Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
PLoS Pathog ; 19(12): e1011892, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38157331

RESUMO

Staphylococcus aureus is a dangerous pathogen that evolved refined immuno-evasive strategies to antagonize host immune responses. This involves the biogenesis of death-effector deoxyribonucleosides, which kill infectious foci-penetrating macrophages. However, the exact mechanisms whereby staphylococcal death-effector deoxyribonucleosides and coupled imbalances of intracellular deoxyribonucleotide species provoke immune cell death remain elusive. Here, we report that S. aureus systematically promotes an overload of deoxyribonucleotides to trigger mitochondrial rupture in macrophages, a fatal event that induces assembly of the caspase-9-processing apoptosome and subsequent activation of the intrinsic pathway of apoptosis. Remarkably, genetic disruption of this cascade not only helps macrophages coping with death-effector deoxyribonucleoside-mediated cytotoxicity but also enhances their infiltration into abscesses thereby ameliorating pathogen control and infectious disease outcomes in laboratory animals. Combined with the discovery of protective alleles in human CASP9, these data highlight the role of mitochondria-centered apoptosis during S. aureus infection and suggest that gene polymorphisms may shape human susceptibility toward a predominant pathogen.


Assuntos
Nucleotídeos , Staphylococcus aureus , Animais , Humanos , Staphylococcus aureus/genética , Nucleotídeos/metabolismo , Fagócitos/metabolismo , Morte Celular , Apoptose , Mitocôndrias/metabolismo , Desoxirribonucleosídeos/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(26): 6846-6851, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891696

RESUMO

Staphylococcus aureus colonizes large segments of the human population and causes invasive infections due to its ability to escape phagocytic clearance. During infection, staphylococcal nuclease and adenosine synthase A convert neutrophil extracellular traps to deoxyadenosine (dAdo), which kills phagocytes. The mechanism whereby staphylococcal dAdo intoxicates phagocytes is not known. Here we used CRISPR-Cas9 mutagenesis to show that phagocyte intoxication involves uptake of dAdo via the human equilibrative nucleoside transporter 1, dAdo conversion to dAMP by deoxycytidine kinase and adenosine kinase, and signaling via subsequent dATP formation to activate caspase-3-induced cell death. Disruption of this signaling cascade confers resistance to dAdo-induced intoxication of phagocytes and may provide therapeutic opportunities for the treatment of infections caused by antibiotic-resistant S. aureus strains.


Assuntos
Caspase 3/metabolismo , Desoxiadenosinas/metabolismo , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Caspase 3/genética , Morte Celular/genética , Desoxiadenosinas/genética , Armadilhas Extracelulares/genética , Armadilhas Extracelulares/microbiologia , Humanos , Neutrófilos/microbiologia , Neutrófilos/patologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/patologia , Staphylococcus aureus/genética
3.
J Antimicrob Chemother ; 72(4): 1002-1005, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28088766

RESUMO

Background: CoNS species are likely reservoirs of the staphylococcal cassette chromosome mec (SCC mec ) in Staphylococcus aureus . S . aureus CC395 is unique as it is capable of exchanging DNA with CoNS via bacteriophages, which are also known to mediate transfer of SCC mec . Objectives: To analyse the structure and putative origin of the SCC mec element in S . aureus CC395. Methods: The only MRSA CC395 strain described in the literature, JS395, was subjected to WGS, and its SCC mec element was compared with those found in CoNS species and other S. aureus strains. Results: JS395 was found to carry an unusually large 88 kb composite SCC mec element. The 33 kb region downstream of orfX harboured a type V SCC mec element and a CRISPR locus, which was most similar to those found in the CoNS species Staphylococcus capitis and Staphylococcus schleiferi . A 55 kb SCC element was identified downstream of the type V SCC mec element and contained a mercury resistance region found in the composite SCC element of some Staphylococcus epidermidis and S . aureus strains, an integrated S . aureus plasmid containing genes for the detoxification of cadmium and arsenic, and a stretch of genes that was partially similar to the type IVg SCC mec element found in a bovine S . aureus strain. Conclusions: The size and complexity of the SCC mec element support the idea that CC395 is highly prone to DNA uptake from CoNS. Thus CC395 may serve as an entry point for SCC mec and SCC structures into S . aureus .


Assuntos
Cromossomos Bacterianos , Sequências Repetitivas Dispersas , Recombinação Genética , Staphylococcus aureus/genética , Transferência Genética Horizontal , Genes Bacterianos , Genoma Bacteriano , Análise de Sequência de DNA
4.
Infect Immun ; 83(11): 4247-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26283333

RESUMO

The cell envelopes of many Gram-positive bacteria contain wall teichoic acids (WTAs). Staphylococcus aureus WTAs are composed of ribitol phosphate (RboP) or glycerol phosphate (GroP) backbones substituted with D-alanine and N-acetyl-D-glucosamine (GlcNAc) or N-acetyl-D-galactosamine (GalNAc). Two WTA glycosyltransferases, TarM and TarS, are responsible for modifying the RboP WTA with α-GlcNAc and ß-GlcNAc, respectively. We recently reported that purified human serum anti-WTA IgG specifically recognizes ß-GlcNAc of the staphylococcal RboP WTA and then facilitates complement C3 deposition and opsonophagocytosis of S. aureus laboratory strains. This prompted us to examine whether anti-WTA IgG can induce C3 deposition on a diverse set of clinical S. aureus isolates. To this end, we compared anti-WTA IgG-mediated C3 deposition and opsonophagocytosis abilities using 13 different staphylococcal strains. Of note, the majority of S. aureus strains tested was recognized by anti-WTA IgG, resulting in C3 deposition and opsonophagocytosis. A minority of strains was not recognized by anti-WTA IgG, which correlated with either extensive capsule production or an alteration in the WTA glycosylation pattern. Our results demonstrate that the presence of WTAs with TarS-mediated glycosylation with ß-GlcNAc in clinically isolated S. aureus strains is an important factor for induction of anti-WTA IgG-mediated C3 deposition and opsonophagocytosis.


Assuntos
Parede Celular/imunologia , Complemento C3/imunologia , Imunoglobulina G/imunologia , Fagocitose , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Ácidos Teicoicos/imunologia , Proteínas de Bactérias/metabolismo , Ativação do Complemento , Glicosiltransferases/metabolismo , Humanos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética
5.
Appl Environ Microbiol ; 81(7): 2481-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616805

RESUMO

Genetic manipulation of emerging bacterial pathogens, such as coagulase-negative staphylococci (CoNS), is a major hurdle in clinical and basic microbiological research. Strong genetic barriers, such as restriction modification systems or clustered regularly interspaced short palindromic repeats (CRISPR), usually interfere with available techniques for DNA transformation and therefore complicate manipulation of CoNS or render it impossible. Thus, current knowledge of pathogenicity and virulence determinants of CoNS is very limited. Here, a rapid, efficient, and highly reliable technique is presented to transfer plasmid DNA essential for genetic engineering to important CoNS pathogens from a unique Staphylococcus aureus strain via a specific S. aureus bacteriophage, Φ187. Even strains refractory to electroporation can be transduced by this technique once donor and recipient strains share similar Φ187 receptor properties. As a proof of principle, this technique was used to delete the alternative transcription factor sigma B (SigB) via allelic replacement in nasal and clinical Staphylococcus epidermidis isolates at high efficiencies. The described approach will allow the genetic manipulation of a wide range of CoNS pathogens and might inspire research activities to manipulate other important pathogens in a similar fashion.


Assuntos
Transferência Genética Horizontal , Genética Microbiana/métodos , Plasmídeos , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética , Staphylococcus epidermidis/genética , Transdução Genética , Proteínas de Bactérias/genética , Vetores Genéticos , Fator sigma/genética
6.
Proc Natl Acad Sci U S A ; 109(46): 18909-14, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23027967

RESUMO

Staphylococcus aureus peptidoglycan (PG) is densely functionalized with anionic polymers called wall teichoic acids (WTAs). These polymers contain three tailoring modifications: d-alanylation, α-O-GlcNAcylation, and ß-O-GlcNAcylation. Here we describe the discovery and biochemical characterization of a unique glycosyltransferase, TarS, that attaches ß-O-GlcNAc (ß-O-N-acetyl-D-glucosamine) residues to S. aureus WTAs. We report that methicillin resistant S. aureus (MRSA) is sensitized to ß-lactams upon tarS deletion. Unlike strains completely lacking WTAs, which are also sensitive to ß-lactams, ΔtarS strains have no growth or cell division defects. Because neither α-O-GlcNAc nor ß-O-Glucose modifications can confer resistance, the resistance phenotype requires a highly specific chemical modification of the WTA backbone, ß-O-GlcNAc residues. These data suggest ß-O-GlcNAcylated WTAs scaffold factors required for MRSA resistance. The ß-O-GlcNAc transferase identified here, TarS, is a unique target for antimicrobials that sensitize MRSA to ß-lactams.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Glicosiltransferases/metabolismo , Resistência a Meticilina/fisiologia , Staphylococcus aureus Resistente à Meticilina/enzimologia , Ácidos Teicoicos/metabolismo , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Parede Celular/genética , Deleção de Genes , Glicosilação , Glicosiltransferases/antagonistas & inibidores , Glicosiltransferases/genética , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Ácidos Teicoicos/genética , beta-Lactamas/farmacologia
7.
Int J Med Microbiol ; 304(3-4): 215-21, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24365646

RESUMO

The thick peptidoglycan layers of Gram-positive bacteria are connected to polyanionic glycopolymers called wall teichoic acids (WTA). Pathogens such as Staphylococcus aureus, Listeria monocytogenes, or Enterococcus faecalis produce WTA with diverse, usually strain-specific structure. Extensive studies on S. aureus WTA mutants revealed important functions of WTA in cell division, growth, morphogenesis, resistance to antimicrobials, and interaction with host or phages. While most of the S. aureus WTA-biosynthetic genes have been identified it remained unclear for long how and why S. aureus glycosylates WTA with α- or ß-linked N-acetylglucosamine (GlcNAc). Only recently the discovery of two WTA glycosyltransferases, TarM and TarS, yielded fundamental insights into the roles of S. aureus WTA glycosylation. Mutants lacking WTA GlcNAc are resistant towards most of the S. aureus phages and, surprisingly, TarS-mediated WTA ß-O-GlcNAc modification is essential for ß-lactam resistance in methicillin-resistant S. aureus. Notably, S. aureus WTA GlcNAc residues are major antigens and activate the complement system contributing to opsonophagocytosis. WTA glycosylation with a variety of sugars and corresponding glycosyltransferases were also identified in other Gram-positive bacteria, which paves the way for detailed investigations on the diverse roles of WTA modification with sugar residues.


Assuntos
Antígenos de Bactérias/metabolismo , Parede Celular/metabolismo , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/metabolismo , Ligação Viral , Resistência beta-Lactâmica , Antígenos de Bactérias/imunologia , Parede Celular/enzimologia , Técnicas de Inativação de Genes , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/virologia , Ácidos Teicoicos/imunologia
8.
Elife ; 122024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512723

RESUMO

Host-directed therapy (HDT) is an emerging approach to overcome antimicrobial resistance in pathogenic microorganisms. Specifically, HDT targets host-encoded factors required for pathogen replication and survival without interfering with microbial growth or metabolism, thereby eliminating the risk of resistance development. By applying HDT and a drug repurposing approach, we demonstrate that (R)-DI-87, a clinical-stage anticancer drug and potent inhibitor of mammalian deoxycytidine kinase (dCK), mitigates Staphylococcus aureus abscess formation in organ tissues upon invasive bloodstream infection. Mechanistically, (R)-DI-87 shields phagocytes from staphylococcal death-effector deoxyribonucleosides that target dCK and the mammalian purine salvage pathway-apoptosis axis. In this manner, (R)-DI-87-mediated protection of immune cells amplifies macrophage infiltration into deep-seated abscesses, a phenomenon coupled with enhanced pathogen control, ameliorated immunopathology, and reduced disease severity. Thus, pharmaceutical blockade of dCK represents an advanced anti-infective intervention strategy against which staphylococci cannot develop resistance and may help to fight fatal infectious diseases in hospitalized patients.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Animais , Humanos , Staphylococcus aureus , Desoxicitidina Quinase , Abscesso/patologia , Mamíferos
9.
J Biol Chem ; 287(4): 2887-95, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22144679

RESUMO

The desperate need for new therapeutics against notoriously antibiotic-resistant bacteria has led to a quest for novel antibacterial target structures and compounds. Moreover, defining targets and modes of action of new antimicrobial compounds remains a major challenge with standard technologies. Here we characterize the antibacterial properties of triphenylbismuthdichloride (TPBC), which has recently been successfully used against device-associated infections. We demonstrate that TPBC has potent antimicrobial activity against many bacterial pathogens. Using an exometabolome profiling approach, a unique TPBC-mediated change in the metabolites of Staphylococcus aureus was identified, indicating that TPBC blocks bacterial pyruvate catabolism. Enzymatic studies showed that TPBC is a highly efficient, uncompetitive inhibitor of the bacterial pyruvate dehydrogenase complex. Our study demonstrates that metabolomics approaches can offer new avenues for studying the modes of action of antimicrobial compounds, and it indicates that inhibition of the bacterial pyruvate dehydrogenase complex may represent a promising strategy for combating multidrug-resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Bactérias/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Metaboloma , Compostos Organometálicos/farmacologia , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Compostos de Terfenil/farmacologia , Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/enzimologia , Proteínas de Bactérias/metabolismo , Compostos Organometálicos/química , Complexo Piruvato Desidrogenase/metabolismo , Compostos de Terfenil/química
10.
BMC Microbiol ; 13: 7, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23320528

RESUMO

BACKGROUND: Bacterial protein biosynthesis usually depends on a formylated methionyl start tRNA but Staphylococcus aureus is viable in the absence of Fmt, the tRNAMet formyl transferase. fmt mutants exhibit reduced growth rates indicating that the function of certain proteins depends on formylated N-termini but it has remained unclear, which cellular processes are abrogated by the lack of formylation. RESULTS: In order to elucidate how global metabolic processes are affected by the absence of formylated proteins the exometabolome of an S. aureus fmt mutant was compared with that of the parental strain and the transcription of corresponding enzymes was analyzed to identify possible regulatory changes. The mutant consumed glucose and other carbon sources slower than the wild type. While the turnover of several metabolites remained unaltered fmt inactivation led to increases pyruvate release and, concomitantly, reduced pyruvate dehydrogenase activity. In parallel, the release of the pyruvate-derived metabolites lactate, acetoin, and alanine was reduced. The anaerobic degradation of arginine was also reduced in the fmt mutant compared to the wild-type strain. Moreover, the lack of formylated proteins caused increased susceptibility to the antibiotics trimethoprim and sulamethoxazole suggesting that folic acid-dependant pathways were perturbed in the mutant. CONCLUSIONS: These data indicate that formylated proteins are crucial for specific bacterial metabolic processes and they may help to understand why it has remained important during bacterial evolution to initiate protein biosynthesis with a formylated tRNAMet.


Assuntos
Proteínas de Bactérias/metabolismo , Metabolismo , N-Formilmetionina/metabolismo , Modificação Traducional de Proteínas , Staphylococcus aureus/metabolismo , Carbono/metabolismo , Perfilação da Expressão Gênica , Glucose/metabolismo , Ácido Pirúvico/metabolismo
11.
Front Microbiol ; 14: 1196957, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275142

RESUMO

Surface proteins of Gram-positive pathogens are key determinants of virulence that substantially shape host-microbe interactions. Specifically, these proteins mediate host invasion and pathogen transmission, drive the acquisition of heme-iron from hemoproteins, and subvert innate and adaptive immune cell responses to push bacterial survival and pathogenesis in a hostile environment. Herein, we briefly review and highlight the multi-facetted roles of cell wall-anchored proteins of multidrug-resistant Staphylococcus aureus, a common etiological agent of purulent skin and soft tissue infections as well as severe systemic diseases in humans. In particular, we focus on the functional diversity of staphylococcal surface proteins and discuss their impact on the variety of clinical manifestations of S. aureus infections. We also describe mechanistic and underlying principles of staphylococcal surface protein-mediated immune evasion and coupled strategies S. aureus utilizes to paralyze patrolling neutrophils, macrophages, and other immune cells. Ultimately, we provide a systematic overview of novel therapeutic concepts and anti-infective strategies that aim at neutralizing S. aureus surface proteins or sortases, the molecular catalysts of protein anchoring in Gram-positive bacteria.

12.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37645972

RESUMO

Host-directed therapy (HDT) is an emerging approach to overcome antimicrobial resistance in pathogenic microorganisms. Specifically, HDT targets host-encoded factors required for pathogen replication and survival without interfering with microbial growth or metabolism, thereby eliminating the risk of resistance development. By applying HDT and a drug repurposing approach, we demonstrate that (R)-DI-87, a clinical-stage anti-cancer drug and potent inhibitor of mammalian deoxycytidine kinase (dCK), mitigates Staphylococcus aureus abscess formation in organ tissues upon invasive bloodstream infection. Mechanistically, (R)-DI-87 shields phagocytes from staphylococcal death-effector deoxyribonucleosides that target dCK and the mammalian purine salvage pathway-apoptosis axis. In this manner, (R)-DI-87-mediated protection of immune cells amplifies macrophage infiltration into deep-seated abscesses, a phenomenon coupled with enhanced pathogen control, ameliorated immunopathology, and reduced disease severity. Thus, pharmaceutical blockade of dCK represents an advanced anti-infective intervention strategy against which staphylococci cannot develop resistance and may help to fight fatal infectious diseases in hospitalized patients.

13.
Sci Adv ; 9(47): eadj2641, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000019

RESUMO

Staphylococcus epidermidis expresses glycerol phosphate wall teichoic acid (WTA), but some health care-associated methicillin-resistant S. epidermidis (HA-MRSE) clones produce a second, ribitol phosphate (RboP) WTA, resembling that of the aggressive pathogen Staphylococcus aureus. RboP-WTA promotes HA-MRSE persistence and virulence in bloodstream infections. We report here that the TarM enzyme of HA-MRSE [TarM(Se)] glycosylates RboP-WTA with glucose, instead of N-acetylglucosamine (GlcNAc) by TarM(Sa) in S. aureus. Replacement of GlcNAc with glucose in RboP-WTA impairs HA-MRSE detection by human immunoglobulin G, which may contribute to the immune-evasion capacities of many invasive S. epidermidis. Crystal structures of complexes with uridine diphosphate glucose (UDP-glucose), and with UDP and glycosylated poly(RboP), reveal the binding mode and glycosylation mechanism of this enzyme and explain why TarM(Se) and TarM(Sa) link different sugars to poly(RboP). These structural data provide evidence that TarM(Se) is a processive WTA glycosyltransferase. Our study will support the targeted inhibition of TarM enzymes, and the development of RboP-WTA targeting vaccines and phage therapies.


Assuntos
Glicosiltransferases , Staphylococcus aureus , Humanos , Glicosiltransferases/química , Staphylococcus epidermidis , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Difosfato de Uridina/metabolismo , Glucose/metabolismo , Fosfatos/metabolismo
14.
Front Immunol ; 13: 836278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237275

RESUMO

NETosis is a multi-facetted cellular process that promotes the formation of neutrophil extracellular traps (NETs). NETs as web-like structures consist of DNA fibers armed with granular proteins, histones, and microbicidal peptides, thereby exhibiting pathogen-immobilizing and antimicrobial attributes that maximize innate immune defenses against invading microbes. However, clinically relevant pathogens often tolerate entrapment and even take advantage of the remnants of NETs to cause persistent infections in mammalian hosts. Here, we briefly summarize how Staphylococcus aureus, a high-priority pathogen and causative agent of fatal diseases in humans as well as animals, catalyzes and concurrently exploits NETs during pathogenesis and recurrent infections. Specifically, we focus on toxigenic and immunomodulatory effector molecules produced by staphylococci that prime NET formation, and further highlight the molecular and underlying principles of suicidal NETosis compared to vital NET-formation by viable neutrophils in response to these stimuli. We also discuss the inflammatory potential of NET-controlled microenvironments, as excessive expulsion of NETs from activated neutrophils provokes local tissue injury and may therefore amplify staphylococcal disease severity in hospitalized or chronically ill patients. Combined with an overview of adaptation and counteracting strategies evolved by S. aureus to impede NET-mediated killing, these insights may stimulate biomedical research activities to uncover novel aspects of NET biology at the host-microbe interface.


Assuntos
Armadilhas Extracelulares , Infecções Estafilocócicas , Animais , Histonas/metabolismo , Humanos , Mamíferos , Neutrófilos , Staphylococcus aureus
15.
Front Immunol ; 13: 847171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355997

RESUMO

Adenosine synthase A (AdsA) is a key virulence factor of Staphylococcus aureus, a dangerous microbe that causes fatal diseases in humans. Together with staphylococcal nuclease, AdsA generates deoxyadenosine (dAdo) from neutrophil extracellular DNA traps thereby igniting caspase-3-dependent cell death in host immune cells that aim at penetrating infectious foci. Powered by a multi-technological approach, we here illustrate that the enzymatic activity of AdsA in abscess-mimicking microenvironments is not restricted to the biogenesis of dAdo but rather comprises excessive biosynthesis of deoxyguanosine (dGuo), a cytotoxic deoxyribonucleoside generated by S. aureus to eradicate macrophages of human and animal origin. Based on a genome-wide CRISPR-Cas9 knock-out screen, we further demonstrate that dGuo-induced cytotoxicity in phagocytes involves targeting of the mammalian purine salvage pathway-apoptosis axis, a signaling cascade that is concomitantly stimulated by staphylococcal dAdo. Strikingly, synchronous targeting of this route by AdsA-derived dGuo and dAdo boosts macrophage cell death, indicating that S. aureus multiplexes death-effector deoxyribonucleosides to maximize intra-host survival. Overall, these data provide unique insights into the cunning lifestyle of a deadly pathogen and may help to design therapeutic intervention strategies to combat multidrug-resistant staphylococci.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Desoxiadenosinas/farmacologia , Mamíferos/metabolismo , Neutrófilos , Staphylococcus/metabolismo
16.
J Bacteriol ; 193(15): 4006-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21642458

RESUMO

The molecular interactions between staphylococcal phages and host cell surfaces are poorly understood. Employing Staphylococcus aureus teichoic acid mutants, we demonstrate that wall teichoic acid (WTA), but not lipoteichoic acid, serves as a receptor for staphylococcal siphovirus and myovirus, while only the siphovirus requires glycosylated WTA.


Assuntos
Receptores Virais/metabolismo , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/virologia , Ácidos Teicoicos/metabolismo , Parede Celular/metabolismo , Parede Celular/virologia , Glicosilação , Mutação , Staphylococcus aureus/genética
17.
Virulence ; 12(1): 989-1002, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33779509

RESUMO

Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is an emerging zoonotic pathogen of canine origin that causes an array of fatal diseases, including bacteremia and endocarditis. Despite large-scale genome sequencing projects have gained substantial insights into the genomic landscape of MRSP, current knowledge on virulence determinants that contribute to S. pseudintermedius pathogenesis during human or canine infection is very limited. Using a panel of genetically engineered MRSP variants and a mouse abscess model, we here identified the major secreted nuclease of S. pseudintermedius designated NucB and adenosine synthase A (AdsA) as two synergistically acting enzymes required for MRSP pathogenesis. Similar to Staphylococcus aureus, S. pseudintermedius requires nuclease secretion along with the activity of AdsA to degrade mammalian DNA for subsequent biosynthesis of cytotoxic deoxyadenosine. In this manner, S. pseudintermedius selectively kills macrophages during abscess formation thereby antagonizing crucial host immune cell responses. Ultimately, bioinformatics analyses revealed that NucB and AdsA are widespread in the global S. pseudintermedius population. Together, these data suggest that S. pseudintermedius deploys the canonical Nuc/AdsA pathway to persist during invasive disease and may aid in the development of new therapeutic strategies to combat infections caused by MRSP.


Assuntos
Doenças do Cão , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Abscesso , Animais , Antibacterianos/farmacologia , Desoxiadenosinas , Cães , Resistência a Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Camundongos , Infecção Persistente , Infecções Estafilocócicas/veterinária , Staphylococcus
18.
mSphere ; 6(3)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980677

RESUMO

Staphylococcus epidermidis is a leading opportunistic pathogen causing nosocomial infections that is notable for its ability to form a biofilm and for its high rates of antibiotic resistance. It serves as a reservoir of multiple antimicrobial resistance genes that spread among the staphylococcal population by horizontal gene transfer such as transduction. While phage-mediated transduction is well studied in Staphylococcus aureus, S. epidermidis transducing phages have not been described in detail yet. Here, we report the characteristics of four phages, 27, 48, 456, and 459, previously used for S. epidermidis phage typing, and the newly isolated phage E72, from a clinical S. epidermidis strain. The phages, classified in the family Siphoviridae and genus Phietavirus, exhibited an S. epidermidis-specific host range, and together they infected 49% of the 35 strains tested. A whole-genome comparison revealed evolutionary relatedness to transducing S. aureus phietaviruses. In accordance with this, all the tested phages were capable of transduction with high frequencies up to 10-4 among S. epidermidis strains from different clonal complexes. Plasmids with sizes from 4 to 19 kb encoding resistance to streptomycin, tetracycline, and chloramphenicol were transferred. We provide here the first evidence of a phage-inducible chromosomal island transfer in S. epidermidis Similarly to S. aureus pathogenicity islands, the transfer was accompanied by phage capsid remodeling; however, the interfering protein encoded by the island was distinct. Our findings underline the role of S. epidermidis temperate phages in the evolution of S. epidermidis strains by horizontal gene transfer, which can also be utilized for S. epidermidis genetic studies.IMPORTANCE Multidrug-resistant strains of S. epidermidis emerge in both nosocomial and livestock environments as the most important pathogens among coagulase-negative staphylococcal species. The study of transduction by phages is essential to understanding how virulence and antimicrobial resistance genes spread in originally commensal bacterial populations. In this work, we provide a detailed description of transducing S. epidermidis phages. The high transduction frequencies of antimicrobial resistance plasmids and the first evidence of chromosomal island transfer emphasize the decisive role of S. epidermidis phages in attaining a higher pathogenic potential of host strains. To date, such importance has been attributed only to S. aureus phages, not to those of coagulase-negative staphylococci. This study also proved that the described transducing bacteriophages represent valuable genetic modification tools in S. epidermidis strains where other methods for gene transfer fail.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Ilhas Genômicas/genética , Plasmídeos/genética , Fagos de Staphylococcus/genética , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/virologia , Transdução Genética , Humanos , Infecções Estafilocócicas/microbiologia , Fagos de Staphylococcus/classificação , Fagos de Staphylococcus/efeitos dos fármacos , Virulência
19.
Nat Microbiol ; 6(6): 757-768, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34031577

RESUMO

Most clonal lineages of Staphylococcus epidermidis are commensals present on human skin and in the nose. However, some globally spreading healthcare-associated and methicillin-resistant S. epidermidis (HA-MRSE) clones are major causes of difficult-to-treat implant or bloodstream infections. The molecular determinants that alter the lifestyle of S. epidermidis have remained elusive, and their identification might provide therapeutic targets. We reasoned that changes in surface-exposed wall teichoic acid (WTA) polymers of S. epidermidis, which potentially shape host interactions, may be linked to differences between colonization and infection abilities of different clones. We used a combined epidemiological and functional approach to show that while commensal clones express poly-glycerolphosphate WTA, S. epidermidis multilocus sequence type 23, which emerged in the past 15 years and is one of the main infection-causing HA-MRSE clones, contains an accessory genetic element, tarIJLM, that leads to the production of a second, Staphylococcus aureus-type WTA (poly-ribitolphosphate (RboP)). Production of RboP-WTA by S. epidermidis impaired in vivo colonization but augmented endothelial attachment and host mortality in a mouse sepsis model. tarIJLM was absent from commensal human sequence types but was found in several other HA-MRSE clones. Moreover, RboP-WTA enabled S. epidermidis to exchange DNA with S. aureus via siphovirus bacteriophages, thereby creating a possible route for the inter-species exchange of methicillin resistance, virulence and colonization factors. We conclude that tarIJLM alters the lifestyle of S. epidermidis from commensal to pathogenic and propose that RboP-WTA might be a robust target for preventive and therapeutic interventions against MRSE infections.


Assuntos
Parede Celular/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/fisiologia , Ácidos Teicoicos/metabolismo , Animais , Parede Celular/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Staphylococcus aureus/genética , Staphylococcus epidermidis/genética
20.
Front Immunol ; 11: 621733, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552085

RESUMO

Host cell death programs are fundamental processes that shape cellular homeostasis, embryonic development, and tissue regeneration. Death signaling and downstream host cell responses are not only critical to guide mammalian development, they often act as terminal responses to invading pathogens. Here, we briefly review and contrast how invading pathogens and specifically Staphylococcus aureus manipulate apoptotic, necroptotic, and pyroptotic cell death modes to establish infection. Rather than invading host cells, S. aureus subverts these cells to produce diffusible molecules that cause death of neighboring hematopoietic cells and thus shapes an immune environment conducive to persistence. The exploitation of cell death pathways by S. aureus is yet another virulence strategy that must be juxtaposed to mechanisms of immune evasion, autophagy escape, and tolerance to intracellular killing, and brings us closer to the true portrait of this pathogen for the design of effective therapeutics and intervention strategies.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Evasão da Resposta Imune , Tolerância Imunológica , Infecções Estafilocócicas/imunologia , Staphylococcus aureus , Fatores de Virulência/imunologia , Animais , Morte Celular/imunologia , Humanos , Infecções Estafilocócicas/patologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa