissue during swallowing than SBEY. This work contributes to a deeper understanding of the gel structure and taste of egg yolk, and provides a theoretical basis for the research on the formation of the gritty taste of egg yolks.


Assuntos
Gema de Ovo , Ovos , Animais , Citoplasma , Gema de Ovo/química , Microscopia Eletrônica de Varredura , Sensação
17.
Cell Death Dis ; 14(8): 560, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626050

RESUMO

Metabolic reprogramming is a hallmark of cancer, and the impact of lipid metabolism as a crucial aspect of metabolic reprogramming on clear cell renal cell carcinoma (ccRCC) progression has been established. However, the regulatory mechanisms underlying the relationship between metabolic abnormalities and ccRCC progression remain unclear. Therefore, this study aimed to identify key regulatory factors of metabolic reprogramming in ccRCC and provide potential therapeutic targets for ccRCC patients. Potential metabolic regulatory factors in ccRCC were screened using bioinformatics analysis. Public databases and patient samples were used to investigate the aberrant expression of Oxoglutarate dehydrogenase-like (OGDHL) in ccRCC. The function of OGDHL in ccRCC growth and metastasis was evaluated through in vitro and in vivo functional experiments. Mechanistic insights were obtained through luciferase reporter assays, chromatin immunoprecipitation, RNA methylation immunoprecipitation, and mutagenesis studies. OGDHL mRNA and protein levels were significantly downregulated in ccRCC tissues. Upregulation of OGDHL expression effectively inhibited ccRCC growth and metastasis both in vitro and in vivo. Furthermore, FTO-mediated OGDHL m6A demethylation suppressed its expression in ccRCC. Mechanistically, low levels of OGDHL promoted TFAP2A expression by inhibiting ubiquitination levels, which then bound to the FASN promoter region and transcriptionally activated FASN expression, thereby promoting lipid accumulation and ERK pathway activation. Our findings demonstrate the impact of OGDHL on ccRCC progression and highlight the role of the FTO/OGDHL/TFAP2A/FASN axis in regulating ccRCC lipid metabolism and progression, providing new targets for ccRCC therapy.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Transdução de Sinais , Neoplasias Renais/genética , Lipídeos , Ácido Graxo Sintase Tipo I/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato
18.
Cancer Res ; 83(7): 1016-1030, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36622276

RESUMO

Noncanonical Wnt signaling by WNT5a has oncogenic and tumor suppressive activities, but downstream pathways mediating these specific effects remain to be fully established. In a subset of prostate cancer organoid culture and xenograft models, inhibition of Wnt synthesis stimulated growth, whereas WNT5a or a WNT5a mimetic peptide (Foxy5) markedly suppressed tumor growth. WNT5a caused a ROR2-dependent decrease in YAP1 activity, which was associated with increased phosphorylation of MST1/2, LATS1, MOB1, and YAP1, indicating Hippo pathway activation. Deletion of MST1/2 abrogated the WNT5a response. WNT5a similarly activated Hippo in ROR2-expressing melanoma cells, whereas WNT5a in ROR2-negative cells suppressed Hippo. This suppression was associated with increased inhibitory phosphorylation of NF2/Merlin that was not observed in ROR2-expressing cells. WNT5a also increased mRNA encoding Hippo pathway components including MST1 and MST2 and was positively correlated with these components in prostate cancer clinical datasets. Conversely, ROR2 and WNT5a expression was stimulated by YAP1, and correlated with increased YAP1 activity in clinical datasets, revealing a WNT5a/ROR2 negative feedback loop to modulate YAP1 activity. Together these findings identify Hippo pathway activation as a mechanism that mediates the tumor suppressive effects of WNT5a and indicate that expression of ROR2 may be a predictive biomarker for responsiveness to WNT5a-mimetic drugs. SIGNIFICANCE: WNT5a signaling through ROR2 activates the Hippo pathway to downregulate YAP1/TAZ activity and suppress tumor growth, identifying ROR2 as a potential biomarker to identify patients that could benefit from WNT5a-related agents.


Assuntos
Via de Sinalização Hippo , Neoplasias da Próstata , Masculino , Humanos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais/fisiologia , Proteína Wnt-5a/metabolismo , Fosforilação
19.
Nat Commun ; 14(1): 2430, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105976

RESUMO

C-to-G base editors have been successfully constructed recently, but limited work has been done on concurrent C-to-G and A-to-G base editing. In addition, there is also limited data on how chromatin-associated factors affect the base editing. Here, we test a series of chromatin-associated factors, and chromosomal protein HMGN1 was found to enhance the efficiency of both C-to-G and A-to-G base editing. By fusing HMGN1, GBE and ABE to Cas9, we develop a CRISPR-based dual-function A-to-G and C-to-G base editor (GGBE) which is capable of converting simultaneous A and C to G conversion with substantial editing efficiency. Accordingly, the HMGN1 role shown in this work and the resulting GGBE tool further broaden the genome manipulation capacity of CRISPR-directed base editors.


Assuntos
Edição de Genes , Proteína HMGN1 , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Proteína HMGN1/genética , Cromatina , Genoma , Fatores de Transcrição/genética
20.
Adv Sci (Weinh) ; 10(17): e2207067, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37097629

RESUMO

Tumor-associated macrophage (TAM) infiltration facilitates glioma malignancy, but the underlying mechanisms remain unclear. Herein, it is reported that TAMs secrete exosomal LINC01232 to induce tumor immune escape. Mechanistically, LINC01232 is found to directly bind E2F2 and promote E2F2 entry into the nucleus; the two synergistically promots the transcription of NBR1. The increase in binding between NBR1 binding and the ubiquitinating MHC-I protein through the ubiquitin domain causes an increase in the degradation of MHC-I in autophagolysosomes and a decrease in the expression of MHC-I on the surface of tumor cells, which in turn led to tumor cell escape from CD8+ CTL immune attack. Disruption of E2F2/NBR1/MHC-I signaling with shRNAs or blockade with the corresponding antibodies largely abolishes the tumor-supportive effects of LINC01232 and inhibits tumor growth driven by M2-type macrophages. Importantly, knockdown of LINC01232 enhances the expression of MHC-I on the surface of tumor cells and improves the response to reinfusion with CD8+ T cells. This study reveals the existence of critical molecular crosstalk between TAMs and glioma mediates through the LINC01232/E2F2/NBR1/MHC-I axis to support malignant tumor growth, indicating that targeting this axis may have therapeutic potential.


Assuntos
Glioma , Macrófagos Associados a Tumor , Humanos , Linfócitos T CD8-Positivos , Glioma/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , RNA Longo não Codificante
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa