Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Appl Environ Microbiol ; 90(8): e0069524, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39078126

RESUMO

While the distribution of extracellular ARGs (eARGs) in the environment has been widely reported, the factors governing their release remain poorly understood. Here, we combined multi-omics and direct experimentation to test whether the release and transmission of eARGs are associated with viral lysis and heat during cow manure composting. Our results reveal that the proportion of eARGs increased 2.7-fold during composting, despite a significant and concomitant reduction in intracellular ARG abundances. This relative increase of eARGs was driven by composting temperature and viral lysis of ARG-carrying bacteria based on metagenome-assembled genome (MAG) analysis. Notably, thermal lysis of mesophilic bacteria carrying ARGs was a key factor in releasing eARGs at the thermophilic phase, while viral lysis played a relatively stronger role during the non-thermal phase of composting. Furthermore, MAG-based tracking of ARGs in combination with direct transformation experiments demonstrated that eARGs released during composting pose a potential transmission risk. Our study provides bioinformatic and experimental evidence of the undiscovered role of temperature and viral lysis in co-driving the spread of ARGs in compost microbiomes via the horizontal transfer of environmentally released DNA. IMPORTANCE: The spread of antibiotic resistance genes (ARGs) is a critical global health concern. Understanding the factors influencing the release of extracellular ARGs (eARGs) is essential for developing effective strategies. In this study, we investigated the association between viral lysis, heat, and eARG release during composting. Our findings revealed a substantial increase in eARGs despite reduced intracellular ARG abundance. Composting temperature and viral lysis were identified as key drivers, with thermal lysis predominant during the thermophilic phase and viral lysis during non-thermal phases. Moreover, eARGs released during composting posed a transmission risk through horizontal gene transfer. This study highlights the significance of temperature and phage lysis in ARG spread, providing valuable insights for mitigating antibiotic resistance threats.


Assuntos
Compostagem , Transferência Genética Horizontal , Esterco/microbiologia , Esterco/virologia , Microbiologia do Solo , Bactérias/genética , Bactérias/efeitos dos fármacos , Animais , Metagenoma , Bovinos , Temperatura Alta , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética , Microbiota , Bacteriófagos/genética , Bacteriófagos/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38323900

RESUMO

Three microaerophilic bacterial strains, designated SG22T, SG63T and SG29T were isolated from paddy soils in PR China. Cells of these strains were Gram-staining-negative and long rod-shaped. SG22T, SG63T and SG29T showed the highest 16S rRNA gene sequence similarities with the members of the genus Anaeromyxobacter. The results of phylogenetic and phylogenomic analysis also indicated that these strains clustered with members of the genus Anaeromyxobacter. The main respiratory menaquinone of SG22T, SG63T and SG29T was MK-8 and the major fatty acids were iso-C15 : 0, iso-C17 : 0 and C16 : 0. SG22T, SG29T and SG63T not only possessed iron reduction ability but also harboured genes (nifHDK) encoding nitrogenase. The genomic DNA G+C contents of SG22T, SG63T and SG29T ranged from 73.3 to 73.5 %. The average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values between SG22T, SG63T and SG29T and the closely related species of the genus Anaeromyxobacter were lower than the cut-off values (dDDH 70 % and ANI 95-96 %) for prokaryotic species delineation. On the basis of these results, strains SG22T, SG63T and SG29T represent three novel species within the genus Anaeromyxobacter, for which the names Anaeromyxobacter terrae sp. nov., Anaeromyxobacter oryzisoli sp. nov. and Anaeromyxobacter soli sp. nov., are proposed. The type strains are SG22T (= GDMCC 1.3185T = JCM 35581T), SG63T (= GDMCC 1.2914T = JCM 35124T) and SG29T (= GDMCC 1.2911T = JCM 35123T).


Assuntos
Myxococcales , Bactérias Fixadoras de Nitrogênio , Compostos Férricos , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Nucleotídeos , Solo
3.
Antonie Van Leeuwenhoek ; 118(1): 6, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292388

RESUMO

Two facultatively aerobic strains, designated SGZ-02T and SGZ-792T, were isolated from plant Pennisetum sp., exhibiting the highest 16S rRNA gene sequence similarities with the type strains of Sphingomonas zeae LMG 28739T (98.6%) and Massilia forsythiae NBRC 114511T (98.4%), respectively. SGZ-02T grew between 5 and 45 °C, pH 5.0-11.0 and tolerated NaCl concentrations of 0-4% (w/v), whereas SGZ-792T thrived at 5-40 °C, pH 5.0-11.0 and NaCl tolerance to 0-3.5% (w/v). The major quinone of SGZ-02T was ubiquinone-10, with the dominant fatty acids being C16:0 (13.5%), Summed Feature 3 (6.3%), C14:02-OH (5.3%) and Summed Feature 8 (66.3%). SGZ-792T predominantly contained ubiquinone-8, with major fatty acids being C16:0 (20.3%), Summed Feature 3 (5.0%) and Summed Feature 8 (54.7%). Average nucleotide identity and digital DNA-DNA hybridization values between two strains and their closest references strains were below the bacterial species threshold. Based on genotypic and phenotypic characteristics, strains SGZ-02T and SGZ-792T are proposed as novel species within the genera Sphingomonas and Massilia, respectively. The suggested names for the new species are Sphingomonas fuzhouensis sp. nov. (SGZ-02T = GDMCC 1.4033T = JCM 36769T) and Massilia phyllosphaerae sp. nov. (SGZ-792T = GDMCC 1.4211T = JCM 36643T), respectively.


Assuntos
DNA Bacteriano , Ácidos Graxos , Pennisetum , Filogenia , RNA Ribossômico 16S , Sphingomonas , Sphingomonas/genética , Sphingomonas/classificação , Sphingomonas/isolamento & purificação , Sphingomonas/fisiologia , RNA Ribossômico 16S/genética , Pennisetum/microbiologia , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , DNA Bacteriano/genética , Genoma Bacteriano , Técnicas de Tipagem Bacteriana , Composição de Bases , Análise de Sequência de DNA
4.
Artigo em Inglês | MEDLINE | ID: mdl-29507071

RESUMO

The occurrence of heavy metal resistance genes in multiresistant Enterobacteriaceae possessing blaNDM-1 or blaCTX-M-15 genes was examined by PCR and pulsed-field gel electrophoresis with S1 nuclease. Compared with clinical susceptible isolates (10.0% to 30.0%), the pcoA, merA, silC, and arsA genes occurred with higher frequencies in blaNDM-1-positive (48.8% to 71.8%) and blaCTX-M-15-positive (19.4% to 52.8%) isolates, and they were mostly located on plasmids. Given the high association of metal resistance genes with multidrug-resistant Enterobacteriaceae, increased vigilance needs to be taken with the use of heavy metals in hospitals and the environment.


Assuntos
Antibacterianos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Metais Pesados/farmacologia , Farmacorresistência Bacteriana , Eletroforese em Gel de Campo Pulsado , Testes de Sensibilidade Microbiana , Plasmídeos/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
5.
Antimicrob Agents Chemother ; 60(7): 4336-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27067314

RESUMO

We sequenced a novel conjugative multidrug resistance IncF plasmid, p42-2, isolated from Escherichia coli strain 42-2, previously identified in China. p42-2 is 106,886 bp long, composed of a typical IncFII-type backbone (∼54 kb) and one distinct acquired DNA region spanning ∼53 kb, harboring 12 antibiotic resistance genes [blaCTX-M-55, oqxA, oqxB, fosA3, floR, tetA(A), tetA(R), strA, strB, sul2, aph(3')-II, and ΔblaTEM-1]. The spread of these multidrug resistance determinants on the same plasmid is of great concern and, because of coresistance to antibiotics from different classes, is therapeutically challenging.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , beta-Lactamases/metabolismo , China , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , beta-Lactamases/genética
6.
Antimicrob Agents Chemother ; 59(1): 738-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25403661

RESUMO

We report the complete nucleotide sequence of a plasmid carrying the multiresistance gene cfr. This plasmid was isolated from an Escherichia coli strain of swine origin in 2011. This 37,672-bp plasmid, pSD11, had an IncX4 backbone similar to those of the IncX4 plasmids obtained from the United States and Australia, in which the cfr gene was flanked by two copies of IS26 and a truncated Tn1331 was inserted.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Metiltransferases/genética , Plasmídeos/genética , Animais , Sequência de Bases , Genes Bacterianos/genética , Dados de Sequência Molecular , Suínos/microbiologia
7.
mSystems ; 9(9): e0060724, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39166877

RESUMO

The global rise of antibiotic resistance has renewed interest in phage therapy, as an alternative to antibiotics to eliminate multidrug-resistant (MDR) bacterial pathogens. However, optimizing the broad-spectrum efficacy of phage therapy remains a challenge. In this study, we addressed this issue by employing strategies to improve antimicrobial efficacy of phage therapy against MDR Klebsiella pneumoniae strains, which are notorious for their resistance to conventional antibiotics. This includes the selection of broad host range phages, optimization of phage formulation, and combinations with last-resort antibiotics. Our findings unveil that having a broad host range was a dominant trait of isolated phages, and increasing phage numbers in combination with antibiotics significantly enhanced the suppression of bacterial growth. The decreased incidence of bacterial infection was explained by a reduction in pathogen density and emergence of bacterial resistance. Furthermore, phage-antibiotic synergy (PAS) demonstrated considerable broad-spectrum antibacterial potential against different clades of clinical MDR K. pneumoniae pathogens. The improved treatment outcomes of optimized PAS were also evident in a murine model, where mice receiving optimized PAS therapy demonstrated a reduced bacterial burden in mouse tissues. Taken together, these findings offer an important development in optimizing PAS therapy and its efficacy in the elimination of MDR K. pneumoniae pathogens. IMPORTANCE: The worldwide spread of antimicrobial resistance (AMR) has posed a great challenge to global public health. Phage therapy has become a promising alternative against difficult-to-treat pathogens. One important goal of this study was to optimize the therapeutic efficiency of phage-antibiotic combinations, known as phage-antibiotic synergy (PAS). Through comprehensive analysis of the phenotypic and genotypic characteristics of a large number of CRKp-specific phages, we developed a systematic model for phage cocktail combinations. Crucially, our finding demonstrated that PAS treatments not only enhance the bactericidal effects of colistin and tigecycline against multidrug-resistant (MDR) K. pneumoniae strains in in vitro and in vivo context but also provide a robust response when antibiotics fail. Overall, the optimized PAS therapy demonstrates considerable potential in combating diverse K. pneumoniae pathogens, highlighting its relevance as a strategy to mitigate antibiotic resistance threats effectively.


Assuntos
Antibacterianos , Bacteriófagos , Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella , Klebsiella pneumoniae , Terapia por Fagos , Klebsiella pneumoniae/virologia , Klebsiella pneumoniae/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Terapia por Fagos/métodos , Camundongos , Infecções por Klebsiella/terapia , Infecções por Klebsiella/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Feminino
8.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39030691

RESUMO

Arthropods, such as houseflies, play a significant role in the dissemination of antimicrobial resistance (AMR); however, their impact has often been overlooked in comparison to other AMR vectors. Understanding the contribution of arthropods to the spread of AMR is critical for implementing robust policies to mitigate the spread of AMR across One Health sectors, affecting animals and environmental habitats as well as humans. In this study, we investigated the in situ transfer of a gfp-labelled AMR plasmid (IncA/C carrying an mcr-8 gene, pA/C_MCR-8) in the gut microbiota of houseflies (Musca domestica) by applying single-cell sorting, 16S rRNA gene amplicon sequencing and whole-genome sequencing. Our findings demonstrate that the pA/C_MCR-8-positive Escherichia coli donor strain is capable of colonizing the gut microbiome of houseflies and persists in the housefly intestine for 5 days; however, no transfer was detectable above the detection threshold of 10-5 per cell. The conjugative plasmid pA/C_MCR-8 demonstrated a high transfer frequency ranging from 4.1 × 10-3 to 5.0 × 10-3 per cell in vitro and exhibited transfer across various bacterial phyla, primarily encompassing Pseudomonadota and Bacillota. Phylogenic analysis has revealed that Providencia stuartii, a human opportunistic pathogen, is a notable recipient of pA/C_MCR-8. The conjugation assays further revealed that newly formed P. stuartii transconjugants readily transfer pA/C_MCR-8 to other clinically relevant pathogens (e.g. Klebsiella pneumoniae). Our findings indicate the potential transfer of AMR plasmids from houseflies to human opportunistic pathogens and further support the adoption of a One Health approach in developing infection control policies that address AMR across clinical settings.


Assuntos
Microbioma Gastrointestinal , Moscas Domésticas , Plasmídeos , Moscas Domésticas/microbiologia , Animais , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , RNA Ribossômico 16S/genética , Transferência Genética Horizontal , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma
9.
Lancet Microbe ; 5(1): e13-e23, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006896

RESUMO

BACKGROUND: The global spread of plasmid-borne carbapenem resistance is an ongoing public health challenge; however, the nature of such horizontal gene transfer events among complex bacterial communities remains poorly understood. We examined the in-situ transfer of the globally dominant New Delhi metallo-ß-lactamase (NDM)-5-positive IncX3 plasmid (denoted pX3_NDM-5) in hospital wastewater to simulate a real-world, One Health antimicrobial resistance context. METHODS: For this transmission study, we tagged pX3_NDM-5 with the green fluorescent protein gene, gfp, using a CRISPR-based method and transferred the plasmid to a donor Escherichia coli strain. Bacteria were extracted from a hospital wastewater treatment plant (Fujian Provincial Maternity and Children's Hospital, Fuzhou, China) as the bacterial recipient community. We mixed this recipient community with the E coli donor strain carrying the gfp-tagged plasmid, both with and without sodium hypochlorite (NaClO) as an environmental stressor, and conducted several culture-based and culture-independent conjugation assays. The conjugation events were observed microscopically and quantified by fluorescence-activated cell sorting. We analysed the taxonomic composition of the sorted transconjugal pool by 16S rRNA gene amplicon sequencing and assessed the stability of the plasmid in the isolated transconjugants and its ability to transfer back to E coli. FINDINGS: We show that the plasmid pX3_NDM-5 has a broad host range and can transfer across various bacterial phyla, including between Gram-negative and Gram-positive bacteria. Although environmental stress with NaClO did not affect the overall plasmid transfer frequency, it reduced the breadth of the transconjugant pool. The taxonomic composition of the transconjugal pool was distinct from that of the recipient communities, and environmental stress modulated the permissiveness of some operational taxonomic units towards the acquisition of pX3_NDM-5. Notably, pX3_NDM-5 transconjugants included the Gram-positive pathogen Enterococcus faecalis, and the plasmid could subsequently be reconjugated back to E coli. These findings suggest that E faecalis could act as a natural shuttle vector for the wide dissemination of pX3_NDM-5 plasmids. INTERPRETATION: Our culture-independent conjugation model simulates natural environmental conditions and challenges the established theory that Gram-negative and Gram-positive bacteria rarely exchange clinically important plasmids. The data show that plasmids disseminate more widely across genera and phyla than previously thought. These findings have substantial implications when considering the spread of antimicrobial resistance across One Health sectors. FUNDING: The Laboratory of Lingnan Modern Agriculture Project, the National Natural Science Foundation of China, the Natural Science Foundation of Fujian Province of China, and the Outstanding Young Research Talents Program of Fujian Agriculture and Forestry University.


Assuntos
Anti-Infecciosos , Escherichia coli , Feminino , Gravidez , Criança , Humanos , Escherichia coli/genética , Águas Residuárias , RNA Ribossômico 16S/genética , Plasmídeos/genética , Bactérias/genética , Hospitais
10.
Nat Commun ; 15(1): 3654, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688912

RESUMO

The horizontal transfer of plasmids has been recognized as one of the key drivers for the worldwide spread of antimicrobial resistance (AMR) across bacterial pathogens. However, knowledge remain limited about the contribution made by environmental stress on the evolution of bacterial AMR by modulating horizontal acquisition of AMR plasmids and other mobile genetic elements. Here we combined experimental evolution, whole genome sequencing, reverse genetic engineering, and transcriptomics to examine if the evolution of chromosomal AMR to triclosan (TCS) disinfectant has correlated effects on modulating bacterial pathogen (Klebsiella pneumoniae) permissiveness to AMR plasmids and phage susceptibility. Herein, we show that TCS exposure increases the evolvability of K. pneumoniae to evolve TCS-resistant mutants (TRMs) by acquiring mutations and altered expression of several genes previously associated with TCS and antibiotic resistance. Notably, nsrR deletion increases conjugation permissiveness of K. pneumoniae to four AMR plasmids, and enhances susceptibility to various Klebsiella-specific phages through the downregulation of several bacterial defense systems and changes in membrane potential with altered reactive oxygen species response. Our findings suggest that unrestricted use of TCS disinfectant imposes a dual impact on bacterial antibiotic resistance by augmenting both chromosomally and horizontally acquired AMR mechanisms.


Assuntos
Bacteriófagos , Klebsiella pneumoniae , Plasmídeos , Triclosan , Triclosan/farmacologia , Plasmídeos/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/virologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , Farmacorresistência Bacteriana Múltipla/genética , Mutação , Transferência Genética Horizontal , Sequenciamento Completo do Genoma , Evolução Molecular , Antibacterianos/farmacologia
11.
Nat Commun ; 15(1): 5498, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944647

RESUMO

IncX3 plasmids carrying the New Delhi metallo-ß-lactamase-encoding gene, blaNDM-5, are rapidly spreading globally in both humans and animals. Given that carbapenems are listed on the WHO AWaRe watch group and are prohibited for use in animals, the drivers for the successful dissemination of Carbapenem-Resistant Enterobacterales (CRE) carrying blaNDM-5-IncX3 plasmids still remain unknown. We observe that E. coli carrying blaNDM-5-IncX3 can persist in chicken intestines either under the administration of amoxicillin, one of the largest veterinary ß-lactams used in livestock, or without any antibiotic pressure. We therefore characterise the blaNDM-5-IncX3 plasmid and identify a transcription regulator, VirBR, that binds to the promoter of the regulator gene actX enhancing the transcription of Type IV secretion systems (T4SS); thereby, promoting conjugation of IncX3 plasmids, increasing pili adhesion capacity and enhancing the colonisation of blaNDM-5-IncX3 transconjugants in animal digestive tracts. Our mechanistic and in-vivo studies identify VirBR as a major factor in the successful spread of blaNDM-5-IncX3 across one-health AMR sectors. Furthermore, VirBR enhances the plasmid conjugation and T4SS expression by the presence of copper and zinc ions, thereby having profound ramifications on the use of universal animal feeds.


Assuntos
Antibacterianos , Galinhas , Conjugação Genética , Escherichia coli , Plasmídeos , beta-Lactamases , Animais , Plasmídeos/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Galinhas/microbiologia , Humanos , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Amoxicilina/farmacologia , Regiões Promotoras Genéticas/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Intestinos/microbiologia
12.
Nat Commun ; 15(1): 8315, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333115

RESUMO

The spread of antibiotic resistance genes (ARGs) poses a substantial threat to human health. Phage-mediated transduction could exacerbate ARG transmission. While several case studies exist, it is yet unclear to what extent phages encode and mobilize ARGs at the global scale and whether human impacts play a role in this across different habitats. Here, we combine 38,605 bacterial genomes, 1432 metagenomes, and 1186 metatranscriptomes across 12 contrasting habitats to explore the distribution of prophages and their cargo ARGs in natural and human-impacted environments. Worldwide, we observe a significant increase in the abundance, diversity, and activity of prophage-encoded ARGs in human-impacted habitats linked with relatively higher risk of past antibiotic exposure. This effect was driven by phage-encoded cargo ARGs that could be mobilized to provide increased resistance in heterologous E. coli host for a subset of analyzed strains. Our findings suggest that human activities have altered bacteria-phage interactions, enriching ARGs in prophages and making ARGs more mobile across habitats globally.


Assuntos
Antibacterianos , Bactérias , Farmacorresistência Bacteriana , Prófagos , Prófagos/genética , Humanos , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/virologia , Bactérias/efeitos dos fármacos , Genoma Bacteriano/genética , Metagenoma/genética , Ecossistema , Escherichia coli/genética , Escherichia coli/virologia , Escherichia coli/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
13.
ISME J ; 17(6): 916-930, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37031344

RESUMO

While decomposition of organic matter by bacteria plays a major role in nutrient cycling in terrestrial ecosystems, the significance of viruses remains poorly understood. Here we combined metagenomics and metatranscriptomics with temporal sampling to study the significance of mesophilic and thermophilic bacteria and their viruses on nutrient cycling during industrial-scale hyperthermophilic composting (HTC). Our results show that virus-bacteria density dynamics and activity are tightly coupled, where viruses specific to mesophilic and thermophilic bacteria track their host densities, triggering microbial community succession via top-down control during HTC. Moreover, viruses specific to mesophilic bacteria encoded and expressed several auxiliary metabolic genes (AMGs) linked to carbon cycling, impacting nutrient turnover alongside bacteria. Nutrient turnover correlated positively with virus-host ratio, indicative of a positive relationship between ecosystem functioning, viral abundances, and viral activity. These effects were predominantly driven by DNA viruses as most detected RNA viruses were associated with eukaryotes and not associated with nutrient cycling during the thermophilic phase of composting. Our findings suggest that DNA viruses could drive nutrient cycling during HTC by recycling bacterial biomass through cell lysis and by expressing key AMGs. Viruses could hence potentially be used as indicators of microbial ecosystem functioning to optimize productivity of biotechnological and agricultural systems.


Assuntos
Compostagem , Microbiota , Vírus , Vírus/genética , Archaea , Bactérias/genética , Microbiota/genética , Nutrientes
14.
Int J Antimicrob Agents ; 59(5): 106568, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35288258

RESUMO

OBJECTIVE: To describe the undetected circulation of an epidemic BKC-1-producing Klebsiella pneumoniae ST442 clone, occasioning the first reported outbreak of the infrequent carbapenemase BKC-1. METHODS: Six hundred and forty-seven K. pneumoniae isolates (2008-2017) with reduced susceptibility to carbapenems were screened for blaBKC-1. BKC-1-positive isolates were typed using pulsed-field gel electrophoresis and multi-locus sequence typing. Susceptibility profiles were determined by broth microdilution, and additional antimicrobial resistance genes (ARGs) were investigated by polymerase chain reaction. Some isolates were submitted to full genomic characterization by whole-genome sequencing (Illumina MiSeq and MinIon), and in-vivo virulence studies using the Galleria mellonella model. RESULTS: Sixteen (2.5%) K. pneumoniae, from 15 patients, carrying blaBKC-1 were found between 2010 and 2012. Among these patients, the all-cause mortality rate was 54.5%. A major clone - A1-ST442 (13/16) - was isolated during the study period. The BKC-1-producing isolates had a multi-drug-resistant phenotype, remaining susceptible to gentamicin (87.5%) and ceftazidime-avibactam (100%) alone. The presence of two carbapenemases - blaBKC-1 and blaKPC-2 - was detected in six isolates, increasing the ß-lactam minimum inhibitory concentration significantly. Additionally, other ARGs were identified on A1-ST442 and B1-ST11 clones. The B1-ST11 clone was more virulent than the A1-ST442 clone. CONCLUSION: An undetected outbreak caused predominantly by a BKC-1-positive A1-ST442 clone between 2010 and 2012 was identified 10 years later in a Brazilian hospital. The misidentification of BKC-1 may have worsened the spread of resistant clones; this reinforces the need for correct and rapid identification of antimicrobial resistance mechanisms in hospitals.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Surtos de Doenças , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , beta-Lactamases/genética
15.
NPJ Biofilms Microbiomes ; 7(1): 13, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547326

RESUMO

Novel therapeutics designed to target the polymeric matrix of biofilms requires innovative techniques to accurately assess their efficacy. Here, multiple particle tracking (MPT) was developed to characterize the physical and mechanical properties of antimicrobial resistant (AMR) bacterial biofilms and to quantify the effects of antibiotic treatment. Studies employed nanoparticles (NPs) of varying charge and size (40-500 nm) in Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus (MRSA) biofilms and also in polymyxin B (PMB) treated Escherichia coli biofilms of PMB-sensitive (PMBSens) IR57 and PMB-resistant (PMBR) PN47 strains. NP size-dependent and strain-related differences in the diffusion coefficient values of biofilms were evident between PAO1 and MRSA. Dose-dependent treatment effects induced by PMB in PMBSens E. coli biofilms included increases in diffusion and creep compliance (P < 0.05), not evident in PMB treatment of PMBR E. coli biofilms. Our results highlight the ability of MPT to quantify the diffusion and mechanical effects of antibiotic therapies within the AMR biofilm matrix, offering a valuable tool for the pre-clinical screening of anti-biofilm therapies.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Polimixina B/farmacologia , Pseudomonas aeruginosa/fisiologia , Imagem Individual de Molécula/métodos , Biofilmes/efeitos dos fármacos , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Confocal , Nanopartículas , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos
16.
ISME J ; 14(3): 861-865, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896787

RESUMO

The emergence of mobile colistin resistance (mcr) threatens to undermine the clinical efficacy of the last antibiotic that can be used to treat serious infections caused by Gram-negative pathogens. Here we measure the fitness cost of a newly discovered MCR-3 using in vitro growth and competition assays. mcr-3 expression confers a lower fitness cost than mcr-1, as determined by competitive ability and cell viability. Consistent with these findings, plasmids carrying mcr-3 have higher stability than mcr-1 plasmids across a range of Escherichia coli strains. Crucially, mcr-3 plasmids can stably persist, even in the absence of colistin. Recent compensatory evolution has helped to offset the cost of mcr-3 expression, as demonstrated by the high fitness of mcr-3.5 as opposed to mcr-3.1. Reconstructing all of the possible evolutionary trajectories from mcr-3.1 to mcr-3.5 reveals a complex fitness landscape shaped by negative epistasis between compensatory and neutral mutations. Our findings highlight the importance of fitness costs and compensatory evolution in driving the dynamics and stability of mobile colistin resistance in bacterial populations, and they highlight the need to understand how processes (other than colistin use) impact mcr dynamics.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Plasmídeos/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Mutação
18.
Environ Int ; 122: 281-290, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30455105

RESUMO

Until recently, the role of insects, and particularly flies, in disseminating antimicrobial resistance (AMR) has been poorly studied. In this study, we screened blowflies (Chrysomya spp.) from different areas near the city of Phitsanulok, Northern Thailand, for the presence of AMR genes and in particular, mcr-1, using whole genome sequencing (WGS). In total, 48 mcr-1-positive isolates were recovered, consisting of 17 mcr-1-positive Klebsiella pneumoniae (MCRPKP) and 31 mcr-1-positive Escherichia coli (MCRPEC) strains. The 17 MCRPKP were shown to be clonal (ST43) with few single poly nucleomorphs (SNPs) by WGS analysis. In in-vitro models, the MCRPKP were shown to be highly virulent. In contrast, 31 recovered MCRPEC isolates are varied, belonging to 12 different sequence types shared with those causing human infections. The majority of mcr-1 gene are located on IncX4 plasmids (29/48, 60.42%), sharing an identical plasmid backbone. These findings highlight the contribution of flies to the AMR contagion picture in low- and middle-income countries and the challenges of tackling global AMR.


Assuntos
Dípteros/microbiologia , Farmacorresistência Bacteriana/genética , Infecções por Enterobacteriaceae/transmissão , Enterobacteriaceae , Microbiologia Ambiental , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/patogenicidade , Plasmídeos/genética
19.
FEMS Microbiol Rev ; 41(3): 343-353, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449040

RESUMO

Toxin-antitoxin systems (TAs) are ubiquitous among bacteria and play a crucial role in the dissemination and evolution of antibiotic resistance, such as maintaining multi-resistant plasmids and inducing persistence formation. Generally, activities of the toxins are neutralised by their conjugate antitoxins. In contrast, antitoxins are more liable to degrade under specific conditions such as stress, and free active toxins interfere with essential cellular processes including replication, translation and cell-wall synthesis. TAs have also been shown to be responsible for plasmid maintenance, stress management, bacterial persistence and biofilm formation. We discuss here the recent findings of these multifaceted TAs (type I-VI) and in particular examine the role of TAs in augmenting the dissemination and maintenance of multi-drug resistance in bacteria.


Assuntos
Bactérias/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana/fisiologia , Plasmídeos/genética , Sistemas Toxina-Antitoxina/fisiologia , Antibacterianos/farmacologia , Bactérias/genética , Fenômenos Fisiológicos Bacterianos/genética , Toxinas Bacterianas/metabolismo , Parede Celular/metabolismo
20.
Sci Rep ; 7: 39392, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059088

RESUMO

The polymixin colistin is a "last line" antibiotic against extensively-resistant Gram-negative bacteria. Recently, the mcr-1 gene was identified as a plasmid-mediated resistance mechanism in human and animal Enterobacteriaceae, with a wide geographical distribution and many producer strains resistant to multiple other antibiotics. mcr-1 encodes a membrane-bound enzyme catalysing phosphoethanolamine transfer onto bacterial lipid A. Here we present crystal structures revealing the MCR-1 periplasmic, catalytic domain to be a zinc metalloprotein with an alkaline phosphatase/sulphatase fold containing three disulphide bonds. One structure captures a phosphorylated form representing the first intermediate in the transfer reaction. Mutation of residues implicated in zinc or phosphoethanolamine binding, or catalytic activity, restores colistin susceptibility of recombinant E. coli. Zinc deprivation reduces colistin MICs in MCR-1-producing laboratory, environmental, animal and human E. coli. Conversely, over-expression of the disulphide isomerase DsbA increases the colistin MIC of laboratory E. coli. Preliminary density functional theory calculations on cluster models suggest a single zinc ion may be sufficient to support phosphoethanolamine transfer. These data demonstrate the importance of zinc and disulphide bonds to MCR-1 activity, suggest that assays under zinc-limiting conditions represent a route to phenotypic identification of MCR-1 producing E. coli, and identify key features of the likely catalytic mechanism.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Análise Mutacional de DNA , Dissulfetos/metabolismo , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Proteica , Isomerases de Dissulfetos de Proteínas/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa