Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(44): 21998-22003, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611406

RESUMO

We report enhanced thermoelectric performance of SnTe by further increasing its intrinsic high carrier concentration caused by Sn vacancies in contrast to the traditional method. Along with In2Te3 alloying, which results in an enhanced Seebeck coefficient, Li2Te is added to further increase the carrier concentration in order to maintain high electrical conductivity. Finally, a relatively high PF ave of ∼28 µW cm-1 K-2 in the range between 300 and 873 K is obtained in an optimized SnTe-based compound. Furthermore, nanoprecipitates with extremely high density are constructed to scatter phonons strongly, resulting in an ultralow lattice thermal conductivity of ∼0.45 W m-1 K-1 at 873 K. Given that the Z value is temperature dependent, the (ZT) eng and (PF) eng values are adopted to accurately predict the performance of this material. Taking into account the Joule and Thomson heat, output power density of ∼5.53 W cm-2 and leg efficiency of ∼9.6% are calculated for (SnTe)2.94(In2Te3)0.02-(Li2Te)0.045 with a leg length of 4 mm and cold- and hot-side temperatures of 300 and 870 K, respectively.

2.
ACS Appl Mater Interfaces ; 16(3): 3502-3508, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38192195

RESUMO

ZrCoBi-based half-Heuslers have great potential in power generation applications because of their high thermoelectric performance in both p- and n-type constituents. In this work, n-type ZrCoBi with improved thermoelectric performance has been realized by intensifying the phonon scattering via noble metal doping, e.g., Pd and Pt doping. The carrier concentration was effectively tuned to the optimal range, and the lattice thermal conductivity was greatly suppressed via the strong strain field and mass fluctuation scattering brought about by the large difference in atomic size and mass between Pd or Pt and Co. Consequently, the state-of-art figure of merit zT ∼1 was achieved in Pd- or Pt-doped ZrCoBi. In addition, the average zTavg values for ZrCo0.95Pd0.05Bi and ZrCo0.925Pt0.075Bi have reached 0.58 and 0.51, respectively, which are higher than those of most of the reported n-type ZrCoBi-based and ZrCoSb-based half-Heusler alloys.

3.
ACS Appl Mater Interfaces ; 15(43): 50216-50224, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862682

RESUMO

n-Type Mg3Sb2-xBix alloys have been regarded as promising thermoelectric materials due to their excellent performance and low cost. For practical applications, the thermoelectric performance is not the only factor that should be taken into consideration. In addition, the chemical and thermal stabilities of the thermoelectric material are of equal importance for the module design. Previous studies reported that the Mg3Sb2-xBix alloys were unstable in an ambient environment. In this work, we found that Mg3Sb2-xBix alloys reacted with H2O and O2 at room temperature and formed amorphous Mg(OH)2/MgO and crystalline Bi/Sb. The substantial loss of Mg resulted in a significant deterioration in thermoelectric properties, accompanied by the transition from n-type to p-type. With the increase in Bi content, the chemical stability decreased due to the higher formation energy of Mg3Bi2. A chemically stable Mg3Bi2 sample was achieved by coating it with polydimethylsiloxane to isolate H2O and O2 in the air.

4.
Nat Commun ; 12(1): 5718, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588464

RESUMO

The Zintl thermoelectric phase Eu2ZnSb2 has a remarkable combination of high mobility and low thermal conductivity that leads to good thermoelectric performance. The key feature of this compound is a crystal structure that has a Zn-site with a 50% occupancy. Here we use comparison of experimental thermal conductivity measurements and first principles thermal conductivity calculations to characterize the thermal conductivity reduction. We find that partial ordering, characterized by local order, but Zn-site disorder on longer scales, leads to an intrinsic nanostructuring induced reduction in thermal conductivity, while retaining electron mobility. This provides a direction for identifying Zintl compounds with ultralow lattice thermal conductivity and good electrical conductivity.

5.
Sci Adv ; 7(6)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33547075

RESUMO

Metal-semiconductor transitions from changes in edge chirality from zigzag to armchair were observed in many nanoribbon materials, especially those based on honeycomb lattices. Here, this is generalized to bulk complex Zintl semiconductors, exemplified by Eu2ZnSb2 where the Zn vacancy ordering plays an essential role. Five Eu2ZnSb2 structural models are proposed to guide transmission electron microscopy imaging. Zigzag vacancy ordering models show clear metallicity, while the armchair models are semiconducting with indirect bandgaps that monotonously increase with the relative distances between neighboring ZnSb2 chains. Topological electronic structure changes based on cation ordering in a Zintl compound point toward tunable and possibly switchable topological behavior, since cations in these are often mobile. Thus, their orderings can often be adjusted by temperature, minor alloying, and other approaches. We explain the electronic structure of an interesting thermoelectric and point the way to previously unidentified types of topological electronic transitions in Zintl compounds.

6.
ACS Appl Mater Interfaces ; 13(16): 18638-18647, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33847476

RESUMO

Entropy is a physical quantity gauging the degree of chaos in the system. High entropy alloying is thus an effective strategy to reduce the lattice thermal conductivity of the thermoelectric materials. In this paper, PbTe, GeTe, and MnTe are coalloyed with SnTe to form a single-phase solid solution. Because of the inclusion of various elements at the cationic (Sn2+) site, the configurational entropy increases, and the phonon scattering is strongly enhanced, leading to a reduced lattice thermal conductivity. In addition, the Seebeck coefficient is improved because of the band modification via this coalloying. Ga is then further doped to optimize the carrier concentration to ∼5.7 × 1020 cm-3 and reduce the room-temperature lattice thermal conductivity to ∼0.6 W m-1 K-1. Finally, a high peak ZT value of ∼1.52 at 823 K and an average ZT value ∼1.0 from 323 to 823 K were obtained in Ga0.025(Sn0.25Pb0.25Mn0.25Ge0.25)0.975Te.

7.
ACS Appl Mater Interfaces ; 11(41): 37741-37747, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31553558

RESUMO

Zintl phase compounds Ca9Zn4+xSb9 have promising thermoelectric properties due to their complex crystal structure and tunable interstitial Zn. In this work, we prepared nominal Ca9Zn4+xSb9 (x = 0.5, 0.6, 0.7, and 0.8) using ball milling and hot pressing. Further decreased lattice thermal conductivity was obtained by isoelectronic substitution of Eu on the selective Ca site, which is farther away from the framework of [Zn4+xSb9]δ- for the smaller disturbance of carrier transport. Together with the intensively enhanced carrier mobility, which is attributed to the decreased effective mass and the increased interstitial Zn by inclusion of Eu, an increased peak ZT value to ∼1.05 at 773 K and an enhanced average ZT value to ∼0.73 from 300 to 823 K were achieved in Ca6.75Eu2.25Zn4.7Sb9.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa