Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cell ; 181(4): 936-953.e20, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32386544

RESUMO

Recent large-scale collaborations are generating major surveys of cell types and connections in the mouse brain, collecting large amounts of data across modalities, spatial scales, and brain areas. Successful integration of these data requires a standard 3D reference atlas. Here, we present the Allen Mouse Brain Common Coordinate Framework (CCFv3) as such a resource. We constructed an average template brain at 10 µm voxel resolution by interpolating high resolution in-plane serial two-photon tomography images with 100 µm z-sampling from 1,675 young adult C57BL/6J mice. Then, using multimodal reference data, we parcellated the entire brain directly in 3D, labeling every voxel with a brain structure spanning 43 isocortical areas and their layers, 329 subcortical gray matter structures, 81 fiber tracts, and 8 ventricular structures. CCFv3 can be used to analyze, visualize, and integrate multimodal and multiscale datasets in 3D and is openly accessible (https://atlas.brain-map.org/).


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Animais , Atlas como Assunto , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Nature ; 598(7879): 174-181, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616072

RESUMO

Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.


Assuntos
Encéfalo/citologia , Forma Celular , Neurônios/classificação , Neurônios/metabolismo , Análise de Célula Única , Atlas como Assunto , Biomarcadores/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/embriologia , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neocórtex/anatomia & histologia , Neocórtex/citologia , Neocórtex/embriologia , Neocórtex/metabolismo , Neurogênese , Neuroglia/citologia , Neurônios/citologia , RNA-Seq , Reprodutibilidade dos Testes
3.
Nature ; 598(7879): 159-166, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616071

RESUMO

An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted1. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization. We defined around two dozen projection neuron types in the MOp-ul and derived an input-output wiring diagram, which will facilitate future analyses of motor control circuitry across molecular, cellular and system levels. This work provides a roadmap towards a comprehensive cellular-resolution description of mammalian brain architecture.


Assuntos
Córtex Motor/anatomia & histologia , Córtex Motor/citologia , Neurônios/classificação , Animais , Atlas como Assunto , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Glutamatos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroimagem , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Análise de Sequência de RNA , Análise de Célula Única
4.
Nature ; 575(7781): 195-202, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666704

RESUMO

The mammalian cortex is a laminar structure containing many areas and cell types that are densely interconnected in complex ways, and for which generalizable principles of organization remain mostly unknown. Here we describe a major expansion of the Allen Mouse Brain Connectivity Atlas resource1, involving around a thousand new tracer experiments in the cortex and its main satellite structure, the thalamus. We used Cre driver lines (mice expressing Cre recombinase) to comprehensively and selectively label brain-wide connections by layer and class of projection neuron. Through observations of axon termination patterns, we have derived a set of generalized anatomical rules to describe corticocortical, thalamocortical and corticothalamic projections. We have built a model to assign connection patterns between areas as either feedforward or feedback, and generated testable predictions of hierarchical positions for individual cortical and thalamic areas and for cortical network modules. Our results show that cell-class-specific connections are organized in a shallow hierarchy within the mouse corticothalamic network.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/citologia , Vias Neurais/anatomia & histologia , Vias Neurais/citologia , Tálamo/anatomia & histologia , Tálamo/citologia , Animais , Axônios/fisiologia , Córtex Cerebral/fisiologia , Feminino , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Tálamo/fisiologia
5.
Mol Ther ; 32(6): 1917-1933, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38637990

RESUMO

Cancer immunotherapy has greatly improved the prognosis of tumor-bearing patients. Nevertheless, cancer patients exhibit low response rates to current immunotherapy drugs, such as PD1 and PDL1 antibodies. Cyclic dinucleotide analogs are a promising class of immunotherapeutic agents. In this study, in situ autologous tumor vaccines, composed of bis-2'-F-cGSASMP phosphonothioate isomers (FGA-di-pS-2 or FGA-di-pS-4) and cytidinyl/cationic lipids (Mix), were constructed. Intravenous and intratumoral injection of FGA-di-pS-2/Mix or FGA-di-pS-4/Mix enhanced the immunogenic cell death of tumor cells in vivo, leading to the exposure and presentation of whole tumor antigens, inhibiting tumor growth in both LLC and EO771 tumor in situ murine models and increasing their survival rates to 50% and 23%, respectively. Furthermore, the tumor-bearing mice after treatment showed potent immune memory efficacy and exhibited 100% protection against tumor rechallenge. Intravenous administration of FGA-di-pS-2/Mix potently promoted DC maturation, M1 macrophage polarization and CD8+ T cell activation and decreased the proportion of Treg cells in the tumor microenvironment. Notably, two doses of ICD-debris (generated by FGA-di-pS-2 or 4/Mix-treated LLC cells) protected 100% of mice from tumor growth. These tumor vaccines showed promising results and may serve as personalized cancer vaccinations in the future.


Assuntos
Vacinas Anticâncer , Imunoterapia , Animais , Camundongos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Imunoterapia/métodos , Linhagem Celular Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Células Dendríticas/imunologia , Feminino , Antígenos de Neoplasias/imunologia
6.
J Neurosci ; 41(22): 4809-4825, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33849948

RESUMO

The postrhinal area (POR) is a known center for integrating spatial with nonspatial visual information and a possible hub for influencing landmark navigation by affective input from the amygdala. This may involve specific circuits within muscarinic acetylcholine receptor 2 (M2)-positive (M2+) or M2- modules of POR that associate inputs from the thalamus, cortex, and amygdala, and send outputs to the entorhinal cortex. Using anterograde and retrograde labeling with conventional and viral tracers in male and female mice, we found that all higher visual areas of the ventral cortical stream project to the amygdala, while such inputs are absent from primary visual cortex and dorsal stream areas. Unexpectedly for the presumed salt-and-pepper organization of mouse extrastriate cortex, tracing results show that inputs from the dorsal lateral geniculate nucleus and lateral posterior nucleus were spatially clustered in layer 1 (L1) and overlapped with M2+ patches of POR. In contrast, input from the amygdala to L1 of POR terminated in M2- interpatches. Importantly, the amygdalocortical input to M2- interpatches in L1 overlapped preferentially with spatially clustered apical dendrites of POR neurons projecting to amygdala and entorhinal area lateral, medial (ENTm). The results suggest that subnetworks in POR, used to build spatial maps for navigation, do not receive direct thalamocortical M2+ patch-targeting inputs. Instead, they involve local networks of M2- interpatches, which are influenced by affective information from the amygdala and project to ENTm, whose cells respond to visual landmark cues for navigation.SIGNIFICANCE STATEMENT A central purpose of visual object recognition is identifying the salience of objects and approaching or avoiding them. However, it is not currently known how the visual cortex integrates the multiple streams of information, including affective and navigational cues, which are required to accomplish this task. We find that in a higher visual area, the postrhinal cortex, the cortical sheet is divided into interdigitating modules receiving distinct inputs from visual and emotion-related sources. One of these modules is preferentially connected with the amygdala and provides outputs to entorhinal cortex, constituting a processing stream that may assign emotional salience to objects and landmarks for the guidance of goal-directed navigation.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Entorrinal/fisiologia , Vias Neurais/fisiologia , Navegação Espacial/fisiologia , Córtex Visual/fisiologia , Animais , Córtex Entorrinal/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Córtex Visual/citologia
7.
Nature ; 508(7495): 207-14, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24695228

RESUMO

Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/citologia , Conectoma , Animais , Atlas como Assunto , Axônios/fisiologia , Córtex Cerebral/citologia , Corpo Estriado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Técnicas de Rastreamento Neuroanatômico , Tálamo/citologia
8.
PLoS Comput Biol ; 14(11): e1006535, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30419013

RESUMO

Despite advances in experimental techniques and accumulation of large datasets concerning the composition and properties of the cortex, quantitative modeling of cortical circuits under in-vivo-like conditions remains challenging. Here we report and publicly release a biophysically detailed circuit model of layer 4 in the mouse primary visual cortex, receiving thalamo-cortical visual inputs. The 45,000-neuron model was subjected to a battery of visual stimuli, and results were compared to published work and new in vivo experiments. Simulations reproduced a variety of observations, including effects of optogenetic perturbations. Critical to the agreement between responses in silico and in vivo were the rules of functional synaptic connectivity between neurons. Interestingly, after extreme simplification the model still performed satisfactorily on many measurements, although quantitative agreement with experiments suffered. These results emphasize the importance of functional rules of cortical wiring and enable a next generation of data-driven models of in vivo neural activity and computations.


Assuntos
Córtex Visual/fisiologia , Animais , Simulação por Computador , Camundongos , Modelos Neurológicos , Neurônios/metabolismo , Sinapses/metabolismo , Tálamo/fisiologia , Córtex Visual/citologia
9.
Cereb Cortex ; 27(4): 2708-2726, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27114175

RESUMO

Two distinct areas along the ventral visual stream of monkeys, the primary visual (V1) and inferior temporal (TE) cortices, exhibit different projection patterns of intrinsic horizontal axons with patchy terminal fields in adult animals. The differences between the patches in these 2 areas may reflect differences in cortical representation and processing of visual information. We studied the postnatal development of patches by injecting an anterograde tracer into TE and V1 in monkeys of various ages. At 1 week of age, labeled patches with distribution patterns reminiscent of those in adults were already present in both areas. The labeling intensity of patches decayed exponentially with projection distance in monkeys of all ages in both areas, but this trend was far less evident in TE. The number and extent of patches gradually decreased with age in V1, but not in TE. In V1, axonal and bouton densities increased postnatally only in patches with short projection distances, whereas in TE this density change occurred in patches with various projection distances. Thus, patches with area-specific distribution patterns are formed early in life, and area-specific postnatal developmental processes shape the connectivity of patches into adulthood.


Assuntos
Axônios , Vias Neurais/crescimento & desenvolvimento , Neurogênese , Lobo Temporal/crescimento & desenvolvimento , Córtex Visual/crescimento & desenvolvimento , Animais , Macaca
10.
PLoS Comput Biol ; 12(7): e1004975, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27415801

RESUMO

Fungal infection has become one of the leading causes of hospital-acquired infections with high mortality rates. Furthermore, drug resistance is common for fungus-causing diseases. Synergistic drug combinations could provide an effective strategy to overcome drug resistance. Meanwhile, synergistic drug combinations can increase treatment efficacy and decrease drug dosage to avoid toxicity. Therefore, computational prediction of synergistic drug combinations for fungus-causing diseases becomes attractive. In this study, we proposed similar nature of drug combinations: principal drugs which obtain synergistic effect with similar adjuvant drugs are often similar and vice versa. Furthermore, we developed a novel algorithm termed Network-based Laplacian regularized Least Square Synergistic drug combination prediction (NLLSS) to predict potential synergistic drug combinations by integrating different kinds of information such as known synergistic drug combinations, drug-target interactions, and drug chemical structures. We applied NLLSS to predict antifungal synergistic drug combinations and showed that it achieved excellent performance both in terms of cross validation and independent prediction. Finally, we performed biological experiments for fungal pathogen Candida albicans to confirm 7 out of 13 predicted antifungal synergistic drug combinations. NLLSS provides an efficient strategy to identify potential synergistic antifungal combinations.


Assuntos
Biologia Computacional/métodos , Combinação de Medicamentos , Sinergismo Farmacológico , Modelos Teóricos , Antifúngicos/farmacologia , Candida albicans , Humanos , Aprendizado de Máquina Supervisionado
11.
Bioorg Med Chem Lett ; 25(7): 1464-70, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25748161

RESUMO

Autophagy is defined as an evolutionarily conserved process responsible for degradation of the cytoplasmic components including protein aggregates via the lysosomal machinery. Increasing evidence has linked defective autophagic degradation of protein aggregates with the pathogenesis of neurodegenerative disorders, and it is suggested that promotion of autophagy is regarded as a potential therapeutic for these diseases including Parkinson's disease (PD). Here we identified, 3-anhydro-6-hydroxy-ophiobolin A (X15-2), an ophiobolin derivative from Bipolaris oryzae that can strongly induce autophagic degradation of α-synuclein, the major constituent of Lewy bodies. We showed that X15-2 induced autophagy is dependent on both Beclin1 and Beclin2. Knockout of ATG5 by CRISPER/Cas9 prevented X15-2 induced autophagy and degradation of α-synuclein. Mechanistically, we showed that X15-2 induces ROS and the activation of JNK signaling for the autophagic degradation of α-synuclein in PC12 cells.


Assuntos
Ascomicetos/química , Autofagia/efeitos dos fármacos , Modificação Traducional de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Sesterterpenos/farmacologia , alfa-Sinucleína/metabolismo , Animais , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Conformação Molecular , Células PC12 , Ratos , Sesterterpenos/química , Sesterterpenos/isolamento & purificação , Relação Estrutura-Atividade
12.
J Neurosci ; 33(4): 1696-705, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23345242

RESUMO

Previous studies of intracortical connections in mouse visual cortex have revealed two subnetworks that resemble the dorsal and ventral streams in primates. Although calcium imaging studies have shown that many areas of the ventral stream have high spatial acuity whereas areas of the dorsal stream are highly sensitive for transient visual stimuli, there are some functional inconsistencies that challenge a simple grouping into "what/perception" and "where/action" streams known in primates. The superior colliculus (SC) is a major center for processing of multimodal sensory information and the motor control of orienting the eyes, head, and body. Visual processing is performed in superficial layers, whereas premotor activity is generated in deep layers of the SC. Because the SC is known to receive input from visual cortex, we asked whether the projections from 10 visual areas of the dorsal and ventral streams terminate in differential depth profiles within the SC. We found that inputs from primary visual cortex are by far the strongest. Projections from the ventral stream were substantially weaker, whereas the sparsest input originated from areas of the dorsal stream. Importantly, we found that ventral stream inputs terminated in superficial layers, whereas dorsal stream inputs tended to be patchy and either projected equally to superficial and deep layers or strongly preferred deep layers. The results suggest that the anatomically defined ventral and dorsal streams contain areas that belong to distinct functional systems, specialized for the processing of visual information and visually guided action, respectively.


Assuntos
Colículos Superiores/citologia , Colículos Superiores/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Vias Visuais/citologia , Vias Visuais/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Int J Radiat Biol ; 100(5): 791-801, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38442139

RESUMO

PURPOSE: Radiotherapy with bladder preservation is highly acceptable among patients bearing bladder cancer (BCa), but the occurrence of secondary tolerance (ARR) during treatment is one of the important reasons for the failure of clinical radiotherapy. COX-2 has been frequently reported to be highly expressed and associated with radio-resistance in various cancers. In this study, the feasibility of Taraxasterol (Tara) as a radiosensitizer was investigated, and the target effect of Tara on COX-2 and its underlying mechanism were explored. METHODS AND MATERIALS: The toxicity of Tara toward BCa cells was detected with the MTT method and cells in response to IR or Tara + IR were compared by clone formation assay. Next, a small RNA interference system (siRNA) was employed to decrease endogenous COX-2 expression in BCa cells, and the stem cell-like features and motion abilities of BCa cells under different treatments were investigated using microsphere formation and transwell chamber assay, respectively. Meanwhile, the expression of a series of inflammation-related molecules and stem cell characteristic molecules was determined by qRT-PCR, western blot and ELISA method. In vivo studies, BCa cells were subcutaneously injected into the right flank of each male mouse. Those mice were then grouped and exposed to different treatment: Tara, IR, IR + Tara and untreated control. The volumes of each tumor were measured every two days and target proteins were detected with immunohistochemical (IHC) staining. RESULTS: The results show that COX-2 decline, due to COX-2 knocking-down or Tara treatment, could greatly enhance BCa cells' radiosensitivity and significantly decrease their migration, invasion and microsphere formation abilities, companied with the reduce of JAK2, phos-STAT3, MMP2 and MMP9 expression. However, Tara could not further reduce the expression of an above molecule of cells in COX-2-deficient BCa cells. Correspondingly, Tara treatment could not further enhance those siCOX-2 BCa cells response to IR. CONCLUSIONS: Our data support that Tara can improve the radiosensitivity of BCa cells by targeting COX-2/PGE2. The mechanism may involve regulating STAT3 phosphorylation, DNA damage response protein activation, and expression of MMP2/MMP9.


Assuntos
Ciclo-Oxigenase 2 , Janus Quinase 2 , Tolerância a Radiação , Fator de Transcrição STAT3 , Neoplasias da Bexiga Urinária , Janus Quinase 2/metabolismo , Humanos , Ciclo-Oxigenase 2/metabolismo , Neoplasias da Bexiga Urinária/radioterapia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo , Camundongos , Tolerância a Radiação/efeitos dos fármacos , Dinoprostona/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esteróis/farmacologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Radiossensibilizantes/farmacologia , Masculino
14.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746199

RESUMO

Precision mapping techniques coupled with high resolution image acquisition of the mouse brain permit the study of the spatial organization of gene expression and their mutual interaction for a comprehensive view of salient structural/functional relationships. Such research is facilitated by standardized anatomical coordinate systems, such as the well-known Allen Common Coordinate Framework (AllenCCFv3), and the ability to spatially map to such standardized spaces. The Advanced Normalization Tools Ecosystem is a comprehensive open-source software toolkit for generalized quantitative imaging with applicability to multiple organ systems, modalities, and animal species. Herein, we illustrate the utility of ANTsX for generating precision spatial mappings of the mouse brain and potential subsequent quantitation. We describe ANTsX-based workflows for mapping domain-specific image data to AllenCCFv3 accounting for common artefacts and other confounds. Novel contributions include ANTsX functionality for velocity flow-based mapping spanning the spatiotemporal domain of a longitudinal trajectory which we apply to the Developmental Common Coordinate Framework. Additionally, we present an automated structural morphological pipeline for determining volumetric and cortical thickness measurements analogous to the well-utilized ANTsX pipeline for human neuroanatomical structural morphology which illustrates a general open-source framework for tailored brain parcellations.

15.
J Neurosci ; 32(13): 4386-99, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22457489

RESUMO

Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that shown previously in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e., connectivity profile) that was well fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor, and limbic cortices, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortices. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species.


Assuntos
Mapeamento Encefálico/estatística & dados numéricos , Córtex Cerebral/anatomia & histologia , Córtex Visual/anatomia & histologia , Animais , Mapeamento Encefálico/métodos , Feminino , Iontoforese/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Estatísticos , Vias Neurais/anatomia & histologia , Técnicas de Rastreamento Neuroanatômico/métodos , Técnicas de Rastreamento Neuroanatômico/estatística & dados numéricos , Marcadores do Trato Nervoso/administração & dosagem
16.
Bioorg Med Chem Lett ; 23(12): 3547-50, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23668986

RESUMO

A new ophiobolin derivative, 3-anhydro-6-hydroxy-ophiobolin A (1), as well as two known ophiobolin derivatives 3-anhydro-ophiobolin A (2) and 3-anhydro-6-epi-ophiobolin A (3) were isolated from the PDB culture of a phytopathogenic fungus Bipolaris oryzae. The structure of 1 was elucidated through 2D NMR and other spectroscopic techniques. Compound 1 exhibited strong antimicrobial activity against Bacille Calmette-Guerin, Bacillus subtilis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus with MIC value of 12.5 µg/mL, and potent antiproliferative activity against cell lines HepG2 and K562 with IC50 of 6.49 µM and 4.06 µM, respectively. Further studies on the cytotoxicity of compound 1 against K562 cells demonstrated that it induced apoptosis, observed by flow cytometric method. Preliminary structure-activity relationships of these ophiobolins and the mechanism of apoptosis induced by 1 were analyzed.


Assuntos
Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oryza/química , Sesterterpenos/farmacologia , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Citometria de Fluxo , Células Hep G2 , Humanos , Células K562 , Staphylococcus aureus Resistente à Meticilina/citologia , Staphylococcus aureus Resistente à Meticilina/enzimologia , Sesterterpenos/química , Relação Estrutura-Atividade
17.
J Nat Prod ; 76(1): 45-50, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23294419

RESUMO

Five novel perhydrobenzannulated 5,5-spiroketal sesquiterpenes, namely, pleurospiroketals A-E (1-5), were isolated from the culture of the edible mushroom Pleurotus cornucopiae. Pleurospiroketals D (4) and E (5) were obtained as an isomeric mixture with a ratio of 5:4. Their structures were established by NMR, X-ray single-crystal diffraction, and CD data analysis. Pleurospiroketals A-E (1-5) are sesquiterpenoids with a unique benzannulated 5,5-spiroketal skeleton. Compounds 1-3 showed inhibitory activity against nitric oxide production in lipopolysaccharide-activated macrophages with IC(50) values of 6.8, 12.6, and 20.8 µM, respectively.


Assuntos
Furanos/isolamento & purificação , Pleurotus/química , Sesquiterpenos/isolamento & purificação , Compostos de Espiro/isolamento & purificação , Animais , Cristalografia por Raios X , Furanos/química , Furanos/farmacologia , Células HeLa , Humanos , Concentração Inibidora 50 , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Conformação Molecular , Estrutura Molecular , Óxido Nítrico/biossíntese , Ressonância Magnética Nuclear Biomolecular , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Estereoisomerismo
18.
Int J Radiat Biol ; 99(10): 1595-1606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36947637

RESUMO

PURPOSE: As a part of breast-conserving therapy (BCT), postoperative radiotherapy is one of the main means to improve the clinical efficacy of breast cancer (BCa). However, ionizing radiation (IR) may induce BCa cells to develop radioresistance, which causes tumor recurrence and metastasis after treatment. Recently, DOC-2/DAB2 interactive protein (DAB2IP) has been reported often down-regulated in a variety of cancers and is related to tumor tolerance to radiotherapy. In this study, BCa cell lines were introduced to study how DAB2IP deficient influenced BCa cell radiosensitivity in vitro and in vivo and discuss the possible mechanism. METHODS AND MATERIALS: Small RNA interference system (siRNA) was employed to decrease DAB2IP expression in two BCa cell lines, MDA-MB-231 and 4T1. Cells in response to IR or antineoplastics were detected by clone formation assay or MTT method, respectively. For in vivo studies, siDAB2IP or siControl cells were subcutaneously injected into the right flank of each female mouse. Sphere formation assay, soft agar colony anchoring assay and in vivo tumorigenesis assay were implemented to examine the stem cell-like features of BCa cells. Tube formation assay as well as immunofluorescence assay (IFA) were respectively applied to determine the angiogenesis of tumor cells in vitro and in vivo. The expression of a series of angiogenesis-related molecules was analyzed by qRT-PCR, western blot and IFA. RESULTS: It was observed that the downregulation of DAB2IP could significantly improve the clone formation ability of BCa cells, reduce their sensitivity to radiation and chemotherapy drugs, enhance their migration and invasion abilities and increase their stemness characteristics. It was also noted that either DAB2IP-knocking down or treated with the conditioned medium from DAB2IP-deficient BCa cells could promote the tube-forming ability of the endothelial cell. Similarly, in vivo studies showed that tumors developed from siDAB2IP BCa cells had higher tumor microvascular density (MVD) and more severe oxygen deficiency than that in DAB2IP- sufficient tumors. Meanwhile, Knock-down of DAB2IP inhibited vascular maturation and promoted the formation of vasculogenic mimicry (VM) in BCa tissues. Down-regulation of STAT3 could enhance siDAB2IP cells sensitivity to IR, accompanied by the decrease of VEGF expression. CONCLUSIONS: Our data support that loss of DAB2IP confers radio-resistance of BCa could be due to increased hypoxia, inhibited vascular maturation and promoted VM formation. STAT3 inhibition could be a potential way to overcome such DAB2IP-deficient induced tolerance in BCT.


Assuntos
Recidiva Local de Neoplasia , Proteínas Ativadoras de ras GTPase , Animais , Feminino , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Hipóxia , Tolerância a Radiação/genética , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo
19.
Eur J Med Chem ; 247: 115053, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36587419

RESUMO

Herein 2-cyanoethoxy-N,N,N',N'-tetraisopropyl-phosphorodiamidite(10, PIII, 3.5 eq.) could synergistically react with 3',5'-dihydroxyl groups in a dinucleotide(PV) at the cyclization step for the synthesis of cyclic dinucleotides (CDNs) (c-di-GMP, cGAMP etc.) and their phosphorothioated analogues. A dynamic PIII-PV coordination mechanism has been proposed for the cyclization procedure which is confirmed by the variant 31P NMR data and molecular simulation. Among the mono-phosphorothioated CDNs, two stereoisomers showed different capacity for STING activation and the reason was predicted by molecular modeling. While compound 12b1 showed most potent ability to elicit cytokines (IFNß, IL-6, Cxcl9 and Cxcl10) induction compared to another stereoisomer. Also, 12b1 significantly inhibited the tumor growth in the EO771 model with both 0.1 µg (i.t.) and 2 µg (i.v.) administration through the aid of a Mix delivery system developed by our group, and achieved a 31% long-term survival rate of tumor-bearing mice. 12b1/Mix significantly improved the percentage of CD8+ or CD4+ effector memory T (Tem, CD44highCD62Llow) cells and CD8+ central memory T (Tcm, CD44highCD62Lhigh) cells in the blood of EO771 mice, inducing the immune memory against EO771 tumor cells. Relatively lower dose regimens of 12b1(0.1 µg)/Mix displayed better tumor suppression by more potent STING pathway activation and higher levels of cytokines induction in the tumor.


Assuntos
Citocinas , Neoplasias , Animais , Camundongos , Lipídeos , Nucleotídeos de Citosina/química , Nucleotídeos de Citosina/metabolismo
20.
Cell Rep ; 42(2): 112118, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36774552

RESUMO

The claustrum (CLA) is a conspicuous subcortical structure interconnected with cortical and subcortical regions. Its regional anatomy and cell-type-specific connections in the mouse remain not fully determined. Using multimodal reference datasets, we confirmed the delineation of the mouse CLA as a single group of neurons embedded in the agranular insular cortex. We quantitatively investigated brain-wide inputs and outputs of CLA using bulk anterograde and retrograde viral tracing data and single neuron tracing data. We found that the prefrontal module has more cell types projecting to the CLA than other cortical modules, with layer 5 IT neurons predominating. We found nine morphological types of CLA principal neurons that topographically innervate functionally linked cortical targets, preferentially the midline cortical areas, secondary motor area, and entorhinal area. Together, this study provides a detailed wiring diagram of the cell-type-specific connections of the mouse CLA, laying a foundation for studying its functions at the cellular level.


Assuntos
Claustrum , Córtex Motor , Camundongos , Animais , Claustrum/fisiologia , Vias Neurais/fisiologia , Córtex Entorrinal/fisiologia , Neurônios
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa