Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Mol Med ; 30(1): 83, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867145

RESUMO

BACKGROUND: The terminal stage of ischemic heart disease develops into heart failure (HF), which is characterized by hypoxia and metabolic disturbances in cardiomyocytes. The hypoxic failing heart triggers hypoxia-inducible factor-1α (HIF-1α) actions in the cells sensitized to hypoxia and induces metabolic adaptation by accumulating HIF-1α. Furthermore, soluble monocarboxylic acid transporter protein 1 (MCT1) and mitochondrial pyruvate carrier 1 (MPC1), as key nodes of metabolic adaptation, affect metabolic homeostasis in the failing rat heart. Aerobic exercise training has been reported to retard the progression of HF due to enhancing HIF-1α levels as well as MCT1 expressions, whereas the effects of exercise on MCT1 and MPC1 in HF (hypoxia) remain elusive. This research aimed to investigate the action of exercise associated with MCT1 and MPC1 on HF under hypoxia. METHODS: The experimental rat models are composed of four study groups: sham stented (SHAM), HF sedentary (HF), HF short-term exercise trained (HF-E1), HF long-term exercise trained (HF-E2). HF was initiated via left anterior descending coronary artery ligation, the effects of exercise on the progression of HF were analyzed by ventricular ultrasound (ejection fraction, fractional shortening) and histological staining. The regulatory effects of HIF-1α on cell growth, MCT1 and MPC1 protein expression in hypoxic H9c2 cells were evaluated by HIF-1α activatort/inhibitor treatment and plasmid transfection. RESULTS: Our results indicate the presence of severe pathological remodelling (as evidenced by deep myocardial fibrosis, increased infarct size and abnormal hypertrophy of the myocardium, etc.) and reduced cardiac function in the failing hearts of rats in the HF group compared to the SHAM group. Treadmill exercise training ameliorated myocardial infarction (MI)-induced cardiac pathological remodelling and enhanced cardiac function in HF exercise group rats, and significantly increased the expression of HIF-1α (p < 0.05), MCT1 (p < 0.01) and MPC1 (p < 0.05) proteins compared to HF group rats. Moreover, pharmacological inhibition of HIF-1α in hypoxic H9c2 cells dramatically downregulated MCT1 and MPC1 protein expression. This phenomenon is consistent with knockdown of HIF-1α at the gene level. CONCLUSION: The findings propose that long-term aerobic exercise training, as a non- pharmacological treatment, is efficient enough to debilitate the disease process, improve the pathological phenotype, and reinstate cardiac function in HF rats. This benefit is most likely due to activation of myocardial HIF-1α and upregulation of MCT1 and MPC1.


Assuntos
Insuficiência Cardíaca , Subunidade alfa do Fator 1 Induzível por Hipóxia , Transportadores de Ácidos Monocarboxílicos , Condicionamento Físico Animal , Simportadores , Animais , Masculino , Ratos , Modelos Animais de Doenças , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/etiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Miócitos Cardíacos/metabolismo , Ratos Sprague-Dawley , Simportadores/metabolismo , Simportadores/genética , Regulação para Cima
2.
Development ; 148(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34125190

RESUMO

Loss-of-function mutations in multiple morphological abnormalities of the sperm flagella (MMAF)-associated genes lead to decreased sperm motility and impaired male fertility. As an MMAF gene, the function of fibrous sheath-interacting protein 2 (FSIP2) remains largely unknown. In this work, we identified a homozygous truncating mutation of FSIP2 in an infertile patient. Accordingly, we constructed a knock-in (KI) mouse model with this mutation. In parallel, we established an Fsip2 overexpression (OE) mouse model. Remarkably, KI mice presented with the typical MMAF phenotype, whereas OE mice showed no gross anomaly except for sperm tails with increased length. Single-cell RNA sequencing of the testes uncovered altered expression of genes related to sperm flagellum, acrosomal vesicle and spermatid development. We confirmed the expression of Fsip2 at the acrosome and the physical interaction of this gene with Acrv1, an acrosomal marker. Proteomic analysis of the testes revealed changes in proteins sited at the fibrous sheath, mitochondrial sheath and acrosomal vesicle. We also pinpointed the crucial motifs of Fsip2 that are evolutionarily conserved in species with internal fertilization. Thus, this work reveals the dosage-dependent roles of Fsip2 in sperm tail and acrosome formation.


Assuntos
Acrossomo/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Plasma Seminal/metabolismo , Cauda do Espermatozoide/metabolismo , Animais , Fertilização , Homozigoto , Masculino , Proteínas de Membrana , Camundongos , Mutação , Fenótipo , Proteômica , Análise de Sequência de RNA , Motilidade dos Espermatozoides , Espermatogênese , Testículo
3.
Cancer Cell Int ; 24(1): 14, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184626

RESUMO

BACKGROUND: Osteosarcoma is one of the most common malignant bone tumors with bad prognosis. Necroptosis is a form of programmed cell death. Recent studies showed that targeting necroptosis was a new promising approach for tumor therapy. This study aimed to establish a necroptosis-related gene signature to evaluated prognosis and explore the relationship between necroptosis and osteosarcoma. METHODS: Data from The Cancer Genome Atlas was used for developing the signature and the derived necroptosis score (NS). Data from Gene Expression Omnibus served as validation. Principal component analysis (PCA), Cox regression, receiver operating characteristic (ROC) curves and Kaplan-Meier survival analysis were used to assess the performance of signature. The association between the NS and osteosarcoma was analyzed via gene set enrichment analysis, gene set variation analysis and Pearson test. Single-cell data was used for further exploration. Among the genes that constituted the signature, the role of TNFRSF21 in osteosarcoma was unclear. Molecular experiments were used to explore TNFRSF21 function. RESULTS: Our data revealed that lower NS indicated more active necroptosis in osteosarcoma. Patients with lower NS had a better prognosis. PCA and ROC curves demonstrated NS was effective to predict prognosis. NS was negatively associated with immune infiltration levels and tumor microenvironment scores and positively associated with tumor purity and stemness index. Single-cell data showed necroptosis heterogeneity in osteosarcoma. The cell communication pattern of malignant cells with high NS was positively correlated with tumor progression. The expression of TNFRSF21 was down-regulated in osteosarcoma cell lines. Overexpression of TNFRSF21 inhibited proliferation and motility of osteosarcoma cells. Mechanically, TNFRSF21 upregulated the phosphorylation levels of RIPK1, RIPK3 and MLKL to promote necroptosis in osteosarcoma. CONCLUSIONS: The necroptosis prognostic signature and NS established in this study could be used as an independent prognostic factor, TNFRSF21 may be a necroptosis target in osteosarcoma therapy.

4.
Cell Commun Signal ; 22(1): 112, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347507

RESUMO

BACKGROUND: Though (1S, 3R)-RSL3 has been used widely in basic research as a small molecular inducer of ferroptosis, the toxicity on normal cells and poor pharmacokinetic properties of RSL3 limited its clinical application. Here, we investigated the synergism of non-thermal plasma (NTP) and low-concentration RSL3 and attempted to rise the sensitivity of NSCLC cells on RSL3. METHODS: CCK-8 assay was employed to detect the change of cell viability. Microscopy and flowcytometry were applied to identify lipid peroxidation, cell death and reactive oxygen species (ROS) level respectively. The molecular mechanism was inspected with western blot and RT-qPCR. A xenograft mice model was adopted to investigate the effect of NTP and RSL3. RESULTS: We found the synergism of NTP and low-concentration RSL3 triggered severe mitochondria damage, more cell death and rapid ferroptosis occurrence in vitro and in vivo. NTP and RSL3 synergistically induced xCT lysosomal degradation through ROS/AMPK/mTOR signaling. Furthermore, we revealed mitochondrial ROS was the main executor for ferroptosis induced by the combined treatment. CONCLUSION: Our research shows NTP treatment promoted the toxic effect of RSL3 by inducing more ferroptosis rapidly and provided possibility of RSL3 clinical application.


Assuntos
Ferroptose , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP , Lisossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR , Carbolinas/efeitos adversos , Carbolinas/toxicidade
5.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791317

RESUMO

The myostatin (MSTN) gene also regulates the developmental balance of skeletal muscle after birth, and has long been linked to age-related muscle wasting. Many rodent studies have shown a correlation between MSTN and age-related diseases. It is unclear how MSTN and age-associated muscle loss in other animals are related. In this study, we utilized MSTN gene-edited bovine skeletal muscle cells to investigate the mechanisms relating to MSTN and muscle cell senescence. The expression of MSTN was higher in older individuals than in younger individuals. We obtained consecutively passaged senescent cells and performed senescence index assays and transcriptome sequencing. We found that senescence hallmarks and the senescence-associated secretory phenotype (SASP) were decreased in long-term-cultured myostatin inactivated (MT-KO) bovine skeletal muscle cells (bSMCs). Using cell signaling profiling, MSTN was shown to regulate the SASP, predominantly through the cycle GMP-AMP synthase-stimulator of antiviral genes (cGAS-STING) pathway. An in-depth investigation by chromatin immunoprecipitation (ChIP) analysis revealed that MSTN influenced three prime repair exonuclease 1 (TREX1) expression through the SMAD2/3 complex. The downregulation of MSTN contributed to the activation of the MSTN-SMAD2/3-TREX1 signaling axis, influencing the secretion of SASP, and consequently delaying the senescence of bSMCs. This study provided valuable new insight into the role of MSTN in cell senescence in large animals.


Assuntos
Senescência Celular , Miostatina , Animais , Miostatina/genética , Miostatina/metabolismo , Bovinos , Senescência Celular/genética , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Transdução de Sinais , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Células Cultivadas
6.
J Transl Med ; 21(1): 422, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386467

RESUMO

BACKGROUND: Irinotecan (CPT-11) is a classic chemotherapeutic agent that plays an important role in the clinical treatment of metastatic colon cancer and other malignant tumors. We previously designed a series of novel irinotecan derivatives. In this study, we select one representative, ZBH-01, to investigate its sophisticated antitumor mechanism in colon tumor cells. METHODS: The cytotoxic activity of ZBH-01 on colon cancer cells was evaluate by MTT or Cell Counting Kit-8 (CCK8) assay, 3D and xenograft model. The inhibitory effect of ZBH-01 on TOP1 was detected by DNA relaxation assay and Immuno Complex of Ezyme (ICE) bioassay. The molecular mechanism of ZBH-01 was explored by Next-Generation Sequencing (NGS), bioinformatics analyses, flow cytometry, qRT-PCR, and western blot etc. RESULTS: ZBH-01 can induce obvious DNA damage and has superior antitumor activity against colon cancer cells compared to CPT-11 and SN38 (7-Ethyl-10-hydroxy camptothecin, the in vivo active form of CPT-11) both in vivo and in vitro. Its inhibitory effect on topoisomerase I (TOP1) was also comparable with these two control drugs. There are a much larger number of 842 downregulated and 927 upregulated mRNAs in ZBH-01 treatment group than that in the controls. The most significantly enriched KEGG pathways for these dysregulated mRNAs were DNA replication, the p53 signaling pathway, and the cell cycle. After constructing a protein-protein interaction (PPI) network and screening out a prominent cluster, 14 involved in the cell cycle process was identified. Consistently, ZBH-01 induced G0/G1 phase arrest in colon cancer cells, while CPT-11/SN38 caused S phase arrest. The initiation of apoptosis by ZBH-01 was also superior to CPT-11/SN38, followed by the increased expression of Bax, active caspase 3, and cleaved-PARP, and decreased expression of Bcl-2. Additionally, CCNA2 (cyclin A2), CDK2 (cyclin-dependent kinase 2), and MYBL2 (MYB proto-oncogene like 2) might be involved in the G0/G1 cell cycle arrest induced by ZBH-01. CONCLUSIONS: ZBH-01 can be an antitumor candidate drug for preclinical study in the future.


Assuntos
Camptotecina , Neoplasias do Colo , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Ciclo Celular , Divisão Celular , Neoplasias do Colo/tratamento farmacológico
7.
World J Urol ; 41(12): 3753-3758, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838641

RESUMO

OBJECTIVE: To investigate the association between low-dose aspirin use for primary prevention and self-reported kidney stones prevalence in the 40-79 years old population. METHODS: We conducted a cross-sectional study based on the United States population data from the National Health and Nutrition Examination Survey 2011-2018. Baseline demographical and clinical data were collected. The univariate and multivariate regression was performed to identify confounding factors and assess the relationship between aspirin use for primary prevention and the prevalence of self-reported kidney stones. A propensity-score matching was used to identify patients with similar baseline characteristics to adjust for the bias caused by confounding factors. RESULTS: A total of 10,256 low-dose aspirin-use participants were included in this study. 10.4% of participants reported a history of kidney stones, and 18.5% reported a continuous use of low-dose prophylactic aspirin. Multivariate logistic regression analysis showed that low-dose preventive aspirin use had significantly increased the odds of self-reported kidney stones (OR = 1.245; 95% CI: 1.063-1.459; p = 0.007). In subgroup analysis, this finding was primarily limited to males (OR = 1.311), non-hypertensive participants (OR = 1.443), diabetic participants (OR = 1.380), and older (60 ≤ Age < 80) (OR = 1.349). The propensity-score matched analyses supported this result after adjusting for the bias caused by potential confounders (OR = 1.216; 95% CI: 1.011-1.462; p = 0.038). CONCLUSION: In this study, there exists a significant relationship between low-dose aspirin for primary prevention and self-reported kidney stones, primarily among males, no hypertensive participants, diabetics, or older adults. Further studies are needed to elucidate the mechanisms underlying these findings in the future.


Assuntos
Diabetes Mellitus , Hipertensão , Cálculos Renais , Masculino , Humanos , Estados Unidos/epidemiologia , Idoso , Adulto , Pessoa de Meia-Idade , Estudos Transversais , Autorrelato , Inquéritos Nutricionais , Aspirina/uso terapêutico , Cálculos Renais/epidemiologia , Cálculos Renais/prevenção & controle , Cálculos Renais/tratamento farmacológico , Diabetes Mellitus/epidemiologia , Hipertensão/tratamento farmacológico , Prevenção Primária
8.
Cerebrovasc Dis ; 52(1): 1-10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35661647

RESUMO

BACKGROUND: Ischemic stroke is a common cerebrovascular disease with high morbidity, disability, and mortality worldwide. Currently, recombinant tissue plasminogen activator is the main intravenous thrombolysis agent for the treatment of acute ischemic stroke within 4.5 h after onset. Hemorrhagic transformation (HT) is the most serious complication of intravenous thrombolysis, which can significantly aggravate clinical poor prognosis. Therefore, it is important to early predict the risk of post-thrombolysis HT in patients with acute ischemic stroke. SUMMARY: Recently, several studies have reported that neuroimaging techniques have potential value in predicting HT after intravenous thrombolysis in patients with acute ischemic stroke. The corresponding neuroimaging parameters may be effective predictors of HT after intravenous thrombolysis. In this review, we summarized and discussed the application of neuroimaging techniques and related parameters in predicting HT after intravenous thrombolysis. KEY MESSAGES: Recognizing and understanding the predictive performance of neuroimaging parameters for HT may help assess the risk of HT after intravenous thrombolysis in patients with acute ischemic stroke and make an appropriate treatment decision.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ativador de Plasminogênio Tecidual , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/complicações , Terapia Trombolítica/efeitos adversos , Fibrinolíticos , Hemorragia/induzido quimicamente , Neuroimagem
9.
Br J Nutr ; 130(12): 2104-2113, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37381916

RESUMO

Over the years, numerous observational studies have substantiated that various dietary choices have opposing effects on CVD. However, the causal effect has not yet been established. Thus, we conducted a Mendelian randomisation (MR) analysis to reveal the causal impact of dietary habits on CVD. Genetic variants strongly associated with 20 dietary habits were selected from publicly available genome-wide association studies conducted on the UK Biobank cohort (n 449 210). Summary-level data on CVD were obtained from different consortia (n 159 836-977 323). The inverse-variance weighted method (IVW) was the primary outcome, while MR-Egger, weighted median and MR Pleiotropy RESidual Sum and Outlier were used to assess heterogeneity and pleiotropy. We found compelling evidence of a protective causal effect of genetic predisposition towards cheese consumption on myocardial infarction (IVW OR = 0·67; 95 % CI = 0·544, 0·826; P = 1·784 × 10-4) and heart failure (IVW OR = 0·646; 95 % CI = 0·513, 0·814; P = 2·135 × 10-4). Poultry intake was found to be a detrimental factor for hypertension (IVW OR = 4·306; 95 % CI = 2·158, 8·589; P = 3·416 × 10-5), while dried fruit intake was protective against hypertension (IVW OR = 0·473; 95 % CI = 0·348, 0·642; P = 1·683 × 10-6). Importantly, no evidence of pleiotropy was detected. MR estimates provide robust evidence for a causal relationship between genetic predisposition to 20 dietary habits and CVD risk, suggesting that well-planned diets may help prevent and reduce the risk of CVD.


Assuntos
Insuficiência Cardíaca , Hipertensão , Humanos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hipertensão/etiologia , Hipertensão/genética , Comportamento Alimentar
10.
Inorg Chem ; 62(39): 15963-15970, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37725073

RESUMO

Solar-driven high-efficiency conversion of CO2 with water vapor into high-value-added alcohols is a promising approach for reducing CO2 emissions and achieving carbon neutrality. However, the rapid recombination of photogenerated carriers and low CO2 adsorption capacity of photocatalysts are usually the factors that limit their applicability. Herein, a series of low-cost Z-scheme heterostructures Cu2O/PCN-250-x are constructed by in situ growth of ultrasmall Cu2O nanoparticles on PCN-250. A systematic investigation revealed that there is a strong interaction between Cu2O nanoparticles and PCN-250. The resulting Cu2O/PCN-250-2 exhibits excellent photogenerated carrier separation efficiency and CO2 adsorption capacity, which dramatically promote the conversion of CO2 into alcohols. Notably, the total yield of 268 µmol gcat-1 for the production of CH3OH and CH3H2OH is superior to that of isolated PCN-250 and Cu2O. This study provides a new perspective for the design of a Cu2O nanoparticle/metal-organic framework Z-scheme heterojunction for the reduction of CO2 to alcohols with water vapor.

11.
Brain ; 145(1): 119-141, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34077496

RESUMO

Cerebral palsy is the most prevalent physical disability in children; however, its inherent molecular mechanisms remain unclear. In the present study, we performed in-depth clinical and molecular analysis on 120 idiopathic cerebral palsy families, and identified underlying detrimental genetic variants in 45% of these patients. In addition to germline variants, we found disease-related postzygotic mutations in ∼6.7% of cerebral palsy patients. We found that patients with more severe motor impairments or a comorbidity of intellectual disability had a significantly higher chance of harbouring disease-related variants. By a compilation of 114 known cerebral-palsy-related genes, we identified characteristic features in terms of inheritance and function, from which we proposed a dichotomous classification system according to the expression patterns of these genes and associated cognitive impairments. In two patients with both cerebral palsy and intellectual disability, we revealed that the defective TYW1, a tRNA hypermodification enzyme, caused primary microcephaly and problems in motion and cognition by hindering neuronal proliferation and migration. Furthermore, we developed an algorithm and demonstrated in mouse brains that this malfunctioning hypermodification specifically perturbed the translation of a subset of proteins involved in cell cycling. This finding provided a novel and interesting mechanism for congenital microcephaly. In another cerebral palsy patient with normal intelligence, we identified a mitochondrial enzyme GPAM, the hypomorphic form of which led to hypomyelination of the corticospinal tract in both human and mouse models. In addition, we confirmed that the aberrant Gpam in mice perturbed the lipid metabolism in astrocytes, resulting in suppressed astrocytic proliferation and a shortage of lipid contents supplied for oligodendrocytic myelination. Taken together, our findings elucidate novel aspects of the aetiology of cerebral palsy and provide insights for future therapeutic strategies.


Assuntos
Paralisia Cerebral , Deficiência Intelectual , Animais , Paralisia Cerebral/genética , Cognição , Estudos de Coortes , Comorbidade , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Camundongos
12.
Neurol Sci ; 44(4): 1281-1288, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36529794

RESUMO

BACKGROUND AND PURPOSE: Hemorrhagic transformation (HT) is the most serious complication of intravenous thrombolysis in ischemic stroke patients. Inflammation plays a critical role in the pathological progression of HT. This study was to explore the relationship between fibrinogen-to-albumin ratio (FAR), a novel systemic inflammation biomarker, and HT after intravenous thrombolysis in patients with ischemic stroke. METHODS: This retrospective study enrolled ischemic stroke patients who underwent intravenous thrombolysis between Jan 2017 to May 2022. The characteristic data of all patients at admission were retrospectively collected. The univariate and multivariate logistic regression analyses were performed to evaluate the correlation between FAR and HT after intravenous thrombolysis. The optimal cut-off value of FAR for predicting HT was determined by the receiver operating characteristic curve. RESULTS: A total of 363 ischemic stroke patients were enrolled in the present study. Sixty-two patients had HT after intravenous thrombolysis. In multivariate regression analysis, FAR was significantly associated with HT (odds ratio [OR], 1.105; 95% confidential interval [CI], 1.029-1.186, P = 0.006). The receiver operating characteristic curve analysis indicated FAR predicts HT after intravenous thrombolysis with an AUC of 0.613 (95%CI, 0.530-0.695; P = 0.005) and an optimal cut-off value of 0.101. The correlation between FAR and HT after intravenous thrombolysis was still observed when patients were stratified according to FAR levels. A higher FAR level was independently related to the occurrence of HT after adjusting for the potential confounding factors. CONCLUSION: Higher FAR level was independently associated with HT after intravenous thrombolysis in patients with ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/efeitos adversos , Estudos Retrospectivos , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/complicações , Terapia Trombolítica/efeitos adversos , Inflamação/complicações , Fibrinogênio/uso terapêutico , Albuminas/uso terapêutico
13.
Int J Mol Sci ; 24(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240377

RESUMO

As a master regulator in cells, RNA-binding protein (RBP) plays critical roles in organismal development, metabolism and various diseases. It regulates gene expression at various levels mostly by specific recognition of target RNA. The traditional CLIP-seq method to detect transcriptome-wide RNA targets of RBP is less efficient in yeast due to the low UV transmissivity of their cell walls. Here, we established an efficient HyperTRIBE (Targets of RNA-binding proteins Identified By Editing) in yeast, by fusing an RBP to the hyper-active catalytic domain of human RNA editing enzyme ADAR2 and expressing the fusion protein in yeast cells. The target transcripts of RBP were marked with new RNA editing events and identified by high-throughput sequencing. We successfully applied HyperTRIBE to identifying the RNA targets of two yeast RBPs, KHD1 and BFR1. The antibody-free HyperTRIBE has competitive advantages including a low background, high sensitivity and reproducibility, as well as a simple library preparation procedure, providing a reliable strategy for RBP target identification in Saccharomyces cerevisiae.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Reprodutibilidade dos Testes , Sítios de Ligação/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Molecules ; 28(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049893

RESUMO

Serratiopeptidase is a clinical therapeutic protein for the treatment of human diseases such as arthritis, bronchitis, and thrombosis. Yet production of this protein in a heterologous host (e.g., Escherichia coli) is difficult due to the issue of protein insolubility and the requirement of laborious refolding procedures. Cell-free protein synthesis (CFPS) systems, derived from crude cell extracts, are effective platforms for the expression of recombinant proteins in vitro. Here, we report a new method to produce serratiopeptidase by using an E. coli-based CFPS system. After rational selection of cell extracts and construction of expression vectors, soluble expression of serratiopeptidase was achieved and the enzyme activity could be readily tested in the cell-free reaction mixture. By further optimizing the key parameters, optimum conditions for the enzyme activity assay were obtained, including the pH value at 5, reaction temperature at 45 °C, substrate concentration at 10 mg/mL, and supplementing Ca2+ ions at 5 mM. Moreover, the CFPS mixture was freeze-dried and the activity of serratiopeptidase could be regenerated by hydration without losing activity. Overall, the CFPS system enabled soluble expression of serratiopeptidase with catalytic activity, providing a new and promising approach for this enzyme production. Our work extends the utility of the cell-free platform to produce therapeutic proteins with clinical applications.


Assuntos
Escherichia coli , Biossíntese de Proteínas , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Extratos Celulares , Proteínas Recombinantes/metabolismo , Sistema Livre de Células/metabolismo
15.
J Integr Plant Biol ; 65(10): 2395-2406, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37485903

RESUMO

Pollen hydration on dry stigmas is strictly regulated by pollen-stigma interactions in Brassicaceae. Although several related molecular events have been described, the molecular mechanism underlying pollen hydration remains elusive. Multiple B-class pollen coat proteins (PCP-Bs) are involved in pollen hydration. Here, by analyzing the interactions of two PCP-Bs with three Arabidopsis thaliana stigmas strongly expressing S-domain receptor kinase (SD-RLK), we determined that SD-RLK28 directly interacts with PCP-Bß. We investigated pollen hydration, pollen germination, pollen tube growth, and stigma receptivity in the sd-rlk28 and pcp-bß mutants. PCP-Bß acts in the pollen to regulate pollen hydration on stigmas. Loss of SD-RLK28 had no effect on pollen viability, and sd-rlk28 plants had normal life cycles without obvious defects. However, pollen hydration on sd-rlk28 stigmas was impaired and pollen tube growth in sd-rlk28 pistils was delayed. The defect in pollen hydration on sd-rlk28 stigmas was independent of changes in reactive oxygen species levels in stigmas. These results indicate that SD-RLK28 functions in the stigma as a PCP-Bß receptor to positively regulate pollen hydration on dry stigmas.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Pólen/metabolismo , Comunicação Celular
16.
J Neuroinflammation ; 19(1): 243, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195875

RESUMO

BACKGROUND: Moderate physical exercise is conducive to the brains of healthy humans and AD patients. Previous reports have suggested that treadmill exercise plays an anti-AD role and improves cognitive ability by promoting amyloid clearance, inhibiting neuronal apoptosis, reducing oxidative stress level, alleviating brain inflammation, and promoting autophagy-lysosome pathway in AD mice. However, few studies have explored the relationships between the ubiquitin-proteasome system and proper exercise in AD. The current study was intended to investigate the mechanism by which the exercise-regulated E3 ubiquitin ligase improves AD. METHODS: Both wild type and APP/PS1 transgenic mice were divided into sedentary (WTC and ADC) and exercise (WTE and ADE) groups (n = 12 for each group). WTE and ADE mice were subjected to treadmill exercise of 12 weeks in order to assess the effect of treadmill running on learning and memory ability, Aß plaque burden, hyperphosphorylated Tau protein and E3 ubiquitin ligase. RESULTS: The results indicated that exercise restored learning and memory ability, reduced Aß plaque areas, inhibited the hyperphosphorylation of Tau protein activated PI3K/Akt/Hsp70 signaling pathway, and improved the function of the ubiquitin-proteasome system (increased UCHL-1 and CHIP levels, decreased BACE1 levels) in APP/PS1 transgenic mice. CONCLUSIONS: These findings suggest that exercise may promote the E3 ubiquitin ligase to clear ß-amyloid and hyperphosphorylated Tau by activating the PI3K/Akt signaling pathway in the hippocampus of AD mice, which is efficient in ameliorating pathological phenotypes and improving learning and memory ability.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases , Cognição , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/farmacologia , Proteínas tau/genética , Proteínas tau/metabolismo
17.
FASEB J ; 35(11): e21993, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670005

RESUMO

Somatic cell nuclear transfer (SCNT) can reprogram differentiated somatic cells to produce individual animals, thus having advantages in animal breeding and chromatin reprogramming. Interspecies SCNT (iSCNT) provides extreme cases of reprogramming failure that can be used to understand the basic biological mechanism of genome reprogramming. It is important to understand the possible mechanisms for the failure of zygotic genome activation (ZGA) in iSCNT embryos in order to improve the efficiency of SCNT embryos. In the present study, we compared the development of bovine-bovine (B-B), ovine-ovine (O-O) SCNT, and ovine-bovine (O-B) iSCNT embryos and found that a developmental block existed in the 8-cell stage in O-B iSCNT embryos. RNA sequencing and q-PCR analysis revealed that the large ribosomal subunit genes (RPL) or the small ribosomal subunit genes (RPS) were expressed at lower levels in the O-B iSCNT embryos. The nucleolin (C23) gene that regulates the ribosomal subunit generation was transcribed at a lower level during embryonic development in O-B iSCNT embryos. In addition, the nucleolin exhibited a clear circular-ring structure in B-B 8-cell stage embryos, whereas this was shell-like or dot-like in the O-B embryos. Furthermore, overexpression of C23 could increase the blastocyst rate of both SCNT and iSCNT embryos and partly rectify the ring-like nucleolin structure and the expression of ribosomal subunit related genes were upregulation, while knockdown of C23 increased the shell-like nucleolin-structure in B-B cloned embryos and downregulated the expression of ribosomal subunit related genes. These results implied that abnormal C23 and ribosome subunit gene expression would lead to the developmental block of iSCNT embryos and ZGA failure. Overexpression of the C23 gene could partly improve the blastocyst development and facilitate the nucleolin structure in bovine preimplantation SCNT embryos.


Assuntos
Desenvolvimento Embrionário , Fibroblastos/citologia , Técnicas de Transferência Nuclear , Fosfoproteínas/fisiologia , Proteínas de Ligação a RNA/fisiologia , Animais , Bovinos , Células Cultivadas , Embrião de Mamíferos , Oócitos , Ovinos , Nucleolina
18.
Int J Sports Med ; 43(5): 444-454, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34688220

RESUMO

Many studies have confirmed that exhaustive exercise has adverse effects on the heart by generating reactive oxygen species (ROS). S100A1 calcium-binding protein A1 (S100A1) is a regulator of myocardial contractility and a protector against myocardial injury. However, few studies have investigated the role of S100A1 in the regulation of myocardial injury induced by exhaustive exercise. In the present study, we suggested that exhaustive exercise led to increased ROS, downregulation of S100a1, and myocardial injury. Downregulation of S100a1 promoted exhaustive exercise-induced myocardial injury and overexpression of S100A1 reversed oxidative stress-induced cardiomyocyte injury, indicating S100A1 is a protective factor against myocardial injury caused by exhaustive exercise. We also found that downregulation of S100A1 promoted damage to critical proteins of the mitochondria by inhibiting the expression of Ant1, Pgc1a, and Tfam under exhaustive exercise. Our study indicated S100A1 as a potential prognostic biomarker or therapeutic target to improve the myocardial damage induced by exhaustive exercise and provided new insights into the molecular mechanisms underlying the myocardial injury effect of exhaustive exercise.


Assuntos
Miocárdio , Proteínas S100 , Coração , Humanos , Miocárdio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Proteínas S100/uso terapêutico
19.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897861

RESUMO

Cell-free protein synthesis (CFPS) systems are emerging as powerful platforms for in vitro protein production, which leads to the development of new CFPS systems for different applications. To expand the current CFPS toolkit, here we develop a novel CFPS system derived from a chassis microorganism Klebsiella pneumoniae, an important industrial host for heterologous protein expression and the production of many useful chemicals. First, we engineered the K. pneumoniae strain by deleting a capsule formation-associated wzy gene. This capsule-deficient strain enabled easy collection of the cell biomass for preparing cell extracts. Then, we optimized the procedure of cell extract preparation and the reaction conditions for CFPS. Finally, the optimized CFPS system was able to synthesize a reporter protein (superfolder green fluorescent protein, sfGFP) with a maximum yield of 253 ± 15.79 µg/mL. Looking forward, our K. pneumoniae-based CFPS system will not only expand the toolkit for protein synthesis, but also provide a new platform for constructing in vitro metabolic pathways for the synthesis of high-value chemicals.


Assuntos
Klebsiella pneumoniae , Biossíntese de Proteínas , Extratos Celulares , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo
20.
Int J Environ Health Res ; 32(8): 1780-1790, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33813965

RESUMO

PURPOSE: To assess the correlation between meteorological factors and spinal disease admissions. METHODS: Data was obtained from the electronic medical records of a tertiary general hospital. Meteorological data was collected from China Meteorological Science Data Sharing Service. Distributed lag nonlinear models were used to evaluate the impact of meteorological variables on weekly spinal disease admissions. RESULTS: A total of 2739 spinal cases were documented. Compared with estimates at the 50th, the cumulative relative risk (RR) for extremely high temperatures at the 97.5th over lag week 18 to lag week 20 increased by 75.7%. When the weekly maximum temperature reached 38°C during lag week 20, the maximum RR was 1.96 (95% CI:1.095-3.506). Moreover, the effects of extremely high temperatures on spinal disease admissions were more obvious in females and the age group ≥65 years old compared with males and the age group<65 years old. CONCLUSIONS: Extremely high temperatures were significantly associated with higher risks of spinal disease admissions.


Assuntos
Conceitos Meteorológicos , Doenças da Coluna Vertebral , Idoso , China/epidemiologia , Feminino , Hospitalização , Hospitais , Humanos , Masculino , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa