Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nano Lett ; 24(20): 6158-6164, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38723204

RESUMO

The gate-all-around (GAA) field-effect transistor (FET) holds great potential to support next-generation integrated circuits. Nanowires such as carbon nanotubes (CNTs) are one important category of channel materials in GAA FETs. Based on first-principles investigations, we propose that SiX2 (X = S, Se) nanowires are promising channel materials that can significantly elevate the performance of GAA FETs. The sub-5 nm SiX2 (X = S, Se) nanowire GAA FETs exhibit excellent ballistic transport properties that meet the requirements of the 2013 International Technology Roadmap for Semiconductors (ITRS). Compared to CNTs, they are also advantageous or at least comparable in terms of gate controllability, device dimensions, etc. Importantly, SiSe2 GAA FETs show superb gate controllability due to the ultralow minimum subthreshold swing (SSmin) that breaks "Boltzmann's tyranny". Moreover, the energy-delay product (EDP) of SiX2 GAA FETs is significantly lower than that of the CNT FETs. These features make SiX2 nanowires ideal channel material in the sub-5 nm GAA FET devices.

2.
Nanotechnology ; 33(19)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35021166

RESUMO

Theγ-phase cuprous iodide (CuI) emerges as a promising transparent p-type semiconductor for next-generation display technology because of its wide direct band gap, intrinsic p-type conductivity, and high carrier mobility. Two main peaks are observed in its photoluminescence (PL). One is short wavelength (410-430 nm) emission, which is well attributed to the electronic transitions at Cu vacancy, whereas the other long wavelength emission (680-720 nm) has not been fully understood. In this paper, through first-principles simulations, we investigate the formation energies and emission line shapes for various defects, and discover that the intrinsic point defect clusterVI+Cui2+is the source of the long wavelength emission. Our finding is further supported by the prediction that the defect concentration decreases dramatically as the chemical condition changes from Cu-rich to I-rich, explaining the significant reduction in the red light emission if CuI is annealed in abundant I environment.

3.
Ecotoxicol Environ Saf ; 242: 113902, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35868178

RESUMO

Aluminum (Al) is extensively used for making cooking utensils and its presence in the aquatic environment may occur through acid mine drainage and wastewater discharge. Al is known to induce genotoxicity in human cells, rodents, and fish. Nucleotide excision repair (NER) eliminates helix-twisting DNA lesions such as UV-induced dipyrimidine photoproducts. Because our earlier investigation revealed the operation of NER in zebrafish (Danio rerio) embryos, this study explored if inhibition of NER could be a mechanism of Al-induced genotoxicity using zebrafish embryo as a model system. An acute fish embryo toxicity test indicated that Al (as aluminum sulfate) at 2-15 mg/L were nonlethal to zebrafish embryos, yet exposure of embryos at 1 h post fertilization (hpf) to Al at 10-15 mg/L for 71 h significantly repressed their NER capacity monitored by a transcription-based DNA repair assay. Band shift analysis indicated a higher sensitivity of (6-4) photoproduct (6-4PP) than cyclobutane pyrimidine dimer (CPD) detecting activities to Al, reflecting the preferential influence of Al on the detection of strongly distorted DNA lesions. Time-course experiments showed a delayed response of NER to Al as repair machinery was unaffected by Al at 15 mg/L following a 35-h exposure, while Al treatment for the same period obviously inhibited 6-4PP binding activities although the gene expression of damage recognition factors remained active. Inhibition of 6-4PP detection blocked downstream lesion incision/excision detected by a terminal deoxy transferase-mediated end labeling assay. As the disturbance of damage sensing preceded that of the overall repair process, Al exposure was believed to downregulate NER capacity by inhibiting the activities of lesion detection proteins. Our results revealed the ability of Al to enhance its genotoxicity by suppressing NER capacity.


Assuntos
Alumínio , Peixe-Zebra , Alumínio/metabolismo , Alumínio/toxicidade , Animais , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Humanos , Raios Ultravioleta , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
Phys Chem Chem Phys ; 22(46): 27163-27172, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33226052

RESUMO

ABO3-δ perovskites are utilized in many applications including optical gas sensing for energy systems. Understanding the opto-electronic properties allows rational selection of the perovskite-based sensors from a diverse family of ABO3-δ perovskites, associated with the choices of A and B cations and range of oxygen concentrations. Herein, we assess the impact of oxygen vacancies on the electronic structure and optical response of pristine and oxygen-vacant ABO3-δ (A = La, Sr; B = Cr, Mn) perovskites via first-principles calculations. The endothermic formation energy for oxygen vacancies shows that the generation of ABO3-δ defect structures is thermodynamically possible. LaCrO3 and LaMnO3 have direct and indirect ground-state band gaps, respectively, whereas SrCrO3 and SrMnO3 are metallic. In the presence of an oxygen mono-vacancy, however, the band gap decreases in LaCrO3-δ and vanishes in LaMnO3-δ. In contrast to the decrease in the band gaps, the oxygen vacancies in ABO3-δ are found to increase optical absorption in the visible to near-infrared wavelength regime, and thus lower the onset energy of absorption compared with the pristine materials. Our assessments emphasize the role of the oxygen vacancy, or other possible oxygen non-stoichiometry defects, in perovskite oxides with respect to the opto-electronic performance parameters that are of interest for optical gas sensors for energy generation process environments.

5.
Phys Rev Lett ; 119(10): 105501, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28949192

RESUMO

A defect's formation energy is a key theoretical quantity that allows the calculation of equilibrium defect concentrations in solids and aids in the identification of defects that control the properties of materials and device performance, efficiency, and reliability. The theory of formation energies is rigorous only for neutral defects, but the Coulomb potentials of charged defects require additional ad hoc numerical procedures. Here we invoke statistical mechanics to derive a revised theory of charged-defect formation energies, which eliminates the need for ad hoc numerical procedures. Calculations become straightforward and transparent. We present calculations demonstrating the significance of the revised theory for defect formation energies and thermodynamic transition levels.

6.
Nat Commun ; 15(1): 3799, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714769

RESUMO

Intriguing "slidetronics" has been reported in van der Waals (vdW) layered non-centrosymmetric materials and newly-emerging artificially-tuned twisted moiré superlattices, but correlative experiments that spatially track the interlayer sliding dynamics at atomic-level remain elusive. Here, we address the decisive challenge to in-situ trace the atomic-level interlayer sliding and the induced polarization reversal in vdW-layered yttrium-doped γ-InSe, step by step and atom by atom. We directly observe the real-time interlayer sliding by a 1/3-unit cell along the armchair direction, corresponding to vertical polarization reversal. The sliding driven only by low energetic electron-beam illumination suggests rather low switching barriers. Additionally, we propose a new sliding mechanism that supports the observed reversal pathway, i.e., two bilayer units slide towards each other simultaneously. Our insights into the polarization reversal via the atomic-scale interlayer sliding provide a momentous initial progress for the ongoing and future research on sliding ferroelectrics towards non-volatile storages or ferroelectric field-effect transistors.

7.
Phys Rev Lett ; 110(21): 217205, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745921

RESUMO

Through investigating the spin-dependent charging energy of nanoscale systems, we introduce a new concept of intrinsic molecular magnetocapacitance (MC). In molecules and nanosize quantum dots that undergo a spin state transition, the MC can be as high as 12%. First-principles calculations demonstrate that in a number of nanoscale systems, the quantum capacitance is highly sensitive to the system spin and charge states. In single molecule junctions, one can exploit molecular MC through the Coulomb blockade effect by modulating the bias voltage and applying an external magnetic field, which turns electron conductance on or off. Detailed analysis on molecular nanomagnet Mn(3)O(sao)(3)(-)(O(2)CMe)(H(2)O)(py)(3) shows a 6% MC with a switching field of ~40 T. Its MC can be further enhanced to 9.6% by placing the molecule above a dielectric surface, opening up new avenues for novel nanoscale materials design. Under current experimental conditions, the predicted molecular MC effect can be probed without substantial difficulties.

8.
Phys Rev Lett ; 120(3): 039604, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400504
9.
J Phys Chem Lett ; 14(7): 1840-1847, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36779693

RESUMO

The defect types in layered semiconductors can be identified by matching the scanning transmission electron microscopy (STEM) images with the structures from first-principles simulations. In a PVD-grown MoS2 monolayer, the MoS2 antisite (one Mo replaces two S) is recognized as being dominant, because its calculated structure matches the distortive structure in STEM images. Therefore, MoS2 has received much attention in MoS2-related defect engineering. We reveal that MoS (one Mo replaces one S) may be mistaken for MoS2, because ionized MoS also has similar structural distortion and can easily be ionized under electron irradiation. Unfortunately, the radiation-induced ionization and associated structural distortion of MoS were overlooked in previous studies. Because the formation energy of MoS is much lower than that of MoS2, it is more likely to exist as the dominant defect in MoS2. Our results highlight the necessity of considering the defect ionization and associated structural distortion in STEM identification of defects in layered semiconductors.

10.
Nat Commun ; 14(1): 36, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596789

RESUMO

Two-dimensional (2D) van-der-Waals (vdW) layered ferroelectric semiconductors are highly desired for in-memory computing and ferroelectric photovoltaics or detectors. Beneficial from the weak interlayer vdW-force, controlling the structure by interlayer twist/translation or doping is an effective strategy to manipulate the fundamental properties of 2D-vdW semiconductors, which has contributed to the newly-emerging sliding ferroelectricity. Here, we report unconventional room-temperature ferroelectricity, both out-of-plane and in-plane, in vdW-layered γ-InSe semiconductor triggered by yttrium-doping (InSe:Y). We determine an effective piezoelectric constant of ∼7.5 pm/V for InSe:Y flakes with thickness of ∼50 nm, about one order of magnitude larger than earlier reports. We directly visualize the enhanced sliding switchable polarization originating from the fantastic microstructure modifications including the stacking-faults elimination and a subtle rhombohedral distortion due to the intralayer compression and continuous interlayer pre-sliding. Our investigations provide new freedom degrees of structure manipulation for intrinsic properties in 2D-vdW-layered semiconductors to expand ferroelectric candidates for next-generation nanoelectronics.

11.
Adv Mater ; 35(24): e2212213, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929743

RESUMO

Direct neutron detection based on semiconductor crystals holds promise to transform current neutron detector technologies and further boosts their widespread applications. It is, however, long impeded by the dearth of suitable materials in the form of sizeable bulk crystals. Here, high-quality centimeter-sized LiInP2 Se6 single crystals are developed using the Bridgman method and their structure and property characteristics are systematically investigated. The prototype detectors fabricated from the crystals demonstrate an energy resolution of 53.7% in response to α-particles generated from an 241 Am source and robust, well-defined response spectra to thermal neutrons that exhibit no polarization or degradation effects under prolonged neutron/γ-ray irradiation. The primary mechanisms of Se-vacancy and InLi antisite defects in the carrier trapping process are also identified. Such insights are critical for further enhancing the energy resolution of LiInP2 Se6 bulk crystals toward the intrinsic level (≈8.6% as indicated by the chemical vapor transport-grown thin crystals). These results pave the way for practically adopting LiInP2 Se6 single crystals in new-generation solid-state neutron detectors.

12.
J Phys Chem Lett ; 14(26): 6163-6169, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37377196

RESUMO

Amorphous transparent conductors (a-TCs) are key materials for flexible and transparent electronics but still suffer from poor p-type conductivity. By developing an amorphous Cu(S,I) material system, record high hole conductivities of 103-104 S cm-1 have been achieved in p-type a-TCs. These high conductivities are comparable with commercial n-type TCs made of indium tin oxide and are 100 times greater than any previously reported p-type a-TCs. Responsible for the high hole conduction is the overlap of large p-orbitals of I- and S2- anions, which provide a hole transport pathway insensitive to structural disorder. In addition, the bandgap of amorphous Cu(S,I) can be modulated from 2.6 to 2.9 eV by increasing the iodine content. These unique properties demonstrate that the Cu(S,I) system holds great potential as a promising p-type amorphous transparent electrode material for optoelectronics.

13.
J Chem Phys ; 137(18): 184705, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23163387

RESUMO

To understand the role of chlorine in the stability and the observed fragmentation of Ag dendritic nanostructures, we have studied computationally two model systems using density functional theory. The first one relates to diffusion of Ag(n) and Ag(n)Cl(m) (n = 1-4) clusters on an Ag(111) surface, and the second demonstrates interaction strength of (Ag(55))(2) dimers with and without chloridation. Based on our calculated energy barriers, Ag(n)Cl(m) clusters are more mobile than Ag(n) clusters for n = 1-4. The binding energy between two Ag(55) clusters is significantly reduced by surface chloridation. Bond weakening and enhanced mobility are two important mechanisms underlying corrosion and fragmentation processes.

14.
J Chem Phys ; 136(2): 024314, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22260586

RESUMO

We report investigations of adsorption of N(2) and O(2) molecules on silver cluster cations. We have first revisited structures of small silver clusters based on first-principles calculations within the framework of density functional theory with hybrid functional. The 2D to 3D transition for the neutral clusters occurs from n = 6 to 7 and for cations, in agreement with experiments, from n = 4 to 5. With the refined structures, adsorption energies of N(2) and O(2) molecules have been calculated. We have identified characteristic drops in the adsorption energies of N(2) that further link our calculations and experiments, and confirm the reported 2D-3D transition for cations. We have found that perturbations caused by physisorbed molecules are small enough that the structures of most Ag clusters remain unchanged, even though physisorption stabilizes the 3D Ag(7)(+) structure slightly more than the 2D counterpart. Results for pure O(2) adsorption indicate that charge transfer from Ag(n)(+) to O(2) occurs when n > 3. Below that size oxygen essentially physisorbes such as nitrogen to the cluster. We interpret the experimentally observed mutually cooperative co-adsorption of oxygen and nitrogen using results from density functional theory with generalized gradient approximations. The key to the enhancement is N(2)-induced increase in charge transfer from Ag(n)(+) cations to O(2).


Assuntos
Nitrogênio/química , Oxigênio/química , Prata/química , Adsorção , Teoria Quântica , Propriedades de Superfície
15.
J Phys Condens Matter ; 34(13)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-34937014

RESUMO

To deepen the understanding of CuI that emerges as a promising next-generation transparent display material, we investigate the temperature effect on the electronic structures of its room-temperature phase γ-CuI. Using density-functional-theory-based approaches, we investigate the bandgap renormalization, which is contributed by the electron-phonon (el-ph) interaction and lattice thermal expansion. Different from most semiconductors, the bandgap widens as temperature increases, although it only widens by 88.3 meV from 0 to 600 K. In addition, based on the temperature-dependent band structure and conventional Drude model, we investigate the influences of the effective masses and evaluate the hole mobilities limited by phonon scattering along different directions. The calculated mobilities agree well with existing experimental values. Our study not only provides a fundamental understanding of the temperature effect on the electronic structure of CuI, but also gives insights for further improvement of the electronic and thermoelectric devices based on CuI.

16.
Nat Comput Sci ; 2(8): 486-493, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38177803

RESUMO

The lifetimes of non-equilibrium charge carriers in semiconductors calculated using non-adiabatic molecular dynamics often differ from experimental results by orders of magnitude. By revisiting the definition of carrier lifetime, we report a systematic procedure for calculating the effective carrier lifetime in semiconductor crystals under realistic conditions. The consideration of all recombination mechanisms and the use of appropriate carrier and defect densities are crucial to bridging the gap between modeling and measurements. Our calculated effective carrier lifetime of CH3NH3PbI3 agrees with experiments, and is limited by band-to-band radiative recombination and Shockley-Read-Hall defect-assisted non-radiative recombination, whereas the band-to-band non-radiative recombination is found to be negligible. The procedure is further validated by application to the compound semiconductors CdTe and GaAs, and thus can be applied in carrier lifetime simulations in other material systems.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Simulação de Dinâmica Molecular , Telúrio
17.
J Chem Phys ; 132(7): 074702, 2010 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-20170239

RESUMO

We have used large-scale first-principles calculations based on density functional theory to investigate the structure, energetics, electronic, and magnetic structures of Fe(n)-doped C(60) monolayers supported by h-BN monolayer-covered Ni(111) surfaces. A systematic study of n-dependent physical properties has been performed (n=1-4,15). Binding energies on Fe atoms to the Fe(n-1)-C(60) complex have been calculated for n=1-4 after a thorough configuration search and structural optimization. The binding energy, electron charge transfer (from Fe(n) to C(60)), and magnetic moment all increase monotonically as functions of n. The electron charge transfer, ranging from approximately 1e(-) to 5e(-), is from the spin minority population. This leads to a situation in which the net spin of the C(60) molecule aligns with the spin minority and the magnetic moment in C(60) is opposite to the total magnetic moment of the system. For n=2, a competing antiferromagnetic state has been found. In this state, the net spin of the system as well as the C(60) is zero. Density of states and projected density of states analysis indicate that the system becomes metallic upon metal doping regardless its magnetic state. In addition, we have also performed calculations with the Hubbard U term (DFT+U) for two systems, n=4 and 15, to investigate possible gap opening near the Fermi surface.

18.
J Phys Chem Lett ; 11(7): 2518-2523, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32163705

RESUMO

Soft phonon modes in strongly anharmonic crystals are often neglected in calculations of phonon-related properties. Herein, we experimentally measure the temperature effects on the band gap of cubic SrTiO3, and compare with first-principles calculations by accounting for electron-phonon coupling using harmonic and anharmonic phonon modes. The harmonic phonon modes show an increase in the band gap with temperature using either Allen-Heine-Cardona theory or finite-displacement approach, and with semilocal or hybrid exchange-correlation functionals. This finding is in contrast with experimental results that show a decrease in the band gap with temperature. We show that the disagreement can be rectified by using anharmonic phonon modes that modify the contributions not only from the significantly corrected soft modes, but also from the modes that show little correction in frequencies. Our results confirm the importance of soft-phonon modes that are often neglected in the computation of phonon-related properties and particularly in electron-phonon coupling.

19.
J Phys Condens Matter ; 32(40): 405705, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32544902

RESUMO

To gain fundamental understanding of the high-temperature optical gas-sensing and light-energy conversion materials, we comparatively investigate the temperature effects on the band gap and optical properties of rutile and anatase TiO2 experimentally and theoretically. Given that the electronic structures of rutile and anatase are fundamentally different, i.e. direct band gap in rutile and indirect gap in anatase, it is not clear whether these materials exhibit different electronic structure renormalizations with temperature. Using ab initio methods, we show that the electron-phonon interaction is the dominant factor for temperature band gap renormalization compared to the thermal expansion. As a result of different contributions from the acoustic and optical phonons, the band gap is found to widen with temperature up to 300 K, and to narrow at higher temperatures. Our calculations suggest that the band gap is narrowed by about 147 meV and 128 meV at 1000 K for rutile and anatase, respectively. Experimentally, for rutile and anatase TiO2 thin films we conducted UV-Vis transmission measurements at different temperatures, and analyzed band gaps from the Tauc plots. For both TiO2 phases, the band gap is found to decrease for temperature above 300 K quantitatively, agreeing with our theoretical results. The temperature effects on the dielectric functions, the refractive index, the extinction coefficient as well as the optical conductivity are also investigated. Rutile and anatase show generally similar optical properties, but differences exist in the long wavelength regime above 600 nm, where we found that the dielectric function of rutile decreases while that of anatase increases with temperature increase.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa