Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560152

RESUMO

Environmental changes and human activities have caused serious degradation of murals around the world. Scratches are one of the most common issues in these damaged murals. We propose a new method for virtually enhancing and removing scratches from murals; which can provide an auxiliary reference and support for actual restoration. First, principal component analysis (PCA) was performed on the hyperspectral data of a mural after reflectance correction, and high-pass filtering was performed on the selected first principal component image. Principal component fusion was used to replace the original first principal component with a high-pass filtered first principal component image, which was then inverse PCA transformed with the other original principal component images to obtain an enhanced hyperspectral image. The linear information in the mural was therefore enhanced, and the differences between the scratches and background improved. Second, the enhanced hyperspectral image of the mural was synthesized as a true colour image and converted to the HSV colour space. The light brightness component of the image was estimated using the multi-scale Gaussian function and corrected with a 2D gamma function, thus solving the problem of localised darkness in the murals. Finally, the enhanced mural images were applied as input to the triplet domain translation network pretrained model. The local branches in the translation network perform overall noise smoothing and colour recovery of the mural, while the partial nonlocal block is used to extract the information from the scratches. The mapping process was learned in the hidden space for virtual removal of the scratches. In addition, we added a Butterworth high-pass filter at the end of the network to generate the final restoration result of the mural with a clearer visual effect and richer high-frequency information. We verified and validated these methods for murals in the Baoguang Hall of Qutan Temple. The results show that the proposed method outperforms the restoration results of the total variation (TV) model, curvature-driven diffusion (CDD) model, and Criminisi algorithm. Moreover, the proposed combined method produces better recovery results and improves the visual richness, readability, and artistic expression of the murals compared with direct recovery using a triple domain translation network.


Assuntos
Algoritmos , Imageamento Hiperespectral , Humanos , Análise de Componente Principal , China , Distribuição Normal
2.
Microb Pathog ; 158: 104850, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33766632

RESUMO

The ecosystem approach has been developed since the 1940s. An ecosystem is a community of living organism and their interaction and conjugation with abiotic factors of the environment. The ecosystem is not endemic to the aquatic environment only but, the terrestrial environment is also considered to be a part of an ecosystem. Soil act as mother role for the survival of different microorganism. The Toxoplasma gondii oocysts stay survive for a long time in the soil. This presence of these oocysts might critically enhance the success of this parasite in two ways. First, this parasite can widespread; second, it can create a lot of consequences regarding animals and their economic value. Soil contamination caused by Toxoplasma gondii Y is a significant and profound issue for animals and public health. Therefore, the current study was aimed to summarize and correlate the soil and parasite, their transmission, infection, and some aspects related to T. gondii. The small animals are pose at a high risk therefore, it was concluded that some preventive measures should be taken to keep secure itself from zoonotic diseases.


Assuntos
Toxoplasma , Toxoplasmose Animal , Animais , Ecossistema , Humanos , Ruminantes , Solo , Toxoplasmose Animal/epidemiologia
3.
Acta Pharmacol Sin ; 39(4): 587-596, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29094728

RESUMO

The Nav1.7 channel represents a promising target for pain relief. In the recent decades, a number of Nav1.7 channel inhibitors have been developed. According to the effects on channel kinetics, these inhibitors could be divided into two major classes: reducing activation or enhancing inactivation. To date, however, only several inhibitors have moved forward into phase 2 clinical trials and most of them display a less than ideal analgesic efficacy, thus intensifying the controversy regarding if an ideal candidate should preferentially affect the activation or inactivation state. In the present study, we investigated the action mechanisms of a recently clinically confirmed inhibitor CNV1014802 using both electrophysiology and site-directed mutagenesis. We found that CNV1014802 inhibited Nav1.7 channels through stabilizing a nonconductive inactivated state. When the cells expressing Nav1.7 channels were hold at 70 mV or 120 mV, the half maximal inhibitory concentration (IC50) values (with 95% confidence limits) were 1.77 (1.20-2.33) and 71.66 (46.85-96.48) µmol/L, respectively. This drug caused dramatic hyperpolarizing shift of channel inactivation but did not affect activation. Moreover, CNV1014802 accelerated the onset of inactivation and delayed the recovery from inactivation. Notably, application of CNV1014802 (30 µmol/L) could rescue the Nav1.7 mutations expressed in CHO cells that cause paroxysmal extreme pain disorder (PEPD), thereby restoring the impaired inactivation to those of the wild-type channel. Our study demonstrates that CNV1014802 enhances the inactivation but does not reduce the activation of Nav1.7 channels, suggesting that identifying inhibitors that preferentially affect inactivation is a promising approach for developing drugs targeting Nav1.7.


Assuntos
Analgésicos/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Éteres Fenílicos/farmacologia , Prolina/análogos & derivados , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Animais , Células CHO , Cricetulus , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Prolina/farmacologia
4.
Int J Syst Evol Microbiol ; 67(8): 2609-2614, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28792371

RESUMO

Strain AFT2T was isolated from a mural painting sample from a ca. 1500-year-old tomb located in Shanxi Province, China. The isolate was a Gram-stain-positive, non-motile, non-spore-forming, aerobic and oval to short-rod-shaped bacterium that formed white-pigmented colonies. Phylogenetic analyses based on 16S rRNA gene sequence revealed that strain AFT2T was most closely (97.01 %) correlated and formed a monophyletic clade with Naumannella halotolerans WS4616T (=DSM 24323T). The G+C content of the genomic DNA was 71.97 mol%, and the strain showed 37.27 % DNA-DNA relatedness to N. halotolerans DSM 24323T. The major cellular fatty acid was anteiso-C15 : 0 (55.32 %), and MK-9(H4) was the only respiratory quinone. The polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, two unknown phospholipids and five unknown glycolipids. ll-Diaminopimelic acid was detected in the cell-wall peptidoglycan (type A3γ), and the whole-cell sugars consisted of ribose, mannose, arabinose and galactose. On the basis of its phenotypic and phylogenetic characteristics, it is proposed that strain AFT2T should be classified as a representative of a novel species of the genus Naumannella, for which the name Naumannella cuiyingiana sp. nov. is proposed. The type strain is AFT2T (=CCTCC AB 2015428T=DSM 103164T).


Assuntos
Pinturas , Filogenia , Propionibacteriaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , Cemitérios , China , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , Propionibacteriaceae/genética , Propionibacteriaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Sci Total Environ ; 941: 173759, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38844240

RESUMO

Biocrusts are a prevalent form of living cover in worldwide drylands, and their presence are intimately associated with herbaceous community, forming a spatially mosaic distribution pattern in dryland ecosystems. The role of biocrusts as modulators of herbaceous community assembly is extensively studied, whereas, less is known whether their interactions are permanent or changeable with various environmental conditions. This study conducted a field survey of herbaceous community accompanied by three types of biocrusts (cyanobacterial, cyanobacterial-moss mixed, and moss crusts) in two contrasting (dry and wet) semiarid climate regions in the Chinese Loess Plateau, to explore whether or not climatic aridity gradient affects the interactions between biocrusts and herbaceous community. Our results showed that in dry semiarid climate, the biomass, species richness, and diversity of herbaceous community from biocrust plots were 89 %, 179 %, and 52 % higher than that from the uncrusted plots, respectively, while in wet semiarid climate, those herbaceous community indices from biocrust plots were 68 %, 43 %, and 23 % lower than that from the uncrusted plots, respectively. The impacts of biocrusts on herbaceous community were highly dependent on the types and coverage of biocrusts. Regardless of aridity gradient, the richness and diversity of herbaceous community were the lowest in the moss-covered plots, followed by the cyanobacteria-covered plots and the plots with a mixed cyanobacteria and moss population. Along with increasing biocrust coverage, the species richness and diversity of herbaceous plants initially increased and then decreased in dry semiarid climate, while in wet semiarid climate they decreased linearly with biocrust coverage. Structural equation modeling revealed that the factors of biocrust types and coverage affected herbaceous community indirectly through soil properties in dry semiarid climate, whereas in wet semiarid climate they directly affected herbaceous community through biotic interactions. Together, our findings indicated that cyanobacterial and moss biocrusts facilitate the development of herbaceous community in dry semiarid climate by increasing soil stability and nutrient levels, but in wet semiarid climate they restrict herbaceous plant growth through competing niche space. These results highlight the divergent relationships between biocrusts and herbaceous community across aridity gradient in dryland ecosystems, and this knowledge may be critically important in light of the projected global climate change which is going to change the aridity of global drylands.


Assuntos
Cianobactérias , Ecossistema , China , Briófitas , Clima Desértico , Biodiversidade , Monitoramento Ambiental , Plantas
6.
Sci Total Environ ; 931: 172750, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677426

RESUMO

Soil nematodes are the most abundant animals on Earth and play critical roles in regulating numerous ecosystem processes, from enhancing primary productivity to mineralizing multiple nutrients. In dryland soils, a rich community of microphyte organisms (biocrusts) provide critical habitats for soil nematodes, but their presence is being threatened by increasing aridity induced by global climate change. Despite its importance, how types of biocrusts and aridity index influence soil nematode community in dryland mountain ecosystems remains largely unknown. To fill these knowledge gaps, we conducted a field survey with contrasting aridity indexes (0.2, 0.4, and 0.6) and three types of biocrusts (cyanobacterial, cyanobacterial-moss mixed, and moss crusts) in the topsoil (0-5 cm) from the northern Chinese Loess Plateau. We found that the abundance (number of individuals per gram of soil), richness (number of Operational Taxonomic Units; OTUs), and diversity (number of different species) of soil nematodes were remarkably higher under biocrusts than in bare soils, regardless of aridity index and types of biocrusts. Our results also showed that the same variables had the highest values in moss crusts compared to cyanobacterial and cyanobacterial-moss mixed crusts. Structural equation modelling further revealed that biocrust types and traits (i.e., biocrust thickness, chlorophyll content, shear force, and penetration resistance) are the most important factors associated with both nematode abundance and richness. Together, our findings indicate that biocrusts, especially moss cover, and less stressful aridity conditions favor soil nematodes community in dryland mountain regions. Such knowledge is critical for anticipating the distribution of these animals under climate change scenarios and, ultimately, the numerous ecosystem services supported by soil nematodes.


Assuntos
Briófitas , Cianobactérias , Ecossistema , Nematoides , Solo , Animais , China , Mudança Climática , Clima Desértico , Monitoramento Ambiental
7.
Sci Total Environ ; 951: 175506, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151631

RESUMO

The Great Wall, as a World Heritage Site, is constructed with rammed earth and is currently facing the threat of erosion from wind and rain. Vascular plants and biocrusts are the main coverings of the Great Wall, and their role in mitigating soil erosion has attracted increased amounts of attention; however, the understanding of their underlying mechanisms is limited. Here, we conducted an extensive survey of vascular plants, biocrusts, soil properties (soil organic and inorganic binding materials, aggregates, and texture), soil aggregate stability, and soil erodibility at the top of the Great Wall in four different defensive zones in Northwest China. Vascular plants covered 13.6 % to 63.9 % of the tops of the Great Wall, and their rich diversity was mainly derived from perennial herbs. Moss, lichen, and cyanobacterial crusts collectively covered 36.3 % to 67.8 % of the top of the Great Wall. Redundancy analysis and structural equation modeling revealed that the synergistic effects of vascular plants and biocrusts enhanced soil aggregation stability (including geometric mean diameter, GMD; water-stable macroaggregate content, R) by increasing the accumulation of soil organic carbon (SOC), amorphous iron oxide (Feo), and amorphous alumina (Alo) and promoting the formation of macroaggregates (ASD>0.25 mm) and microaggregates (ASD0.053-0.25 mm). Furthermore, soil erodibility was primarily influenced negatively by the synergistic promotion of SOC accumulation by vascular plants and biocrusts and positively by the reduction in soil sand (PSD>0.05 mm) content by biocrusts. Our work highlights the mechanisms and importance of vascular plants and biocrusts as natural covers for altering the intrinsic properties of soil for the protection of the Great Wall. These findings provide reliable theoretical support for the protection of the Great Wall from erosion by vascular plants and biocrusts and offer new insights for the conservation of global earthen sites and similar wall habitats.

8.
Sci Total Environ ; 918: 170515, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309344

RESUMO

The Great Wall, a World Heritage Site and a vertical wall habitat, is under threat of soil erosion. The role of vascular plants and biocrust in controlling soil erosion has attracted attention, yet our knowledge of the underlying mechanism is limited, and there is a lack of systematic strategies for erosion prevention and control. In this study, we quantified the vascular plant community functional composition (including species diversity, functional diversity, and community-weighted mean), biocrust coverage, and soil erosion levels associated with seven different zones (lower, middle, and upper zones on East and West faces, plus wall crest) of the Great Wall. We then employed a combination of linear regression analysis, random forest model, and structural equation model to evaluate the individual and combined effects, as well as the direction and relative importance of these factors in reducing soil erosion. The results indicated that the vascular plant species richness, species diversity, functional richness, community-weighted mean, and moss crust coverage decreased significantly from the crest to the lower zone of the Great Wall (P < 0.05), and were negatively correlated with the soil erosion area and depth on both sides of the Great Wall (P < 0.05). This suggests that higher zones on the wall favored the colonization and growth of biocrusts and vascular plants and that biocrusts and vascular plants reduced soil erosion on the wall. Based on these findings, we propose a "restoration framework" for managing soil erosion on walls, based on biocrust and vascular plant communities (namely target species selection, plant community construction, biocrust inoculation, and maintenance of community stability), which aims to address the urgent need for more effective soil erosion prevention and control strategies on the Great Wall and provide practical methods that practitioners can utilize.


Assuntos
Briófitas , Traqueófitas , Erosão do Solo , Solo/química , Ecossistema , Microbiologia do Solo
9.
Sci Total Environ ; 876: 162665, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36894084

RESUMO

Epilithic biofilms colonising outdoor stone monuments can intensify the deterioration processes of the stone materials and pose great challenges to their protection. In this study, biodiversity and community structures of the epilithic biofilms colonising the surfaces of five outdoor stone dog sculptures were characterised by high-throughput sequencing. Although they are exposed to the same envrionment in a small yard, the analysis of their biofilm populations revealed high biodiversity and species richness as well as great differences in community compostions. Interestingly, populations responsible for pigment production (e.g., Pseudomonas, Deinococcus, Sphingomonas and Leptolyngbya) and for nitrogen (e.g., Pseudomonas, Bacillus, and Beijerinckia) and sulfur cycling (e.g., Acidiphilium) were the core common taxa in the epilithic biofilms, suggesting the potential biodeterioration processes. Furthermore, significant positive corrolections of metal elements rich in stone with biofilm communities showed that epilithic biofilms could take in minerals of stone. Importantly, geochemical properties of soluble ions (higher concentration of SO42- than NO3-) and slightly acidic micro-environments on the surfaces suggest corrosion of biogenic sulfuric acids as a main mechanism of biodeterioration of the sculptures. Interestingly, relative abundacne of Acidiphilium showed a positive correlation with acidic micro-environments and SO42- concentrations, implying they could be an indicator of sulfuric acid corrosion. Together, our findings support that micro-environments are inportant to community assembly of epilithic biofilms and the biodeterioration processes involved.


Assuntos
Bacillus , Cianobactérias , Animais , Cães , Biofilmes , Biodiversidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-36174907

RESUMO

Nanotechnology has revealed profound possibilities for the applications in applied sciences. The nanotechnology works based on nanoparticles. Among nanoparticles, silver nanoparticles largely introduced into aquatic environments during fabrication. Which cause severe contamination in the environment specially in freshwater fish. Therefore, the current study was a pioneer attempt to use the animal blood to fabricate AgNPs and investigate their toxicity in Cyprinus carpio (C. carpio) by recording mortality, tissue bioaccumulation, and influence on intestinal bacterial diversity. For this purpose, fish groups were exposed to different concentrations of B-AgNPs including 0.03, 0.06, and 0.09 mg/L beside the control group for 1, 10, and 20 days. Initially, the highest concentration caused mortality. The results revealed that B-AgNPs were significantly (p < 0.005) accumulated in the liver followed by intestines, gills, and muscles. In addition, the accumulation of B-AgNPs in the intestine led to bacterial dysbiosis in Cyprinus carpio. At the phylum level, Tenericutes, Bacteroidetes, and Planctomycetes were gradually decreased at the highest concentration of B-AgNPs (0.09 mg/L) on days 1, 10, and 20 days. The genera Cetobacterium and Luteolibactor were increased at the highest concentration on day 20. Moreover, the principal coordinate analysis (PCoA) based on Bray-Curtis showed that the B-AgNPs had led to a variation in the intestinal bacterial community. Based on findings, the B-AgNPs induced mortality, and residual deposition in different tissues, and had a stress influence on intestinal homeostasis by affecting the intestinal bacterial community in C. carpio which could have a significant effect on fish growth.


Assuntos
Carpas , Nanopartículas Metálicas , Poluentes Químicos da Água , Animais , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Disbiose/induzido quimicamente , Brânquias , Bactérias , Poluentes Químicos da Água/toxicidade
11.
Front Microbiol ; 14: 1253461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954248

RESUMO

Background: Microbial colonization represents one of the main threats to the conservation of subterranean cultural heritage sites. Recently, the microbial colonization on murals in tombs has gradually attracted attention. Methods: In this study, a total of 33 samples, including 27 aerosol samples and 6 mural painting samples, were collected from different sites of Xu Xianxiu's Tomb and analyzed using culture-dependent methods. We compared the diversities of culturable bacteria and fungi isolated from the air and murals and explored the potential impacts of microorganisms on the biodeterioration of the murals. Results: Phylogenetic analyses revealed that the culturable bacteria belonged to Bacillus, Microbacterium, Lysobacter and Arthrobacter. And the most of fungal belonged to the Penicillium, Cladosporium and Aspergillus genera. The composition and structure of airborne bacteria and fungi outside the tomb were both significantly different from that inside the tomb. The variation trends of airborne bacterial and fungal concentrations at different sampling sites were remarkably similar. Bacillus frigoritolerans, Bacillus halotolerans, Bacillus safensis, Exiguobacterium mexicanum, Microbacterium trichothecenolyticum, and Micrococcus yunnanensis were bacterial species commonly isolated from both the mural and air environments. Fungal species commonly isolated from aerosol samples and mural painting samples were Alternaria alternata, Cladosporium cladosporioides, Penicillium brevicompactum, and Peyronellaea glomerata. The prediction of the ecological functions of the bacteria revealed that chemoheterotrophy or aerobic_chemoheterotrophy accounted for substantial relative proportions in all sample types. Conclusion: These results suggest that the aerosol circulation between the inside and outside environments of the tomb was weak and that the outside environment had yet to have an impact on the air microbial community inside the tomb. Selective colonization of microorganisms, which is mediated by interaction between microorganisms and special microenvironmental factors, is an important reason for the biodeterioration of murals.

12.
Curr Opin Biotechnol ; 75: 102716, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35429728

RESUMO

Microbial colonization and development into biofilms on cultural heritage have significant implications for the deterioration of materials, particularly in the tropic and humid environments. To advance the fundamental knowledge on the biofilm-mediated (bio)deterioration processes, future investigations must focus more on the metabolically active microorganisms and biochemical reactions by a combination of methods available. Newly accessible culture-independent techniques of high-throughput sequencing and multi-omics can be coupled with culture-dependent ones and specific biochemical assays, including stable isotopes and DNA probing. Here, we describe the recent advances on this subject matter, highlight a systematic analytical approach for an integrative diagnosis of 'microbial diseases' of cultural heritage, and provide future prospects for a new paradigm of research on microbial biodeterioration of heritage materials.


Assuntos
Biofilmes
13.
Trends Microbiol ; 30(9): 816-819, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35752563

RESUMO

Debate on whether biofilms on stone monuments are biodeteriorative or bioprotective is long-standing. We propose a criterion of 'relative bioprotective ratio' for assessing the ambivalent role of the biofilms by comparing biodeterioration with weathering. A boundary between biodeterioration and bioprotection exists and fluctuates with dynamic microflora influenced by environmental conditions.


Assuntos
Biofilmes
14.
Ying Yong Sheng Tai Xue Bao ; 33(7): 1729-1737, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-36052774

RESUMO

Microhabitat factors play an important role in regulating bryophyte species distribution and the development of bryophyte-dominated biological soil crusts (hereafter bryophyte crusts). We investigated the distribution and development of bryophytes in eight microhabitats in the water-wind erosion crisscross region of the Loess Pla-teau. We used the line intercept transects to explore and quantify the influencing pathways of microhabitat factors on bryophyte diversity and analyzed the influencing pathways of plant cover, slope aspect, and slope gradient by using structural equation model to quantify influencing coefficients. Our results showed that: 1) The Patrick, Shannon, Pielou, and Simpson indcies of bryophytes under plant canopy were 63.4%, 66.6%, 91.0%, and 68.3% lower than that without plant canopy, respectively, while the thickness, biomass, and chlorophyll content of bryophyte crusts were 0.5, 0.2, and 1.3 times higher than that without plant canopy, respectively. 2) The Patrick, Shannon, Pielou, and Simpson indexes of bryophytes on the north slope were 0.6, 0.9, 5.6, and 0.9 times higher than those on the south slope, while the thickness, biomass, and chlorophyll content of bryophyte crusts were 0.3, 0.3, and 0.6 times higher than those on the south slope, respectively. 3) As the slope increasing from 14° to 34°, the Patrick, Shannon, Pielou, and Simpson indexes of bryophyte were decreased by 59.8%, 84.1%, 57.3% and 68.0%, and the thickness, biomass, and chlorophyll content of bryophyte crusts were decreased by 15.2%, 25.0%, and 16.5%, respectively. 4) The importance of the three microhabitat factors on bryophyte diversity and the development of bryophyte crusts followed an order of plant canopy cover > slope aspect > slope gradient. The primary influencing pathway varied among the microhabitat factors. In conclusion, plant cover, slope aspect, and slope gradient significantly affected the distribution of bryophytes species and developmental level of bryophyte crusts through direct and indirect pathways. Therefore, full consideration should be given to microhabitat conditions when using bryophyte crusts to control desertification.


Assuntos
Briófitas , Solo , China , Clorofila , Ecossistema , Água/análise , Vento
15.
Microsc Res Tech ; 84(8): 1765-1774, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33694296

RESUMO

Possible high biodeterioration of the microorganisms due to their metabolic pathway and activities on stone materials causes solemn problems in cultural heritage. Different kinds of laboratory-scale methods have been used for the reduction of microbial growth, that is, chemical, mechanical, and physical, which are cost-effective and not ecofriendly. In the current study, an ecofriendly approach utilizing silver nanoparticles were synthesized using sheep blood serum. Transmission electron microscopy results have confirmed the spherical and well dispersed silver nanoparticles with an average size of 32.49 nm, while energy dispersive X-ray has shown the abundance of silver nanoparticles. The efficiency against bacterial species was verified through laboratory-scale testing. The strong antibacterial activity was confirmed when B-AgNPs was tested against different bacterial species isolated from the Beishiku Cave Temple. The largest zone of inhibition was measured 26.48 ± 0.14 mm against Sphingomonas sp. while the smallest zone of inhibition measured was 9.70 ± 0.27 mm against Massilia sp. Moreover, these ecofriendly B-AgNPs were tested for daily based dose in different concentrations (0.03, 0.06, and 0.09 mg/L) against common carp fish for a long exposure (20 days) and 6.5% fatality was found. The highest lethal concentration (LC50 ) for fish (0.61 ± 0.09 mg/L). No doubt, the laboratory scale applications have revealed the best results with minute toxicity in fish. Therefore, sheep serum should be continued to synthesize silver nanoparticles on a large scale. A strict monitoring system should be developed for the synthesis and application of AgNPs.


Assuntos
Carpas , Nanopartículas Metálicas , Animais , Antibacterianos/toxicidade , Bactérias , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Extratos Vegetais , Ovinos , Prata/toxicidade
16.
Front Microbiol ; 12: 684386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248904

RESUMO

Bacterial, archaeal, and eukaryota diversity in mountainous areas varies along elevational gradients, but details remain unclear. Here, we use a next-generation sequencing method based on 16S/18S rRNA to reveal the soil microbial diversity and community compositions of alpine meadow ecosystems along an elevation span of nearly 2,000 m (1,936-3,896 m) in China's Qilian Mountains. Both bacterial and eukaryota diversity increased linearly with increasing elevation, whereas archaeal diversity increased, but not significantly. The diversity patterns of several phyla in the bacterial, archaeal, and eukaryota communities were consistent with the overall elevational trend, but some phyla did not follow this pattern. The soil microbial community compositions were shaped by the coupled effects of regional climate and local soil properties. Intradomain links were more important than interdomain links in the microbial network of the alpine meadows, and these links were mostly positive. The bacteria formed more connections than either archaea or eukaryota, but archaea may be more important than bacteria in building the soil microbial co-occurrence network in this region. Our results provide new visions on the formation and maintenance of soil microbial diversity along an elevational gradient and have implications for microbial responses to climate change in alpine ecosystems.

17.
Ying Yong Sheng Tai Xue Bao ; 30(11): 3980-3990, 2019 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-31833712

RESUMO

The bioweathering of stone cultural relics is a ubiquitous problem. Weathering prevention is an escalating challenge under the increasing global climate and environmental changes. Here, the mechanisms of lichen-microorganism mediated weathering of stone materials and their relationships with climatic and environmental factors were reviewed. The biological protection of lichens and the evaluation of the efficacy of biocides in lichen-control were discussed. The potential research directions in this field were proposed. Research on lichen-rock interfaces suggested that biological weathe-ring could be mainly attributed to physical and chemical weathering which represented by mycelium penetration and calcium oxalate formation. Bioweathering of outdoor stone cultural relics is closely related with the whole ecosystem encompassing factors, such as stone matrix, surrounding environment, and climate factors. Lichens have both biological weathering and protection effects on stone heritage. For the restoration of bioweathered stone cultural relics, environmental conditions for pre-servation of stone cultural relics should be improved step by step. The related industry regulations and national standards for evaluating biological weathering and control efficiency should be established to promote the efficient development of scientific protection.


Assuntos
Ecossistema , Líquens , Minerais , Tempo (Meteorologia)
18.
PeerJ ; 7: e7376, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31355059

RESUMO

Previous studies indicate that the plant phenotypic traits eventually shape its microbiota due to the community assembly based on the functional types. If so, the distance-related variations of microbial communities are mostly only in taxonomical composition due to the different seeds pool, and there is no difference in microbial community functional structure if the location associated factors would not cause phenotypical variations in plants. We test this hypothesis by investigating the phyllospheric microbial community from five species of spruce (Picea spp.) trees that planted similarly but at three different locations. Results indicated that the geographical location affected microbial taxonomical compositions and had no effect on the community functional structure. In fact, this actually leads to a spurious difference in the microbial community. Our findings suggest that, within similar host plants, the phyllosphere microbial communities with differing taxonomical compositions might be functionally similar.

19.
Front Microbiol ; 9: 2479, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459725

RESUMO

Plant genotype drives the development of plant phenotypes and the assembly of plant microbiota. The potential influence of the plant phenotypic characters on its microbiota is not well characterized and the co-occurrence interrelations for specific microbial taxa and plant phenotypic characters are poorly understood. We established a common garden experiment, which quantifies prokaryotic and fungal communities in the phyllosphere and rhizosphere of six spruce (Picea spp.) tree species, through Illumina amplicon sequencing. We tested for relationships between bacterial/archaeal and fungal communities and for the phenotypic characters of their plant hosts. Host phenotypic characters including leaf length, leaf water content, leaf water storage capacity, leaf dry mass per area, leaf nitrogen content, leaf phosphorous content, leaf potassium content, leaf δ13C values, stomatal conductance, net photosynthetic rate, intercellular carbon dioxide concentration, and transpiration rate were significantly correlated with the diversity and composition of the bacterial/archaeal and fungal communities. These correlations between plant microbiota and suites of host plant phenotypic characters suggest that plant genotype shape its microbiota by driving the development of plant phenotypes. This will advance our understanding of plant-microbe associations and the drivers of variation in plant and ecosystem function.

20.
PLoS One ; 12(7): e0179718, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28678844

RESUMO

In this study, a culture-independent Illumina MiSeq sequencing strategy was applied to investigate the microbial communities colonizing the ancient painted sculptures of the Maijishan Grottoes, a famous World Cultural Heritage site listed by UNESCO in China. Four mixed samples were collected from Cave 4-4 of the Maijishan Grottoes, the so-called Upper Seven Buddha Pavilion, which was built during the Northern Zhou Dynasty (557-581AD). The 16/18S rRNA gene-based sequences revealed a rich bacterial diversity and a relatively low fungal abundance, including the bacterial groups Actinobacteria, Acidobacteria, Bacteroidetes, Cyanobacteria, Chloroflexi, Firmicutes, Proteobacteria and Verrucomicrobia and the fungal groups Ascomycota, Basidiomycota and Chytridiomycota. Among them, the bacteria genera of Pseudonocardia and Rubrobacter and unclassified fungi in the order of Capnodiales were dominant. The relative abundance of Pseudonocardia in the painted layer samples was higher than that in the dust sample, while Cyanobacteria dominated in the dust sample. Many of them have been discovered at other cultural heritage sites and associated with the biodeterioration of cultural relics. The presence and activity of these pioneering microorganisms may lead to an unexpected deterioration of the painted sculptures that are preserved in this heritage site. Thus, proper management strategies and potential risk monitoring should be used in the Maijishan Grottoes to improve the conservation of these precious painted sculptures.


Assuntos
Cavernas/microbiologia , Microbiologia do Solo , China , Cianobactérias/genética , Fungos não Classificados/genética , Fungos não Classificados/isolamento & purificação , Consórcios Microbianos , Tipagem Molecular , Pinturas , RNA Ribossômico 16S/genética , Escultura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa