Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
J Environ Manage ; 356: 120600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547823

RESUMO

The 'extreme' emission abatement during the lockdown (from the end of 2019 to the early 2020) provided an experimental period to investigate the corresponding source-specific effects of aerosol. In this study, the variations of source-specific light absorption (babs) and direct radiative effect (DRE) were obtained during and after the lockdown period by using the artificial neural network (ANN) and source apportionment environmental receptor model. The results showed that the babs decreased for all sources during the two periods. The most reductions were observed with ∼90% for traffic-related emissions (during the lockdown) and ∼85% for coal combustion (after the lockdown), respectively. Heightened babs (370 nm) values were obtained for coal and biomass burning during the lockdown, which was attributed to the enhanced atmospheric oxidization capacity. Nevertheless, the variations of babs (880 nm) after the lockdown was mainly due to the weakening of oxidation and reduced emissions of secondary precursors. The present study indicated that the large-scale emission reduction can promote both reductions of babs (370 nm) and DRE (34-68%) during the lockdown. The primary emissions decrease (e.g., Traffic emission) may enhance atmosphere oxidation, increase the ultraviolet wavelength light absorption and DRE efficiencies. The source-specific emission reduction may be contributed to various radiation effects, which is beneficial for the adopting of control strategies.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Carvão Mineral , Aerossóis/análise , Biomassa , Material Particulado/análise , China
2.
J Environ Sci (China) ; 138: 406-417, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135406

RESUMO

In this study, online water-soluble inorganic ions were detected to deduce the formation mechanism of secondary inorganic aerosol in Xianyang, China during wintertime. The dominant inorganic ions of sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+) (the sum of those is abbreviated as SNA) accounted for 17%, 21%, and 12% of PM2.5 mass, respectively. While the air quality deteriorated from excellent to poor grades, the precursor gas sulfur dioxide (SO2) of SO42- increased and then decreased with a fluctuation, while nitrogen dioxide (NO2) and ammonia (NH3), precursors of NO3- and NH4+, and SNA show increasing trends. Meteorological factors including boundary layer height (BLH), temperature, and wind speed also show decline trends, except relative humidity (RH). Meanwhile, the secondary conversion ratio shows a remarkable increasing trend, indicating that there was a strong secondary transformation. From the perspective of chemical mechanisms, RH is positively correlated with sulfur oxidation ratios (SOR), nitrogen oxidation ratios (NOR), and ammonia conversion ratios, representing that the increase of humidity could promote the generation of SNA. Notably, SOR and NOR were also positively related to the ammonia. On the one hand, the low wind speed and BLH led to the accumulation of pollutants. On the other hand, the increases of RH and ammonia promoted more formations of SNA and PM2.5. The results advance our identification of the contributors to the haze episodes and assist to establish more efficient emission controls in Xianyang, in addition to other cities with similar emission and geographical characteristics.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Amônia , Monitoramento Ambiental , Estações do Ano , China , Nitratos/análise , Nitrogênio , Aerossóis/análise
3.
J Mol Cell Cardiol ; 181: 79-88, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331466

RESUMO

Heart disease continues to be the leading cause of mortality worldwide, primarily attributed to the restricted regenerative potential of the adult human heart following injury. In contrast to their adult counterparts, many neonatal mammals can spontaneously regenerate their myocardium in the first few days of life via extensive proliferation of the pre-existing cardiomyocytes. Reasons for the decline in regenerative capacity during postnatal development, and how to control it, remain largely unexplored. Accumulated evidence suggests that the preservation of regenerative potential depends on a conducive metabolic state in the embryonic and neonatal heart. Along with the postnatal increase in oxygenation and workload, the mammalian heart undergoes a metabolic transition, shifting its primary metabolic substrate from glucose to fatty acids shortly after birth for energy advantage. This metabolic switch causes cardiomyocyte cell-cycle arrest, which is widely regarded as a key mechanism for the loss of regenerative capacity. Beyond energy provision, emerging studies have suggested a link between this intracellular metabolism dynamics and postnatal epigenetic remodeling of the mammalian heart that reshapes the expression of many genes important for cardiomyocyte proliferation and cardiac regeneration, since many epigenetic enzymes utilize kinds of metabolites as obligate cofactors or substrates. This review summarizes the current state of knowledge of metabolism and metabolite-mediated epigenetic modifications in cardiomyocyte proliferation, with a particular focus on highlighting the potential therapeutic targets that hold promise to treat human heart failure via metabolic and epigenetic regulations.


Assuntos
Cardiopatias , Miócitos Cardíacos , Animais , Recém-Nascido , Adulto , Humanos , Miócitos Cardíacos/metabolismo , Coração , Miocárdio/metabolismo , Cardiopatias/metabolismo , Epigênese Genética , Proliferação de Células , Mamíferos
4.
Environ Sci Technol ; 57(23): 8708-8718, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37265070

RESUMO

The molecular composition of organic aerosols in ambient PM2.5 was investigated in an urban area in the Guanzhong basin of northwest China during a severe regional haze episode in the winter of 2018/2019. Organic matter, accounting for 20-35% of PM2.5 mass concentration, was characterized using direct infusion and electrospray ionization coupled with high-resolution Orbitrap mass spectrometry. The number of organic molecular formula assignments was primarily dominated by organosulfur species (OrgS, including CHOS and CHONS) in negative ion mode. The number and peak signal intensity of OrgS distinctly increased during the severe haze episode. Organosulfates and nitrooxy-organosulfates constituted the majority number (72-94%) of OrgS over the entire period. Although the OrgS were mostly present in aliphatic molecular structures, an increase in the number of polycyclic aromatic OrgS on haze days revealed the enhanced contribution from anthropogenic sources. The number of OrgS strongly correlated with ambient relative humidity and the oxidation ratios of sulfur and nitrogen, suggesting the important roles of aqueous phase chemistry and atmospheric oxidation in the formation of OrgS. A thorough understanding of the significance of OrgS will be essential to assess and mitigate the adverse impacts of haze pollution.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , China , Poluição Ambiental/análise , Estações do Ano , Aerossóis/análise , Material Particulado/análise
5.
Proc Natl Acad Sci U S A ; 117(52): 33005-33010, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33323486

RESUMO

Anthropogenic combustion-derived water (CDW) may accumulate in an airshed due to stagnant air, which may further enhance the formation of secondary aerosols and worsen air quality. Here we collected three-winter-season, hourly resolution, water-vapor stable H and O isotope compositions together with atmospheric physical and chemical data from the city of Xi'an, located in the Guanzhong Basin (GZB) in northwestern China, to elucidate the role of CDW in particulate pollution. Based on our experimentally determined water vapor isotope composition of the CDW for individual and weighted fuels in the basin, we found that CDW constitutes 6.2% of the atmospheric moisture on average and its fraction is positively correlated with [PM2.5] (concentration of particulate matter with an aerodynamic diameter less than 2.5 µm) as well as relative humidity during the periods of rising [PM2.5]. Our modeling results showed that CDW added additional average 4.6 µg m-3 PM2.5 during severely polluted conditions in the GZB, which corresponded to an average 5.1% of local anthropogenic [PM2.5] (average at ∼91.0 µg m-3). Our result is consistent with the proposed positive feedback between the relative humidity and a moisture sensitive air-pollution condition, alerting to the nontrivial role of CDW when considering change of energy structure such as a massive coal-to-gas switch in household heating in winter.

6.
Proc Natl Acad Sci U S A ; 117(10): 5184-5189, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094170

RESUMO

Wildfire can influence climate directly and indirectly, but little is known about the relationships between wildfire and climate during the Quaternary, especially how wildfire patterns varied over glacial-interglacial cycles. Here, we present a high-resolution soot record from the Chinese Loess Plateau; this is a record of large-scale, high-intensity fires over the past 2.6 My. We observed a unique and distinct glacial-interglacial cyclicity of soot over the entire Quaternary Period synchronous with marine δ18O and dust records, which suggests that ice-volume-modulated aridity controlled wildfire occurrences, soot production, and dust fluxes in central Asia. The high-intensity fires were also found to be anticorrelated with global atmospheric CO2 records over the past eight glacial-interglacial cycles, implying a possible connection between the fires, dust, and climate mediated through the iron cycle. The significance of this hypothetical connection remains to be determined, but the relationships revealed in this study hint at the potential importance of wildfire for the global climate system.

7.
J Environ Sci (China) ; 127: 210-221, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522054

RESUMO

Mineral dust is an important type of ice nucleating particles in the troposphere; however, the effects of heterogeneous reactions on ice nucleation (IN) activities of mineral dust remain to be elucidated. A droplet-freezing apparatus (Guangzhou Institute of Geochemistry Ice Nucleation Apparatus, GIGINA) was developed in this work to measure IN activities of atmospheric particles in the immersion freezing mode, and its performance was validated by a series of experimental characterizations. This apparatus was then employed to measure IN activities of feldspar and Arizona Test Dust (ATD) particles before and after heterogeneous reaction with NO2 (10±0.5 ppmv) at 40% relative humidity. The surface coverage of nitrate, θ(NO3-), increased to 3.1±0.2 for feldspar after reaction with NO2 for 6 hr, and meanwhile the active site density per unit surface area (ns) at -20°C was reduced from 92±5 to <1.0 cm-2 by about two orders of magnitude; however, no changes in nitrate content or IN activities were observed for further increase in reaction time (up to 24 hr). Both nitrate content and IN activities changed continuously with reaction time (up to 24 hr) for ATD particles; after reaction with NO2 for 24 hr, θ(NO3-) increased to 1.4±0.1 and ns at -20°C was reduced from 20±4 to 9.7±1.9 cm-2 by a factor of ∼2. Our work suggests that heterogeneous reaction with NO2, an abundant reactive nitrogen species in the troposphere, may significantly reduce IN activities of mineral dust in the immersion freezing mode.

8.
Environ Res ; 209: 112800, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35085566

RESUMO

In recent years, carbon quantum dots (CQDs) and CdIn2S4 have considered as the representatives of the most potential photocatalysts applied in the field of photocatalysis for efficiently solving energy shortage and environmental pollution. In this work, a novel CQDs hybridized CdIn2S4 (CQDs/CIS) heterostructure with 2D nanosheet/3D nanooctahedra morphology was successfully fabricated by a simple in-situ solvothermal method. Most interestingly, the morphology of hybrid gradually evolved from 3D octahedron to 2D nanosheet with the increase of CQDs. This unique 2D/3D structure and synergistic effect between CQDs and CdIn2S4 increased the multi-dimensional active reaction sites and enhanced the quantum yield and the separation efficiency of photogenerated electron pairs. Therefore, CQDs/CIS hybrids showed excellent photocatalytic activities of H2 generation, RhB and TCH degradation. Especially, CQDs/CIS-3 heterostructure presented the highest photocatalytic efficiency and its hydrogen generation activity (956.79 µmol g-1 h-1) was 7.57-fold improvement by contrast with pure CdIn2S4 (126.35 µmol g-1 h-1). Moreover, RhB and TCH degradation rate constants of CQDs/CIS-3 were about 8.14 and 2.32 times higher than those of CdIn2S4, respectively. Furthermore, the effect of CQDs on the evolution of heterostructure morphology and photocatalytic mechanism were also proposed. This research work would offer useful enlightenment for elucidating the affect of CQDs on the morphology evolution and construction of CQDs-based hybrid with excellent performances for H2 production and pollutant removal.


Assuntos
Poluentes Ambientais , Pontos Quânticos , Carbono , Catálise , Hidrogênio , Pontos Quânticos/química
9.
Environ Res ; 212(Pt C): 113357, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35580669

RESUMO

A vehicular emission study was conducted in the longest inner-city tunnel in Xi'an, northwestern China in four time periods (I: 07:30-10:30, II: 11:00-14:00, III: 16:30-19:30, and IV: 20:00-23:00 LST). A sum of 40 PAHs, including parent (p-PAHs), alkylated (a-PAHs), and oxygenated (o-PAHs) in fine particulate matter (PM2.5) were quantified. The relationships between the PAHs and the formation of reactive oxygen species (ROS) were also studied. The average total quantified PAHs concentration was 236.3 ± 48.3 ng m-3. The p-PAHs were found to be the most dominated group, accounting for an average of 88.1% of the total quantified PAHs, followed by a-PAHs (6.1%) and o-PAHs (5.8%). On the base of the number of aromatic rings, the groups of ≤5 rings (92.5 ± 1.2%) had higher fractions than the high ones (≥6 rings, 7.5 ± 1.2%) for pPAHs. Diurnal variations of PAHs subgroups exhibited the highest levels in Period III, consistent with the largest traffic counts in evening rush hours. However, less reduction of few PAHs in the night period demonstrates that the emissions of compressed natural gas (CNG) and methanol-fueled vehicles cannot be ignored while their contribution increased. High ROS activity levels were observed in the traffic-dominated samples, implying the potential oxidative damages to humans. Additionally, diurnal variation of the ROS activity was consistent with the total quantified PAHs and toxic equivalency of benzo[a]pyrene. Good correlations (R > 0.6, p < 0.05) were seen between individual groups of PAHs (especially for 3-5 rings p-PAHs, 4 rings a-PAHs, and 2-3 rings o-PAHs) and ROS activity, supporting that the vehicular emitted PAHs possibly initiate oxidative stress. The multiple linear regression analysis further illustrated that chrysene contributed the highest (25.0%) to ROS activity. In addition to highlighting the potential hazards to the PAHs from the vehicular emission, their roles to mitigate the health effects by formations of ROS were firstly reported in northwestern China.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , China , Monitoramento Ambiental , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Espécies Reativas de Oxigênio/análise , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
10.
Environ Res ; 210: 112936, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35181303

RESUMO

The implementation of air pollution control measures could alter the compositions of submicron aerosols. Identifying the changes can evaluate the atmospheric responses of the implemented control measures and provide more scientific basis for the formulation of new measures. The Fen-Wei River Basin is the most air polluted region in China, and thereby is a key area for the reduction of emissions. Only limited studies determine the changes in the chemical compositions of submicron aerosols. In this study, Baoji was selected as a representative city in the Fen-Wei River Basin. The compositions of submicron aerosols were determined between 2014 and 2019. Organic fractions were determined through an online instrument (Quadrupole Aerosol Chemical Speciation Monitor, Q-ACSM) and source recognition was performed by the Multilinear Engine (ME-2). The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was also employed to evaluate the contributions of emissions reduction and meteorological conditions to the changes of submicron aerosol compositions. The results indicate that the mass concentrations of submicron aerosols have been substantially decreased after implementation of air pollution control measures. This was mainly attributed to the emission reductions of sulfur dioxide (SO2) and primary organic aerosol (POA). In addition, the main components that drove the pollution episodes swapped from POA, sulfate, nitrate and less-oxidized organic (LO-OOA) in 2014 to nitrate and more-oxidized OOA (MO-OOA) in 2019. Due to the changes of chemical compositions of both precursors and secondary pollutants, the pollution control measures should be modernized to focus on the emissions of ammonia (NH3), nitrogen oxides (NOx) and volatile organic compounds (VOCs) in this region.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , China , Monitoramento Ambiental/métodos , Nitratos , Óxidos de Nitrogênio/análise , Material Particulado/análise , Rios
11.
Appl Microbiol Biotechnol ; 106(5-6): 2207-2218, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35218386

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19) continues to threaten public health. For developing countries where vaccines are still in shortage, cheaper alternative molecular methods for SARS-CoV-2 identification can be crucial to prevent the next wave. Therefore, 14 primer sets recommended by the World Health Organization (WHO) was evaluated on testing both clinical patient and environmental samples with the gold standard diagnosis method, TaqMan-based RT-qPCR, and a cheaper alternative method, SYBR Green-based RT-qPCR. Using suitable primer sets, such as ORF1ab, 2019_nCoV_N1 and 2019_nCoV_N3, the performance of the SYBR Green approach was comparable or better than the TaqMan approach, even when considering the newly dominating or emerging variants, including Delta, Eta, Kappa, Lambda, Mu, and Omicron. ORF1ab and 2019_nCoV_N3 were the best combination for sensitive and reliable SARS-CoV-2 molecular diagnostics due to their high sensitivity, specificity, and broad accessibility. KEY POINTS: • With suitable primer sets, the SYBR Green method performs better than the TaqMan one. • With suitable primer sets, both methods should still detect the new variants well. • ORF1ab and 2019_nCoV_N3 were the best combination for SARS-CoV-2 detection.


Assuntos
COVID-19 , SARS-CoV-2 , Benzotiazóis , COVID-19/diagnóstico , Diaminas , Humanos , Quinolinas , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , Sensibilidade e Especificidade
12.
J Environ Manage ; 320: 115822, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35933878

RESUMO

Residential solid fuel combustion (RSFC) is an important source of PM2.5. Here we investigate the cytotoxicity of primarily emitted and photochemically aged PM2.5 to A549 cells. Owing to the formation of water-soluble ions and organics (e.g., oPAHs and nPAHs), emission factors of PM2.5 were increased by 44.4% on average after 7-day equivalent photochemical aging, which greatly altered chemical profiles of freshly emitted PM2.5. Consequently, the cytotoxicity varied with aging duration that 2-day and 7-day aged PM2.5 induced 22.5% and 35.1%, respectively, higher levels of reactive oxygen species than primary emissions. Similar increases were also observed for multi-cytotoxicity. Correlation analysis and western blot results collectively confirmed HO-1/Nrf-2 signaling pathway dominated the cytotoxicity of aged PM2.5 from RSFC, which was regulated by the enhanced o-PAHs and n-PAHs during photochemical aging. Thus, aged and secondary aerosol exposure needs to be paid more attention due to the enhanced cytotoxicity and the vast crowd involved.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , China , Monitoramento Ambiental/métodos , Calefação , Humanos , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
13.
Eur Radiol ; 31(12): 9131-9138, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34109487

RESUMO

OBJECTIVE: To predict early intracerebral haemorrhage expansion (HE) by comprehensive evaluation of commonly used noncontrast computed tomography (NCCT) features. METHODS: Two hundred eighty-eight patients who had a spontaneous intracerebral haemorrhage (ICH) were included. All of the patients had undergone baseline NCCT within 6 h after ICH symptom onset. Ten NCCT features were extracted. Univariate analysis and multivariable logistic regression analysis were used to select the features. Using the finally selected features, a logistic regression model was built with a training cohort (n = 202) and subsequently validated in an independent test cohort (n = 86). Additionally, stratification analysis was performed in cases with and without anticoagulant therapy. RESULTS: HE was found in 78 patients (27.1%). The blend sign and black hole sign were finally selected. The logistic regression model built with the two features exhibited accuracies of 76.7% and 75.6%, specificities of 98.6% and 98.4%, and positive predictive values (PPVs) of 83.3% and 75.0% for the training and test cohorts, respectively. The model also showed specificities of 100% and 98.5% and PPVs of 100% and 76.9% for the anticoagulant and non-anticoagulant drug use groups, respectively. These performances were better than those of each of the separate features. CONCLUSIONS: By comprehensive evaluation, the model comprising the blend sign and black hole sign showed good performance for predicting early intracerebral haemorrhage expansion, particularly for high specificity and PPV, regardless of the anticoagulant status. KEY POINTS: • Early identification of patients who are more likely to have haematoma expansion is important for therapeutic intervention. • Many radiological features have been reported to correlate with intracerebral haemorrhage expansion. • By integrating only the blend sign and black hole sign, the logistic regression model showed good performance for predicting early intracerebral haemorrhage expansion.


Assuntos
Hemorragia Cerebral , Hematoma , Hemorragia Cerebral/diagnóstico por imagem , Progressão da Doença , Humanos , Valor Preditivo dos Testes , Tomografia Computadorizada por Raios X
14.
J Environ Manage ; 284: 112071, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33561762

RESUMO

The State Council of China had issued the Air Pollution Prevention and Control Action Plan (abbreviated as "Clean Air Actions"), which ended in 2017. To evaluate the implementation effect of the clean air actions and provide the scientific basis on the future control policy, a Geographical Detector was used to quantify the impact of natural and socioeconomic factors on the PM2.5 concentration and its reductions in China from the years of 2014-2017. In terms of the impact on PM2.5 reduction, the industrial sulfur dioxide (SO2) and industrial soot emissions are the only two factors shown significant influences. So the controls of industrial emission were the major policies during the implementation of the Clean Air Actions. In terms of the impact on the PM2.5 concentrations, industrial emission was the strongest socioeconomic factor in the beginning of the Clean Air Actions, but its dominance was then declining. In contrast, the influences of population density had been enhancing and became the greatest factor in the final year. So the new control measures should focus on the urbanization regulation. In addition, the interactions between different socioeconomic factors are proved to bivariate enhance the influences on the PM2.5 concentration levels. Multiple factors should thus be taken into account when any new control policies are going to be established.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , China , Monitoramento Ambiental , Material Particulado/análise , Fatores Socioeconômicos
15.
Small ; 16(30): e2001428, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32578379

RESUMO

Among all typical transition-metal dichalcogenides (TMDs), the bandgap of α-MoTe2 is smallest and is close to that of conventional 3D Si. The properties of α-MoTe2 make it a favorable candidate for future electronic devices. Even though there are a few reports regarding fabrication of complementary metal-oxide-semiconductor (CMOS) inverters or p-n junction by controlling the charge-carrier polarity of TMDs, the fabrication process is complicated. Here, a straightforward selective doping technique is demonstrated to fabricate a 2D p-n junction diode and CMOS inverter on a single α-MoTe2 nanoflake. The n-doped channel of a single α-MoTe2 nanoflake is selectively converted to a p-doped region via laser-irradiation-induced MoOx doping. The homogeneous 2D MoTe2 CMOS inverter has a high DC voltage gain of 28, desirable noise margin (NMH = 0.52 VDD , NML = 0.40 VDD ), and an AC gain of 4 at 10 kHz. The results show that the doping technique by laser scan can be potentially used for future larger-scale MoTe2 CMOS circuits.

16.
Langmuir ; 36(26): 7289-7295, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32513008

RESUMO

Giant surfactants have been identified as good candidates to produce sub-10 nm elaborate nanostructures, which could potentially realize complex functions in nanofabrication fields. Our theoretical simulation demonstrates the formation of open layered (pupa-like micelles) and closed layered (onion-like micelles) nanostructures, self-assembled from giant surfactants with comparably sized hydrophilic heads tethered by oligomers in solution. Directed by these simulation results, we synthesized giant surfactants consisting of hydrophilic [60]fullerene heads and oligostyrene (OS7) tails and produced the predicted nanostructures with periods of 9.5, 8.3, and 7.5 nm, experimentally. Adjusting the polarity of the solvent and corresponding concentration changed the nanostructures from onion-like micelles with closed layers to pupa-like micelles with open layers. The different morphologies and periods were caused by solvent inclusion and the overlap of OS chains. The above layered nanostructures remained stable after annealing at 120 °C. This work provides insights that computer simulation can play an important role in assisting the design and construction of complicated nanostructures in giant surfactant systems.

17.
Environ Sci Technol ; 54(7): 3803-3813, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32150391

RESUMO

Brown carbon (BrC), an aerosol carbonaceous matter component, impacts atmospheric radiation and global climate because of its absorption in the near-ultraviolet-visible region. Simultaneous air sampling was conducted in two megacities of Xi'an (northern) and Hong Kong (southern) in China in winter of 2016-2017. The aim of this study is to determine and characterize the BrC compounds in collected filter samples. Characteristic absorption peaks corresponding to aromatic C-C stretching bands, organo-nitrates, and C═O functional groups were seen in spectra of Xi'an samples, suggesting that the BrC was derived from freshly smoldering biomass and coal combustion as well as aqueous formation of anthropogenic secondary organic carbon. In Hong Kong, the light absorption of secondary BrC accounted for 76% of the total absorbances of BrC. The high abundance of strong C═O groups, biogenic volatile organic compounds (BVOCs) and atmospheric oxidants suggest secondary BrC was likely formed from photochemical oxidation of BVOCs in Hong Kong. Several representative BrC molecular markers were detected using Fourier transform ion cyclotron resonance mass spectrometry and their absorption properties were simulated by quantum chemistry. The results demonstrate that light absorption capacities of secondary anthropogenic BrC with nitro-functional groups were stronger than those of biogenic secondary BrC and anthropogenic primary BrC.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis , China , Cidades , Carvão Mineral , Monitoramento Ambiental , Hong Kong , Material Particulado
18.
BMC Cardiovasc Disord ; 20(1): 74, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046637

RESUMO

BACKGROUND: Arrhythmogenic cardiomyopathy (AC) is one of the leading causes for sudden cardiac death (SCD). Recent studies have identified mutations in cardiac desmosomes as key players in the pathogenesis of AC. However, the specific etiology in individual families remains largely unknown. METHODS: A 4-generation family presenting with syncope, lethal ventricular arrhythmia and SCD was recruited. Targeted next generation sequencing (NGS) was performed and validated by Sanger sequencing. Plasmids containing the mutation and wild type (WT) were constructed. Real-time PCR, western-blot and immunofluorescence were performed to detect the functional change due to the mutation. RESULTS: The proband, a 56-year-old female, presented with recurrent palpitations and syncope. An ICD was implanted due to her family history of SCD/ aborted SCD. NGS revealed a novel heterozygous frame-shift variant (c.832delG) in Desmoplakin (DSP) among 5 family members. The variant led to frame-shift and premature termination, producing a truncated protein. Cardiac magnetic resonance (CMR) of the family members carrying the same variant shown myocardium thinning and fatty infiltration in the right ventricular, positive bi-ventricular late gadolinium enhancement and severe RV dysfunction, fulfilling the diagnostic criteria of AC. HEK293T cells transfected with mutant plasmids expressed truncated DSP mRNA and protein, upregulation of nuclear junction plakoglobin (JUP) and downregulation of ß-catenin, when compared with WT. CONCLUSION: We infer that the novel c.832delG variant in DSP was associated with AC in this family, likely through Wnt/ß-catenin signaling pathway.


Assuntos
Arritmias Cardíacas/genética , Cardiomiopatias/genética , Análise Mutacional de DNA , Desmoplaquinas/genética , Mutação da Fase de Leitura , Sequenciamento de Nucleotídeos em Larga Escala , Adolescente , Adulto , Idoso de 80 Anos ou mais , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Morte Súbita Cardíaca/etiologia , Desmoplaquinas/metabolismo , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Valor Preditivo dos Testes , Função Ventricular Direita/genética , Adulto Jovem , beta Catenina/metabolismo , gama Catenina/metabolismo
19.
Nanotechnology ; 30(50): 505303, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31509803

RESUMO

Ultralow-temperature sintering plays a vital role in the development of flexible printed electronics, which improves flexibility and reduces energy consumption. This study investigates the ultralow-temperature sintering of large-sized silver nanoparticles (Ag NPs) by laser modification of the substrate surface. Ag NPs in conductive ink were sintered at only 60 °C. Designing the appropriate size of modified regions, the sintered Ag layer exhibits a sheet resistance of only 0.274 Ω and withstands 10 000 folding cycles. Energy-dispersive x-ray spectroscopy showed that TiO2 formed by laser ablation promotes the sintering of Ag NPs and joining with the substrate. A paper-based flexible integrated circuit board was also prepared.

20.
Environ Sci Technol ; 53(21): 12389-12397, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31553592

RESUMO

The light-absorbing properties of atmospheric brown carbon (BrC) are poorly understood due to its complex chemical composition. Here, a black-carbon-tracer method was coupled with source apportionments of organic aerosol (OA) to explore the light-absorbing properties of primary and secondary BrC from the North China Plain (NCP). Primary emissions of BrC contributed more to OA light absorption than secondary processes, and biomass burning OA accounted for 60% of primary BrC absorption at λ = 370 nm, followed by coal combustion OA (35%) and hydrocarbon-like OA (5%). Secondary BrC absorption was high in the early morning and later decreased due to the bleaching of chromophores. Nighttime aqueous-phase chemistry promoted the formation of secondary light-absorbing compounds and the production of strongly absorbing particles. Source analysis showed that the NCP region was the most important source for primary and secondary BrC subtypes at the study site. The mean direct radiative forcing for BrC was 0.15 W m-2 (0.11 W m-2 and 0.04 W m-2 for the primary and secondary fractions, respectively). This study provides new information on the optical properties of primary and secondary BrC and highlights the importance of atmospheric oxidation on BrC absorption.


Assuntos
Carbono , Água , Aerossóis , Biomassa , China
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa