Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 530(1): 314-321, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828305

RESUMO

Myocardial ischemia/reperfusion (I/R) injury is a clinically fatal disease, caused by restoring myocardial blood supply after a period of ischemia or hypoxia. However, the underlying mechanism remains unclear. Recently, increasing evidence reveal that microRNAs (miRs) participate in myocardial I/R injury. This study aimed to investigate whether miR-128-1-5p contributed to cardiomyocyte apoptosis induced by myocardial I/R injury. Here, we showed that the expression of miR-128-1-5p was decreased in mice following myocardial I/R injury. Down-regulation of miR-128-1-5p was also showed in H9c2 cardiomyocytes after hypoxia/reoxygenation (H/R), and in neonatal rat cardiomyocytes (NRCMs) with H2O2 treatment. Importantly, we found that overexpression of miR-128-1-5p ameliorates cardiomyocyte apoptosis both in H9c2 cardiomyocytes and NRCMs. Moreover, we also found that growth arrest DNA damage-inducible gene 45 gamma (Gadd45g) is identified as a direct target of miR-128-1-5p, which negatively regulated Gadd45g expression. Additionally, silencing of Gadd45g inhibits cardiomyocyte apoptosis in H9c2 cardiomyocytes and NRCMs. These results reveal a novel mechanism by which miR-128-1-5p regulates Gadd45g-mediated cardiomyocyte apoptosis in myocardial I/R injury.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/genética , Animais , Apoptose , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Transdução de Sinais , Regulação para Cima , Proteínas GADD45
2.
Int J Biol Macromol ; 254(Pt 2): 127910, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939779

RESUMO

Mitochondrial dynamics homeostasis is sustained by continuous and balanced fission and fusion, which are determinants of morphology, abundance, biogenesis and mitophagy of mitochondria. Optic atrophy 1 (OPA1), as the only inner mitochondrial membrane fusion protein, plays a key role in stabilizing mitochondrial dynamics. The disturbance of mitochondrial dynamics contributes to the pathophysiological progress of cardiovascular disorders, which are the main cause of death worldwide in recent decades and result in tremendous social burden. In this review, we describe the latest findings regarding OPA1 and its role in mitochondrial fusion. We summarize the post-translational modifications (PTMs) for OPA1 and its regulatory role in mitochondrial dynamics. Then the diverse cell fates caused by OPA1 expression during cardiovascular disorders are discussed. Moreover, cardiovascular disorders (such as heart failure, myocardial ischemia/reperfusion injury, cardiomyopathy and cardiac hypertrophy) relevant to OPA1-dependent mitochondrial dynamics imbalance have been detailed. Finally, we highlight the potential that targeting OPA1 to impact mitochondrial fusion may be used as a novel strategy against cardiovascular disorders.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Atrofia Óptica Autossômica Dominante , Humanos , Dinâmica Mitocondrial , Atrofia Óptica Autossômica Dominante/metabolismo , Cardiomiopatias/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
3.
ACS Chem Neurosci ; 14(17): 3113-3124, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37559405

RESUMO

Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) has been confirmed to contribute to brain injury in ischemic stroke via promoting excitotoxicity and necroptosis. Telaprevir, a hepatitis C virus protease inhibitor, is predicted to be a potential MALT1 inhibitor. Here, we showed that telaprevir protected against cerebral ischemic injury via inhibiting MALT1, thereby preventing glutamate receptor ionotropic NMDA 2B (GluN2B) activation, limiting calcium overload, and suppressing necroptosis. In ischemic stroke mice, telaprevir reduced infarct volume, improved the long-term survival rate, and enhanced sensorimotor, memory, and cognitive functions. In hypoxia-treated nerve cells, telaprevir decreased the intracellular calcium concentrations and reduced LDH release. Mechanistically, telaprevir inhibited MALT1 protease activity, thus decreasing the membrane protein level of GluN2B and its phosphorylation through reducing the level of STEP61. Moreover, telaprevir was able to inhibit the levels of necroptosis-associated proteins. According to these results, it can be concluded that telaprevir alleviates neuronal brain injury in stroke mice via restraining GluN2B activation and suppresses the receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like pseudokinase (MLKL) pathway through inhibiting MALT1. Thus, telaprevir might have a novel indication for treating patients with ischemic stroke.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Camundongos , Animais , Cálcio , Proteínas Quinases/metabolismo , Necroptose , Cognição
4.
Cell Biosci ; 10: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32123560

RESUMO

BACKGROUND: Cardiovascular diseases are currently the leading cause of death in humans. The high mortality of cardiac diseases is associated with myocardial ischemia and reperfusion (I/R). Recent studies have reported that microRNAs (miRNAs) play important roles in cell apoptosis. However, it is not known yet whether miR-141-3p contributes to the regulation of cardiomyocyte apoptosis. It has been well established that in vitro hypoxia/reoxygenation (H/R) model can follow in vivo myocardial I/R injury. This study aimed to investigate the effects of miR-141-3p and CHD8 on cardiomyocyte apoptosis following H/R. RESULTS: We found that H/R remarkably reduces the expression of miR-141-3p but enhances CHD8 expression both in mRNA and protein in H9c2 cardiomyocytes. We also found either overexpression of miR-141-3p by transfection of miR-141-3p mimics or inhibition of CHD8 by transfection of small interfering RNA (siRNA) significantly decrease cardiomyocyte apoptosis induced by H/R. Moreover, miR-141-3p interacts with CHD8. Furthermore, miR-141-3p and CHD8 reduce the expression of p21. CONCLUSION: MiR-141-3p and CHD8 play critical roles in cardiomyocyte apoptosis induced by H/R. These studies suggest that miR-141-3p and CHD8 mediated cardiomyocyte apoptosis may offer a novel therapeutic strategy against myocardial I/R injury-induced cardiovascular diseases.

5.
Life Sci ; 242: 117186, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862454

RESUMO

AIMS: This study was aimed to investigate the role of GSDME-mediated pyroptosis in cardiac injury induced by Doxorubicin (DOX), and to evaluate the role of BH3-only protein Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (Bnip3) in regulation of DOX-induced pyroptosis. MAIN METHODS: HL-1 cardiomyocytes and C57BL/6J mice were treated by DOX to establish DOX-induced cardiotoxicity in vitro and in vivo models, respectively. Cell transfection was applied to regulate the expression of caspase-3, GSDME and Bnip3. Western blot was used for measuring expression of protein level. LDH-cytotoxicity assay was used to detect the LDH release. The Flow cytometry analysis was used to detect the cell death. Echocardiography was used to determine the cardiac function. HE staining was used for observing pathological feature of heart tissues. KEY FINDINGS: Our results showed that GSDME-mediated pyroptosis was involved in DOX-induced cardiotoxicity in vivo. We showed that HL-1 cardiomyocytes exposed to DOX exhibited morphological features of pyroptosis in vitro. We also showed that DOX induced activation of caspase-3 and eventually triggered GSDME-dependent pyroptosis, which was reduced by the silence or inhibitor of caspase-3. We further showed that knockdown of GSDME inhibited DOX-induced cardiomyocyte pyroptosis in vitro. Finally, DOX increased the expression of Bnip3, whereas silencing of Bnip3 blunted cardiomyocyte pyroptosis induced by DOX, which was regulated through caspase-3 activation and GSDME cleavage. SIGNIFICANCE: Our findings revealed a novel pathway that cardiomyocyte pyroptosis is regulated through Bnip3-caspase-3-GSDME pathway following DOX treatment, suggesting that Bnip3-dependent pyroptosis may offer a novel therapeutic strategy to reduce cardiotoxicity induced by DOX.


Assuntos
Caspase 3/metabolismo , Doxorrubicina/farmacologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Animais , Western Blotting , Ecocardiografia , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Cell Biosci ; 9: 13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30680089

RESUMO

BACKGROUND: Psychological and physical stress can either enhance or suppress immune functions depending on a variety of factors such as duration and severity of stressful situation. Chronic stress exerts a significantly suppressive effect on immune functions. However, the mechanisms responsible for this phenomenon remain to be elucidated. Autophagy plays an essential role in modulating cellular homeostasis and immune responses. However, it is not known yet whether autophagy contributes to chronic stress-induced immunosuppression. T cell immunoglobulin and mucin domain 3 (Tim-3) has shown immune-suppressive effects and obviously positive regulation on cell apoptosis. Tim-3 combines with Tim-3 ligand galectin-9 to modulate apoptosis. However, its impact on autophagy and chronic stress-induced immunosuppression is not yet identified. RESULTS: We found remarkably higher autophagy level in the spleens of mice that were subjected to chronic restraint stress compared with the control group. We also found that inhibition of autophagy by the autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated chronic stress-induced alterations of pro-inflammatory and anti-inflammatory cytokine levels. We further elucidated that 3-MA dramatically inhibited the reduction of lymphocyte numbers. Moreover, chronic stress dramatically enhanced the expression of Tim-3 and galectin-9. Inhibition of Tim-3 by small interfering RNA against Tim-3 significantly decreased the level of autophagy and immune suppression in isolated primary splenocytes from stressed mice. In addition, α-lactose, a blocker for the interaction of Tim-3 and galectin-9, also decreased the autophagy level and immune suppression. CONCLUSION: Chronic stress induces autophagy, resulting with suppression of immune system. Tim-3 and galectin-9 play a crucial regulatory role in chronic stress-induced autophagy. These studies suggest that Tim-3 mediated autophagy may offer a novel therapeutic strategy against the deleterious effects of chronic stress on the immune system.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa