Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Crit Rev Food Sci Nutr ; 63(8): 1037-1054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34323634

RESUMO

With the development of high-throughput DNA sequencing and molecular analysis technologies, next-generation probiotics (NGPs) are increasingly gaining attention as live bacterial therapeutics for treatment of diseases. However, compared to traditional probiotics, NGPs are much more vulnerable to the harsh conditions in the human gastrointestinal tract, and their functional mechanisms in the gut are more complex. Prebiotics have been confirmed to play a critical role in improving the function and viability of traditional probiotics. Defined as substrates that are selectively utilized by host microorganisms conferring a health benefit, prebiotics are also important for NGPs. This review summarizes potential prebiotics for use with NGPs and clarifies their characteristics and functional mechanisms. Then we particularly focus on illustrating the protective effects of various prebiotics by enhancing the antioxidant capacity and their resistance to digestive fluids. We also elucidate the role of prebiotics in regulating anti-bacterial effects, intestinal barrier maintenance, and cross-feeding mechanisms of NPGs. With the expanding range of candidate NGPs and prebiotic substrates, more studies need to be conducted to comprehensively elucidate the interactions between prebiotics and NGPs outside and inside hosts, in order to boost their nutritional and healthcare applications.


Assuntos
Microbioma Gastrointestinal , Probióticos , Humanos , Prebióticos , Probióticos/farmacologia , Trato Gastrointestinal/microbiologia , Disbiose
2.
Acta Pharmacol Sin ; 44(11): 2201-2215, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37433872

RESUMO

Pulmonary arterial hypertension (PH) is a chronic disease induced by a progressive increase in pulmonary vascular resistance and failure of the right heart function. A number of studies show that the development of PH is closely related to the gut microbiota, and lung-gut axis might be a potential therapeutic target in the PH treatment. A. muciniphila has been reported to play a critical role in treating cardiovascular disorders. In this study we evaluated the therapeutic effects of A. muciniphila against hypoxia-induced PH and the underlying mechanisms. Mice were pretreated with A. muciniphila suspension (2 × 108 CFU in 200 µL sterile anaerobic PBS, i.g.) every day for 3 weeks, and then exposed to hypoxia (9% O2) for another 4 weeks to induce PH. We showed that A. muciniphila pretreatment significantly facilitated the restoration of the hemodynamics and structure of the cardiopulmonary system, reversed the pathological progression of hypoxia-induced PH. Moreover, A. muciniphila pretreatment significantly modulated the gut microbiota in hypoxia-induced PH mice. miRNA sequencing analysis reveals that miR-208a-3p, a commensal gut bacteria-regulated miRNA, was markedly downregulated in lung tissues exposed to hypoxia, which was restored by A. muciniphila pretreatment. We showed that transfection with miR-208a-3p mimic reversed hypoxia-induced abnormal proliferation of human pulmonary artery smooth muscle cells (hPASMCs) via regulating the cell cycle, whereas knockdown of miR-208a-3p abolished the beneficial effects of A. muciniphila pretreatment in hypoxia-induced PH mice. We demonstrated that miR-208a-3p bound to the 3'-untranslated region of NOVA1 mRNA; the expression of NOVA1 was upregulated in lung tissues exposed to hypoxia, which was reversed by A. muciniphila pretreatment. Furthermore, silencing of NOVA1 reversed hypoxia-induced abnormal proliferation of hPASMCs through cell cycle modulation. Our results demonstrate that A. muciniphila could modulate PH through the miR-208a-3p/NOVA1 axis, providing a new theoretical basis for PH treatment.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Hipertensão Arterial Pulmonar , Humanos , Camundongos , Animais , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Pulmão/patologia , Artéria Pulmonar/metabolismo , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proliferação de Células/fisiologia , Antígeno Neuro-Oncológico Ventral
3.
Molecules ; 25(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854454

RESUMO

Protein-polysaccharide complexes have received increasing attention as delivery systems to improve the stability and bioavailability of multiple bioactive compounds. However, deep and comprehensive understanding of the interactions between proteins and polysaccharides is still required for enhancing their loading efficiency and facilitating targeted delivery. In this study, we fabricated a type of protein-polysaccharide complexes using food-grade materials of ß-lactoglobulin (ß-Lg) and gum arabic (GA). The formation and characteristics of ß-Lg-GA complexes were investigated by determining the influence of pH and other factors on their turbidity, zeta-potential, particle size and rheology. Results demonstrated that the ß-Lg and GA suspension experienced four regimes including co-soluble polymers, soluble complexes, insoluble complexes and co-soluble polymers when the pH ranged from 1.2 to 7 and that ß-Lg-GA complexes formed in large quantities at pH 4.2. An increased ratio of ß-Lg in the mixtures was found to promote the formation of ß-Lg and GA complexes, and the optimal ß-Lg/GA ratio was found to be 2:1. The electrostatic interactions between the NH3+ group in ß-Lg and the COO- group in GA were confirmed to be the main driving forces for the formation of ß-Lg/GA complexes. The formed structure also resulted in enhanced thermal stability and viscosity. These findings provide critical implications for the application of ß-lactoglobulin and gum arabic complexes in food research and industry.


Assuntos
Goma Arábica/química , Lactoglobulinas/química , Concentração de Íons de Hidrogênio
4.
Compr Rev Food Sci Food Saf ; 19(2): 857-874, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-33325164

RESUMO

The potential health benefits of probiotics may not be realized because of the substantial reduction in their viability during food storage and gastrointestinal transit. Microencapsulation can be used to enhance the resistance of probiotics to unfavorable conditions. A range of oral delivery systems has been developed to increase the level of probiotics reaching the colon including embedding and coating systems. This review introduces emerging strategies for the microencapsulation of probiotics and highlights the key mechanisms of their stress-tolerance properties. Recent in vitro and in vivo models for evaluation of the efficiency of probiotic delivery systems are also reviewed. Encapsulation technologies are required to maintain the viability of probiotics during storage and within the human gut so as to increase their ability to colonize the colon. These technologies work by protecting the probiotics from harsh environmental conditions, as well as increasing their mucoadhesive properties. Typically, the probiotics are either embedded inside or coated with food-grade materials such as biopolymers or lipids. In some cases, additional components may be coencapsulated to enhance their viability such as nutrients or protective agents. The importance of having suitable in vitro and in vivo models to evaluate the efficiency of probiotic delivery systems is also emphasized.


Assuntos
Preparações de Ação Retardada , Viabilidade Microbiana , Probióticos/administração & dosagem , Bactérias , Trato Gastrointestinal , Humanos , Modelos Biológicos
5.
Microbiol Spectr ; : e0309523, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899904

RESUMO

Antibiotics are widely used to treat bacterial infection and reduce the mortality rate, while antibiotic overuse can cause gut microbiota dysbiosis. The impact of antibiotics on gut microbiota is not fully understood. In our study, four commonly used antibiotics (ceftazidime, cefoperazone-sulbactam, imipenem-cilastatin, and moxifloxacin) were given subcutaneously to mice, and their impacts on the gut microbiota composition and serum cytokine levels were evaluated through 16S rRNA analysis and a multiplex immunoassay. Antibiotic treatment markedly reduced gut microbiota diversity and changed gut microbiota composition. Antibiotic treatment significantly increased and decreased the abundance of Firmicutes and Bacteroidota, respectively. The antibiotic treatments increased the abundance of opportunistic pathogens such as Enterococcus and decreased that of Lachnospiraceae and Muribaculaceae. For moxifloxacin, the significantly high abundance of Enterococcus and Klebsiella was observed after 14 and 21 days of treatment. However, a relatively low abundance of opportunistic pathogens was found after 14 days of imipenem-cilastatin treatment. Additionally, the serum levels of various pro-inflammatory cytokines, such as IL-1ß, IL-12 (p70), and IL-17, significantly increased after 21 days of antibiotic treatments. Overall, these results provide a guide for rational use of antibiotics in clinical settings: short-term use of moxifloxacin is recommended with regard to gut microbiota health, and the 14-day use of imipenem-cilastatin may have a less severe impact than other antibiotics.IMPORTANCEAntibiotic treatments are directly associated with changes in gut microbiota and are effective against both pathogens and beneficial bacteria. Gut microbiota dysbiosis induced by antibiotic treatment could increase the risk of some diseases. Therefore, an adequate understanding of gut microbiota changes after antibiotic use is crucial. In this study, we investigated the effects of continuous treatment with antibiotics on gut microbiota, serum cytokines, and intestinal inflammatory response. Our results suggest that short-term use of moxifloxacin is recommended, and the 14-day use of imipenem-cilastatin may have a less severe effect on gut microbiota health than cefoperazone-sulbactam. These results provide useful guidance on the rational use of antibiotics with regard to gut microbiota health.

6.
Nutrients ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068723

RESUMO

Primary sclerosing cholangitis (PSC), a rare chronic cholestatic liver disease, is characterized by intrahepatic or extrahepatic strictures accompanied by biliary fibrosis. So far, there are no effective therapies to slow down the progression of this disease. Farnesoid X receptors (FXRs) are ligand-activated transcription factors involved in the control of bile acid (BA) synthesis and enterohepatic circulation. Therefore, targeting FXRs holds promise as a potential approach for treating PSC. Pediococcus pentosaceus Li05 is a probiotic that was isolated from healthy volunteers and has previously been shown to have an anti-inflammatory effect in DSS-induced colitis. In this study, we established a 3,5-diethoxycarbonyl-1,4-Dihydrocollidine (DDC)-induced cholestasis mouse model and investigated the effects of Pediococcus pentosaceus Li05 on PSC. Our findings revealed that administration of Li05 significantly attenuated liver damage, hepatic inflammation, and fibrosis, as well as bile duct hyperplasia. Li05 activated the hepatic FXR-SHP and ileal FXR-FGF15 signaling pathways to decrease the expression of Cyp7a1. In addition, the Li05-modulated gut microbiota structure especially improved the abundance of 7α-dehydroxylation bacteria like Eubacterium. The intervention of Li05 also improved the intestinal barrier and reduced bacterial endotoxin translocation. Based on these findings, Li05 shows promise for future application as a therapeutic strategy for cholestasis.


Assuntos
Colestase , Probióticos , Camundongos , Animais , Humanos , Pediococcus pentosaceus , Ácidos e Sais Biliares/metabolismo , Colestase/tratamento farmacológico , Colestase/patologia , Fígado/metabolismo , Endotoxinas/metabolismo , Fibrose
7.
J Liposome Res ; 22(3): 245-53, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22607110

RESUMO

Doxorubicin, as a widely used chemotherapeutic, always causes multidrug resistance in human cancer cells. To circumvent drug resistance, we developed a novel formulation where doxorubicin hydrochloride (DOX) and chloroquine phosphate (CQ) were simultaneously loaded into liposomes by a pH-gradient method where CQ played the role of a chemical sensitizer. The various factors were investigated to optimize the formulation and manufacturing conditions of DOX and CQ coencapsulated liposomes (DCL). The resultant DCLs achieved the high encapsulation efficiency of both drugs over 90%. Further, DCLs significantly displayed resistance reversal action on a doxorubicin-resistant human breast cancer cell line (MCF-7/ADR) through the cooperation of CQ with DOX. The reversal fold of DCL with the DOX/CQ/soybean phosphatidylcholine weight ratio of 0.5:1:50 was 5.7, compared to free DOX. These results demonstrate that DCL is a promising formulation for the treatment of DOX-resistant breast cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Química Farmacêutica/métodos , Cloroquina/análogos & derivados , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Antibióticos Antineoplásicos/química , Neoplasias da Mama/química , Cloroquina/química , Cloroquina/farmacologia , Relação Dose-Resposta a Droga , Doxorrubicina/química , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração de Íons de Hidrogênio , Lipossomos , Células MCF-7 , Conformação Molecular , Tamanho da Partícula
8.
Food Chem ; 370: 130980, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34628238

RESUMO

Low bioavailability currently limits the potential of curcumin as a health-promoting dietary compound. This study therefore explored the potential of excipient emulsions to improve curcumin bioavailability. Oil-in-water excipient emulsions were prepared using different types of oils: corn oil, olive oil, and medium chain triglycerides (MCT). The excipient emulsions increased the transportation rate of curcumin across the Caco-2 cell monolayer and showed ability to protect curcumin from metabolism in the enterocytes, with the olive oil-based systems exhibiting the highest efficacy. In addition, most of curcumin metabolites were present as hexahydro-curcumin (HHC) and its conjugates. Our results show that excipient emulsions can improve curcumin bioavailability by increasing its trans-enterocyte absorption and reducing cellular metabolism. Moreover, they show that these effects depend on the type of oil used to produce them. These findings have important implications for the rational design of lipid-based delivery systems to enhance the bioavailability of hydrophobic nutraceuticals like curcumin.


Assuntos
Curcumina , Excipientes , Disponibilidade Biológica , Células CACO-2 , Óleo de Milho , Curcumina/metabolismo , Emulsões/metabolismo , Excipientes/metabolismo , Trato Gastrointestinal/metabolismo , Humanos
9.
Food Chem ; 369: 130968, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479013

RESUMO

Lipids usually contain a large ratio of polyunsaturated fatty acids (PUFAs), which are highly susceptible to oxidation. Presence of oxidized lipids in foods may affect the bioavailability of lipophilic bioactive components after ingestion. In this study, the effect of oxidized and unoxidized linoleic acid (LA) on the transport of a highly lipophilic bioactive citrus flavonoid (5-hydroxy - 6, 7, 8, 4' tetramethoxylflavone or 5-DMT) was determined using a Caco-2 cell model. Results demonstrated that compared to free 5-DMT, unoxidized LA improved the trans-enterocyte absorption of 5-DMT by stimulating the production of lipid droplets and chylomicrons. Although the amount of 5-DMT transported across the enterocyte doubled by oxidized LA compared to free 5-DMT, it significantly induced reactive oxygen species (ROS), affected the function of tight junction and caused damages to the morphology of enterocyte monolayer. This study re-emphasized the importance of preventing lipid oxidation in foods.


Assuntos
Citrus , Ácido Linoleico , Células CACO-2 , Quilomícrons , Enterócitos , Flavonoides , Humanos
10.
Nutrients ; 14(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35267988

RESUMO

Resveratrol (RSV) has been confirmed to confer multiple health benefits, and the majority of RSV tends to be metabolized in the gut microbiota after oral administration. In this study, the metabolism of RSV was investigated by using mouse models with distinct gut microbiota compositions: germ-free mice colonized with probiotics, conventional mouse, and DSS-induced colitis mouse models. The results demonstrated that in feces, the metabolites of RSV, including resveratrol sulfate (RES-sulfate), resveratrol glucuronide (RES-glucuronide), and dihydroresveratrol, significantly increased after probiotics colonized in germ-free mice. Furthermore, RES-sulfate and RES-glucuronide were below the detectable limit in the feces of conventional mice, with dihydroresveratrol being the dominant metabolite. Compared to the conventional mice, the ratio of Firmicutes/Bacteroides and the abundance of Lactobacillus genera were found significantly elevated in colitis mice after long-term ingestion of RSV, which shifted the metabolism of RSV in return. Our study provided critical implications in further application of RSV in foods and food supplements.


Assuntos
Colite , Microbioma Gastrointestinal , Probióticos , Animais , Colite/induzido quimicamente , Fezes , Camundongos , Resveratrol/farmacologia
11.
Appl Spectrosc ; 76(9): 1100-1111, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35315296

RESUMO

In optical noninvasive glucose detection, how to detect the glucose-caused signals from the constant human variations and disturbed probing conditions is always the biggest challenge. Developing effective measurement strategies is essential to realize the detection. A near-infrared (NIR) spectroscopy-based strategy is studied to effectively solve the in vivo measurement issues, obtaining clean blood glucose-caused signals. Two solutions composing our strategy are applied to the NIR spectroscopy-based measurement system to acquire clean raw signals in the data collection, which are a customized high signal-to-noise ratio multi-ring InGaAs detector to reduce the influence of human variations, and a fixing and aiming method to reproduce a consistent measurement condition. Seventeen cases of glucose tolerance test (GTT) on healthy and diabetic volunteers were conducted to validate the strategy. The human experiment results clearly show that the expected blood glucose changes have been detected at 1550 nm. The average correlation coefficient of the 17 cases of GTT between light signal and glucose reference reaches 0.84. The proposed measurement strategy is verified feasible for the glucose detecting in vivo. The strategy provides references to further studies and product developments for the NIR spectroscopy-based glucose measurement and references to other optical measurements in vivo.


Assuntos
Glicemia , Glucose , Teste de Tolerância a Glucose , Humanos , Razão Sinal-Ruído , Espectroscopia de Luz Próxima ao Infravermelho/métodos
12.
Curr Res Food Sci ; 5: 581-589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340998

RESUMO

The presence of exopolysaccharides (EPS), a type of biomacromolecules, on the surface of probiotics play an important role in mucoadhesion, and it can be severely influenced by environments during gastrointestinal transit. In this study, the impact of gastrointestinal factors on surface properties of two probiotics (Lactobacillus rhamnosus GG and Pediococcus pentosaceus LI05) was investigated. Probiotic suspensions had relatively high viscosities and exhibited pronounced shear-thinning behavior due to the presence of EPS. The ζ-potential of both probiotics was relatively low and was not believed to play an important role in mucoadhesion. Compared to the control, the adhesive forces tended to decrease in the presence of gastric acids but increase in the presence of bile salts, since bile salts led to a thicker more open EPS layer compared to gastric acids. Although the functional groups of EPS in both probiotics are similar according to the study by FT-IR spectroscopy, the molecular weight of purified EPS in LI05 was much higher, ranging from 10,112 Da to 477,763 Da, which may contribute to higher rupture length in LI05 group. These results suggest that probiotic-mucin interactions are governed by the compositions and changes in the EPS of the probiotics in different gastrointestinal conditions, which contribute to a better understanding of the mucoadhesive behavior of the probiotics in the GIT.

13.
Nutrients ; 14(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235735

RESUMO

Although Ligilactobacillus salivarius Li01 (Li01) has shown much promise in preventing multiple gastrointestinal diseases, the potential of the probiotic in alleviating constipation and the related mechanisms remain unclear. In this study, the effects of Li01 were evaluated in a loperamide-induced constipation mouse model. The results demonstrated that Li01 intervention can relieve constipation symptoms by improving water content, quantity, and morphology of feces and act as an intestinal barrier structure protector. Furthermore, Li01 can modulate gut motility (gastrointestinal transit rate), the fluid transit-associated expression of aquaporins, and the serum parameters vasoactive intestinal peptide, substance P, and somatostatin. Constipation significantly increased the levels of 5-hydroxytryotamine (5-HT) in serum (p < 0.01) and decreased the levels in the intestine (p < 0.001). Due to its function of elevating the expression of tryptophan hydroxylase 1, this was reversed after Li01 treatment. Li01 also promoted the expression of 5-HT receptor 3 and 4, indicating that the 5-HT signaling pathway may play a critical role in the mechanism by which Li01 alleviate constipation symptoms. Additionally, Li01 significantly altered the gut microbiota composition by enhancing the ratio of Firmicutes/Bacteroidetes and increasing the abundance of Rikenellaceae_RC9 genera. Based on the above results, Li01 may have the potential to effectively alleviate constipation by regulating the 5-HT pathway and alteration of the gut microbiota.


Assuntos
Constipação Intestinal , Ligilactobacillus salivarius , Loperamida , Serotonina , Animais , Aquaporinas/metabolismo , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/prevenção & controle , Loperamida/efeitos adversos , Camundongos , Serotonina/metabolismo , Transdução de Sinais , Somatostatina/metabolismo , Substância P/metabolismo , Triptofano Hidroxilase/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
14.
Infect Drug Resist ; 15: 6785-6797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36447789

RESUMO

Background: Antibiotics are the first line of treatment for infectious diseases. However, their overuse can increase the spread of drug-resistant bacteria. The present study analyzed the impact of different types of antibiotics on the gut microbiome and cytokines level of mice. Methods: A total of five groups of 8-week-old male BALB/c mice (n = 35) were treated with piperacillin-tazobactam (TZP), ceftriaxone (CRO), tigecycline (TGC), levofloxacin (LEV) or normal saline (Ctrl), respectively, for up to 4 weeks. Fecal samples were analyzed by bacterial 16S rRNA gene sequencing for bacterial identification. Blood samples were used for the determination of 23 serum cytokines using multiplex immunoassay. Results: Exposure to antibiotics was shown to affect the normal weight gain of mice. Significant changes in gut composition caused by TZP, CRO and TGC treatment included the decreased abundance of Bacteroidetes (p < 0.01), Muribaculaceae (p < 0.01) and Lachnospiraceae (p < 0.01), and the increased abundance of Proteobacteria (p < 0.05), Enterobacteriaceae (including Klebsiella and Enterobacter) (p < 0.01) and Enterococcaceae (including Enterococcus) (p < 0.01). After 4-week treatment, the TZP, CRO and LEV groups had significantly lower concentrations of several serum cytokines. Correlation analysis of the top 30 bacterial genera and cytokines showed that Enterococcus and Klebsiella were strongly positively correlated with tumor necrosis factor-α (TNF-α), interleukins (IL) IL-12p70 and IL-1ß. Desulfovibrio, Candidatus Saccharimonas, norank_f__norank_o__Clostridia_UCG-014, Lactobacillus, and Roseburia were strongly negatively correlated with these cytokines. Conclusion: This study demonstrates the effects of various antibiotics on the intestinal microflora and immune status of mice. Compared with TZP, CRO and TGC, LEV had minimal impact on the gut microbiota. In addition to TGC, long-term TZP, CRO and LEV intervention can lead to a decrease in serum cytokine levels, which may depend on the intestinal microflora, antibiotic used and the duration of treatment.

15.
Research (Wash D C) ; 2022: 9863845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935130

RESUMO

Currently approved therapeutical strategies for inflammatory bowel diseases (IBD) suffer from variable efficacy and association with risk of serious side effects. Therefore, efforts have been made in searching for alternative therapeutics strategies utilizing gut microbiota manipulation. In this study, we show that the probiotic strain Ligilactobacillus salivarius Li01 (Li01) and the phytochemical prebiotic resveratrol (RSV) have synergistic effect in ameliorating colitis in mice. Oral coadministration of Li01 (109 CFU/d) and RSV (1.5 g/kg/d) promoted restoration of various inflammatory injuries and gut microbiota composition, exhibiting a favorable anti-inflammatory effect in DSS-induced colitis mice. The combination treatment was associated with reductions in the levels of proinflammatory cytokines IL-1ß and IL-6 and increases in the levels of the anti-inflammatory cytokine IL-17A in mouse serum. Moreover, the combination treatment was found to alter the composition and metabolism of the gut microbiota, especially influencing the production of short chain fatty acids and anti-inflammatory related molecules. The mechanism underlying the improved anti-inflammatory effect from the RSV and Li01 combination treatment was found to be associated with the environmental sensor mammalian aryl hydrocarbon receptor (AHR) and tryptophan metabolism pathway. Administration of RSV in combination with Li01 in different mouse model led to enhanced conversion of RSV into metabolites, including dihydroresveratrol (DHR), resveratrol-sulfate, and resveratrol-glucuronide. DHR was found to be the dominant metabolite of RSV in conventional and colitis mice. An increased DHR/RSV ratio was confirmed to activate AHR and contribute to an enhanced anti-inflammatory effect. DHR is considered as a potential AHR ligand. The DHR/RSV ratio also affected the serotonin pathway by controlling the expression of Tph1, SERT, and 5-HT7R leading to amelioration of colitis in mice. Our data suggest that treatment with a combination of Li01 and RSV has potential as a therapeutic strategy for IBD; further investigation of this combination in clinical settings is warranted.

16.
Food Funct ; 12(7): 3180-3190, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33734244

RESUMO

Antibiotic treatment is often followed by Clostridium difficile infection (CDI), which causes severe diarrhea and other health issues. Oral administration of Pediococcus pentosaceus Li05 (Li05) has been shown to have great potential in preventing CDI. However, the viability of Li05 is greatly reduced during storage and passage through the gastrointestinal (GI) tract, which limits its biological activity. In this study, a gastro-responsive microgel was designed to encapsulate and protect Li05 to enhance its efficacy against CDI. The viability of Li05 encapsulated within the microgels was significantly enhanced during long-term storage and after exposure to simulated GI fluids. Moreover, this gastro-responsive microgel led to greater sustained release of the probiotic. In a mouse CDI model, we found that encapsulated Li05 was better at inhibiting C. difficile infection than nonencapsulated Li05, as demonstrated through analysis of the probiotic survival rate, spleen weight, colonic histology, and inflammatory cytokine levels. Moreover, the gut microbial diversity was enriched by treatment with encapsulated Li05. These results suggest that encapsulating Li05 within biopolymer microgels may enhance its ability to prevent and treat CDI using functional foods, supplements, or pharmaceuticals.


Assuntos
Infecções por Clostridium/tratamento farmacológico , Diarreia/prevenção & controle , Microgéis/química , Pediococcus pentosaceus , Probióticos/administração & dosagem , Animais , Antibacterianos/efeitos adversos , Diarreia/induzido quimicamente , Modelos Animais de Doenças , Composição de Medicamentos , Armazenamento de Medicamentos , Feminino , Camundongos , Camundongos Endogâmicos C57BL
17.
Front Cell Infect Microbiol ; 11: 609722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791234

RESUMO

Orally administered probiotics encounter various challenges on their journey through the mouth, stomach, intestine and colon. The health benefits of probiotics are diminished mainly due to the substantial reduction of viable probiotic bacteria under the harsh conditions in the gastrointestinal tract and the colonization resistance caused by commensal bacteria. In this review, we illustrate the factors affecting probiotic viability and their mucoadhesive properties through their journey in the gastrointestinal tract, including a discussion on various mucosadhesion-related proteins on the probiotic cell surface which facilitate colonization.


Assuntos
Probióticos , Administração Oral , Trato Gastrointestinal , Trânsito Gastrointestinal , Intestinos
18.
NPJ Biofilms Microbiomes ; 7(1): 58, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244520

RESUMO

The low viability during gastrointestinal transit and poor mucoadhesion considerably limits the effectiveness of Ligilactobacillus salivarius Li01 (Li01) in regulating gut microbiota and alleviating inflammatory bowel disease (IBD). In this study, a delivery system was designed through layer-by-layer (LbL) encapsulating a single Li01cell with chitosan and alginate. The layers were strengthened by cross-linking to form a firm and mucoadhesive shell (~10 nm thickness) covering the bacterial cell. The LbL Li01 displayed improved viability under simulated gastrointestinal conditions and mucoadhesive function. Almost no cells could be detected among the free Li01 after 2 h incubation in digestive fluids, while for LbL Li01, the total reduction was around 3 log CFU/mL and the viable number of cells remained above 6 log CFU/mL. Besides, a 5-fold increase in the value of rupture length and a two-fold increase in the number of peaks were found in the (bacteria-mucin) adhesion curves of LbL Li01, compared to those of free Li01. Oral administration with LbL Li01 on colitis mice facilitated intestinal barrier recovery and restoration of the gut microbiota. The improved functionality of Li01 by LbL encapsulation could increase the potential for the probiotic to be used in clinical applications to treat IBD; this should be explored in future studies.


Assuntos
Técnicas Bacteriológicas , Lactobacillus/fisiologia , Animais , Aderência Bacteriana , Biomarcadores , Linhagem Celular , Colite/etiologia , Colite/metabolismo , Colite/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Mediadores da Inflamação , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Camundongos , Viabilidade Microbiana , Probióticos/administração & dosagem
19.
Food Chem ; 317: 126229, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32078989

RESUMO

The impact of nanoemulsions containing triglycerides with different fatty acid chain lengths on the bioavailability of a highly lipophilic bioactive: 5-demethylnobiletin (5-DN) was investigated. 5-DN was encapsulated in nanoemulsions fabricated using either medium-chain triglycerides (MCT) or long-chain triglycerides (LCT). They were then subjected to in vitro digestion, and the resulting mixed micelles was applied to a Caco-2 cell model. Higher 5-DN bioaccessibility was found for the MCT-nanoemulsion (13%) than for the LCT-nanoemulsion (7%). However, only 30% 5-DN in MCT crossed the Caco-2 monolayer and 50% was metabolized, while 60% 5-DN in LCT crossed the monolayer and only 10% was metabolized. More lipid droplets and chylomicrons were also formed for the LCT nanoemulsions, indicating greater 5-DN transported through lymph. Although MCT gave a higher 5-DN bioaccessibility, the final amount of 5-DN absorbed and transported to the lymph was inferior to that of the LCT formulation.


Assuntos
Micelas , Nanoestruturas/química , Triglicerídeos/química , Células CACO-2 , Quilomícrons/metabolismo , Flavonas/química , Flavonas/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Modelos Biológicos , Tamanho da Partícula , Triglicerídeos/metabolismo
20.
Front Microbiol ; 11: 1148, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670216

RESUMO

Numerous studies have demonstrated that the gut microbiota plays a vital role in human health and disease development. Although the number of studies on host-microbiota interactions have increased in recent years, the underlying pathogenesis of dysbiosis-related diseases are still largely unknown. Germ-free (GF) rodent models, with the animals housed in sterile isolators and completely free of microbiota, are useful tools to advance our understanding of host-microbiota relationship in vivo. Although protocols concerning the establishment and maintenance of GF mouse models have previously been reported, the establishment, maintenance and monitoring of GF rodents are labor-intensive, tedious and take experience and skills. The aim of our study was to establish a GF rat model for the following microbiota-related researches and provide an easy-to-use protocol for the establishment and maintenance of GF rat model in detail, including steps to set up the isolator, sterilize the flexible isolator bubble, import food, water and other supplies, and methods to acquire newborn GF rats, hand rearing of suckling GF rats and reproduction of GF offspring. During the hand feeding period, the body weight of suckling GF rats was weighed once a day to ascertain the amount of artificial milk was given. Based on our results, the body weight of suckling GF rats decreased 1 week after birth and then began to increase. Methods for verifying the quality of the model like assessing the sterile status of the rat colony are also described. Moreover, possible difficulties and challenges, especially during gavage, and suggestions to avoid contamination will be discussed. The protocol presented will facilitate the establishment of GF rat models and downstream microbiota-related researches.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa