Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Handb Exp Pharmacol ; 271: 379-400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33712941

RESUMO

Temporal lobe epilepsy is considered to be one of the most common and severe forms of focal epilepsies. Patients frequently develop cognitive deficits and emotional blunting along progression of the disease. The high incidence of refractoriness to antiepileptic drugs and a frequent lack of admissibility to surgery pose an unmet medical challenge. In the urgent quest for novel treatment strategies, neuropeptides and their receptors are interesting candidates. However, their therapeutic potential has not yet been fully exploited. This chapter focuses on the functional role of the dynorphins (Dyns) and the kappa opioid receptor (KOR) system in temporal lobe epilepsy and the hippocampus.Genetic polymorphisms in the prepro-dynorphin (pDyn) gene causing lower levels of Dyns in humans and pDyn gene knockout in mice increase the risk to develop epilepsy. This suggests a role of Dyns and KOR as modulators of neuronal excitability. Indeed, KOR agonists induce inhibition of presynaptic neurotransmitter release, as well as postsynaptic hyperpolarization in glutamatergic neurons, both producing anticonvulsant effects.The development of new approaches to modulate the complex KOR signalling cascade (e.g. biased agonism and gene therapy) opens up new exciting therapeutic opportunities with regard to seizure control and epilepsy. Potential adverse side effects of KOR agonists may be minimized through functional selectivity or locally restricted treatment. Preclinical data suggest a high potential of such approaches to control seizures.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Dinorfinas , Epilepsia do Lobo Temporal/tratamento farmacológico , Hipocampo , Humanos , Camundongos , Receptores Opioides kappa
2.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430140

RESUMO

Neurodegenerative diseases are characterized by adverse cellular environments and pathological alterations causing neurodegeneration in distinct brain regions. This development is triggered or facilitated by conditions such as hypoxia, ischemia or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Targeting intracellular downstream consequences to specifically reverse these pathological changes proved difficult to translate to clinical settings. Here, we discuss the potential of more holistic approaches with the purpose to re-establish a healthy cellular environment and to promote cellular resilience. We review the involvement of important molecular pathways (e.g., the sphingosine, δ-opioid receptor or N-Methyl-D-aspartate (NMDA) receptor pathways) in neuroprotective hypoxic conditioning effects and how these pathways can be targeted for chemical conditioning. Despite the present scarcity of knowledge on the efficacy of such approaches in neurodegeneration, the specific characteristics of Huntington's disease may make it particularly amenable for such conditioning techniques. Not only do classical features of neurodegenerative diseases like mitochondrial dysfunction, oxidative stress and inflammation support this assumption, but also specific Huntington's disease characteristics: a relatively young age of neurodegeneration, molecular overlap of related pathologies with hypoxic adaptations and sensitivity to brain hypoxia. The aim of this review is to discuss several molecular pathways in relation to hypoxic adaptations that have potential as drug targets in neurodegenerative diseases. We will extract the relevance for Huntington's disease from this knowledge base.


Assuntos
Hipóxia Celular/genética , Doença de Huntington/genética , Degeneração Neural/genética , Estresse Oxidativo/genética , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , N-Metilaspartato/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Fármacos Neuroprotetores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/uso terapêutico
3.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360592

RESUMO

The metabotropic glutamate receptor type 5 (mGluR5) has been proposed to play a crucial role in the selection and regulation of cognitive, affective, and emotional behaviors. However, the mechanisms by which these receptors mediate these effects remain largely unexplored. Here, we studied the role of mGluR5 located in D1 receptor-expressing (D1) neurons in the manifestation of different behavioral expressions. Mice with conditional knockout (cKO) of mGluR5 in D1 neurons (mGluR5D1 cKO) and littermate controls displayed similar phenotypical profiles in relation to memory expression, anxiety, and social behaviors. However, mGluR5D1 cKO mice presented different coping mechanisms in response to acute escapable or inescapable stress. mGluR5D1 cKO mice adopted an enhanced active stress coping strategy upon exposure to escapable stress in the two-way active avoidance (TWA) task and a greater passive strategy upon exposure to inescapable stress in the forced swim test (FST). In summary, this work provides evidence for a functional integration of the dopaminergic and glutamatergic system to mediate control over internal states upon stress exposure and directly implicates D1 neurons and mGluR5 as crucial mediators of behavioral stress responses.


Assuntos
Adaptação Psicológica , Dopamina/metabolismo , Neurônios/metabolismo , Receptor de Glutamato Metabotrópico 5/fisiologia , Receptores de Dopamina D1/metabolismo , Estresse Psicológico/prevenção & controle , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
4.
Hippocampus ; 26(5): 658-67, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26540287

RESUMO

Sprouty (Spry) proteins play a key role as negative feedback inhibitors of the Ras/Raf/MAPK/ERK pathway downstream of various receptor tyrosine kinases. Among the four Sprouty isoforms, Spry2 and Spry4 are expressed in the hippocampus. In this study, possible effects of Spry2 and Spry4 hypomorphism on neurodegeneration and seizure thresholds in a mouse model of epileptogenesis was analyzed. The Spry2/4 hypomorphs exhibited stronger ERK activation which was limited to the CA3 pyramidal cell layer and to the hilar region. The seizure threshold of Spry2/4(+/-) mice was significantly reduced at naive state but no difference to wildtype mice was observed 1 month following KA treatment. Histomorphological analysis revealed that dentate granule cell dispersion (GCD) was diminished in Spry2/4(+/-) mice in the subchronic phase after KA injection. Neuronal degeneration was reduced in CA1 and CA3 principal neuron layers as well as in scattered neurons of the contralateral CA1 and hilar regions. Moreover, Spry2/4 reduction resulted in enhanced survival of somatostatin and neuropeptide Y expressing interneurons. GFAP staining intensity and number of reactive astrocytes markedly increased in lesioned areas of Spry2/4(+/-) mice as compared with wildtype mice. Taken together, although the seizure threshold is reduced in naive Spry2/4(+/-) mice, neurodegeneration and GCD is mitigated following KA induced hippocampal lesions, identifying Spry proteins as possible pharmacological targets in brain injuries resulting in neurodegeneration. The present data are consistent with the established functions of the ERK pathway in astrocyte proliferation as well as protection from neuronal cell death and suggest a novel role of Spry proteins in the migration of differentiated neurons.


Assuntos
Lesões Encefálicas/patologia , Gliose/patologia , Hipocampo/patologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Proteínas de Membrana/deficiência , Proteínas do Tecido Nervoso/deficiência , Neurônios/patologia , Análise de Variância , Animais , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/complicações , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Gliose/induzido quimicamente , Hipocampo/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ácido Caínico/toxicidade , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Pentilenotetrazol/toxicidade , Proteínas Serina-Treonina Quinases , RNA Mensageiro/metabolismo , Convulsões/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
5.
Biomedicines ; 9(12)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34944698

RESUMO

Mutations in the prodynorphin gene (PDYN) are associated with the development of spinocerebellar ataxia type 23 (SCA23). Pathogenic missense mutations are localized predominantly in the PDYN region coding for the dynorphin A (DynA) neuropeptide and lead to persistently elevated mutant peptide levels with neurotoxic properties. The main DynA target in the central nervous system is the kappa opioid receptor (KOR), a member of the G-protein coupled receptor family, which can elicit signaling cascades mediated by G-protein dissociation as well as ß-arrestin recruitment. To date, a thorough analysis of the functional profile for the pathogenic SCA23 DynA mutants at KOR is still missing. To elucidate the role of DynA mutants, we used a combination of assays to investigate the differential activation of G-protein subunits and ß-arrestin. In addition, we applied molecular modelling techniques to provide a rationale for the underlying mechanism. Our results demonstrate that DynA mutations, associated with a severe ataxic phenotype, decrease potency of KOR activation, both for G-protein dissociation as well as ß-arrestin recruitment. Molecular modelling suggests that this loss of function is due to disruption of critical interactions between DynA and the receptor. In conclusion, this study advances our understanding of KOR signal transduction upon DynA wild type or mutant peptide binding.

6.
EMBO Mol Med ; 11(10): e9963, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31486590

RESUMO

Focal epilepsy represents one of the most common chronic CNS diseases. The high incidence of drug resistance, devastating comorbidities, and insufficient responsiveness to surgery pose unmet medical challenges. In the quest of novel, disease-modifying treatment strategies of neuropeptides represent promising candidates. Here, we provide the "proof of concept" that gene therapy by adeno-associated virus (AAV) vector transduction of preprodynorphin into the epileptogenic focus of well-accepted mouse and rat models for temporal lobe epilepsy leads to suppression of seizures over months. The debilitating long-term decline of spatial learning and memory is prevented. In human hippocampal slices obtained from epilepsy surgery, dynorphins suppressed seizure-like activity, suggestive of a high potential for clinical translation. AAV-delivered preprodynorphin expression is focally and neuronally restricted and release is dependent on high-frequency stimulation, as it occurs at the onset of seizures. The novel format of "release on demand" dynorphin delivery is viewed as a key to prevent habituation and to minimize the risk of adverse effects, leading to long-term suppression of seizures and of their devastating sequel.


Assuntos
Dinorfinas/farmacologia , Epilepsia do Lobo Temporal/terapia , Expressão Gênica , Terapia Genética/métodos , Neurotransmissores/farmacologia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Dinorfinas/genética , Regulação da Expressão Gênica , Vetores Genéticos , Humanos , Camundongos , Modelos Teóricos , Neurotransmissores/genética , Técnicas de Cultura de Órgãos , Ratos , Transdução Genética , Resultado do Tratamento
7.
Front Mol Neurosci ; 11: 351, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319356

RESUMO

Epilepsies are a group of common neurological diseases exerting a strong burden on patients and society, often lacking clear etiology and effective therapeutical strategies. Early intervention during the development of epilepsy (epileptogenesis) is of great medical interest, though hampered by poorly characterized epileptogenetic processes. Using the intrahippocampal kainic acid mouse model of temporal lobe epilepsy, we investigated the functional role of the endogenous opioid enkephalin during epileptogenesis. We addressed three sequential questions: (1) How does enkephalin affect seizure threshold and how is it regulated during epileptogenesis? (2) Does enkephalin influence detrimental effects during epileptogenesis? (3) How is enkephalin linked to mitochondrial function during epileptogenesis?. In contrast to other neuropeptides, the expression of enkephalin is not regulated in a seizure dependent manner. The pattern of regulation, and enkephalin's proconvulsive effects suggested it as a potential driving force in epileptogenesis. Surprisingly, enkephalin deficiency aggravated progressive granule cell dispersion in kainic acid induced epileptogenesis. Based on reported beneficial effects of enkephalin on mitochondrial function in hypoxic/ischemic states, we hypothesized that enkephalin may be involved in the adaptation of mitochondrial respiration during epileptogenesis. Using high-resolution respirometry, we observed dynamic improvement of hippocampal mitochondrial respiration after kainic acid-injections in wild-type, but not in enkephalin-deficient mice. Thus, wild-type mice displayed higher efficiency in the use of mitochondrial capacity as compared to enkephalin-deficient mice. Our data demonstrate a Janus-headed role of enkephalin in epileptogenesis. In naive mice, enkephalin facilitates seizures, but in subsequent stages it contributes to neuronal survival through improved mitochondrial respiration.

8.
Science ; 360(6395)2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29930108

RESUMO

A systems view of G protein-coupled receptor (GPCR) signaling in its native environment is central to the development of GPCR therapeutics with fewer side effects. Using the kappa opioid receptor (KOR) as a model, we employed high-throughput phosphoproteomics to investigate signaling induced by structurally diverse agonists in five mouse brain regions. Quantification of 50,000 different phosphosites provided a systems view of KOR in vivo signaling, revealing novel mechanisms of drug action. Thus, we discovered enrichment of the mechanistic target of rapamycin (mTOR) pathway by U-50,488H, an agonist causing aversion, which is a typical KOR-mediated side effect. Consequently, mTOR inhibition during KOR activation abolished aversion while preserving beneficial antinociceptive and anticonvulsant effects. Our results establish high-throughput phosphoproteomics as a general strategy to investigate GPCR in vivo signaling, enabling prediction and modulation of behavioral outcomes.


Assuntos
Encéfalo/metabolismo , Ensaios de Triagem em Larga Escala , Fosfoproteínas/metabolismo , Proteômica/métodos , Receptores Opioides kappa/metabolismo , Transdução de Sinais , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/metabolismo , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos não Narcóticos/farmacologia , Animais , Anticonvulsivantes/farmacologia , Arrestinas/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Linhagem Celular Tumoral , Diterpenos Clerodânicos/metabolismo , Diterpenos Clerodânicos/farmacologia , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenetilaminas/metabolismo , Fenetilaminas/farmacologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/genética , Transdução de Sinais/efeitos da radiação , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
9.
Br J Pharmacol ; 173(11): 1756-67, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26928671

RESUMO

BACKGROUND AND PURPOSE: With a prevalence of 1-2%, epilepsies belong to the most frequent neurological diseases worldwide. Although antiepileptic drugs are available since several decades, the incidence of patients that are refractory to medication is still over 30%. Antiepileptic effects of κ opioid receptor (κ receptor) agonists have been proposed since the 1980s. However, their clinical use was hampered by dysphoric side effects. Recently, G-protein biased κ receptor agonists were developed, suggesting reduced aversive effects. EXPERIMENTAL APPROACH: We investigated the effects of the κ receptor agonist U-50488H and the G-protein biased partial κ receptor agonist 6'-GNTI in models of acute seizures and drug-resistant temporal lobe epilepsy and in the conditioned place avoidance (CPA) test. Moreover, we performed slice electrophysiology to understand the functional mechanisms of 6'-GNTI. KEY RESULTS: As previously shown for U-50488H, 6'-GNTI markedly increased the threshold for pentylenetetrazole-induced seizures. All treated mice displayed reduced paroxysmal activity in response to U-50488H (20 mg·kg(-1) ) or 6'-GNTI (10-30 nmoles) treatment in the mouse model of intra-hippocampal injection of kainic acid. Single cell recordings on hippocampal pyramidal cells revealed enhanced inhibitory signalling as potential mechanisms causing the reduction of paroxysmal activity. Effects of 6'-GNTI were blocked in both seizure models by the κ receptor antagonist 5'-GNTI. Moreover, 6'-GNTI did not induce CPA, a measure of aversive effects, while U-50488H did. CONCLUSIONS AND IMPLICATIONS: Our data provide the proof of principle that anticonvulsant/antiseizure and aversive effects of κ receptor activation can be pharmacologically separated in vivo.


Assuntos
Guanidinas/farmacologia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Hipocampo/efeitos dos fármacos , Naltrexona/análogos & derivados , Receptores Opioides kappa/agonistas , Convulsões/tratamento farmacológico , Convulsões/psicologia , Animais , Hipocampo/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naltrexona/farmacologia
10.
Front Cell Neurosci ; 10: 258, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27872583

RESUMO

Understanding the role of the bioactive lipid mediator sphingosine 1-phosphate (S1P) within the central nervous system has recently gained more and more attention, as it has been connected to major diseases such as multiple sclerosis and Alzheimer's disease. Even though much data about the functions of the five S1P receptors has been collected for other organ systems, we still lack a complete understanding for their specific roles, in particular within the brain. Therefore, it was the aim of this study to further elucidate the role of S1P receptor subtype 3 (S1P3) in vivo and in vitro with a special focus on the hippocampus. Using an S1P3 knock-out mouse model we applied a range of behavioral tests, performed expression studies, and whole cell patch clamp recordings in acute hippocampal slices. We were able to show that S1P3 deficient mice display a significant spatial working memory deficit within the T-maze test, but not in anxiety related tests. Furthermore, S1p3 mRNA was expressed throughout the hippocampal formation. Principal neurons in area CA3 lacking S1P3 showed significantly increased interspike intervals and a significantly decreased input resistance. Upon stimulation with S1P CA3 principal neurons from both wildtype and [Formula: see text] mice displayed significantly increased evoked EPSC amplitudes and decay times, whereas rise times remained unchanged. These results suggest a specific involvement of S1P3 for the establishment of spatial working memory and neuronal excitability within the hippocampus.

11.
Mitochondrion ; 25: 104-12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26516105

RESUMO

Mitochondrial dysfunction and oxidative stress are strongly implicated in neurodegenerative diseases and epilepsy. Strikingly, neurodegenerative diseases show regional specificity in vulnerability and follow distinct patterns of neuronal loss. A challenge is to understand, why mitochondria fail in particular brain regions under specific pathological conditions. A potential explanation could be provided by regional or cellular specificity of mitochondrial function. We applied high-resolution respirometry to analyze the integrated Complex I- and II (CI and CII)-linked respiration, the activity of Complex IV, and the combined CI&II-linked oxidative phosphorylation (OXPHOS)- and electron-transfer system (ETS)-capacity in microsamples obtained from distinct regions of the mouse brain. We compared different approaches to assess mitochondrial density and suggest flux control ratios as a valid method to normalize respiration to mitochondrial density. This approach revealed significant differences of CI- and CII-linked OXPHOS capacity and coupling control between motor cortex, striatum, hippocampus and pons of naïve mice. CI-linked respiration was highest in motor cortex, while CII-linked respiration predominated in the striatum. To investigate if this method could also determine differences in normal and disease states within the same brain region, we compared hippocampal homogenates in a chronic epilepsy model. Three weeks after stereotaxic injection of kainate, there was a down-regulation of CI- and upregulation of CII-linked respiration in the resulting epileptic ipsilateral hippocampus compared to the contralateral one. In summary, respirometric OXPHOS analysis provides a very sensitive diagnostic approach using small amounts of distinct brain tissues. In a single assay, information is obtained on numerous OXPHOS parameters as indicators of tissue-specific mitochondrial performance.


Assuntos
Encéfalo/patologia , Encéfalo/fisiologia , Respiração Celular , Epilepsia/patologia , Mitocôndrias/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa
12.
PLoS One ; 7(9): e44025, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028485

RESUMO

We examined the role of endogenous dopamine (DA) in regulating the number of intrinsic tyrosine hydroxylase-positive (TH(+)) striatal neurons using mice at postnatal day (PND) 4 to 8, a period that corresponds to the developmental peak in the number of these neurons. We adopted the strategy of depleting endogenous DA by a 2-day treatment with α-methyl-p-tyrosine (αMpT, 150 mg/kg, i.p.). This treatment markedly increased the number of striatal TH(+) neurons, assessed by stereological counting, and the increase was highly correlated to the extent of DA loss. Interestingly, TH(+) neurons were found closer to the clusters of DA fibers after DA depletion, indicating that the concentration gradient of extracellular DA critically regulates the distribution of striatal TH(+) neurons. A single i.p. injection of the D1 receptor antagonist, SCH23390 (0.1 mg/kg), the D2/D3 receptor antagonist, raclopride (0.1 mg/kg), or the D4 receptor antagonist, L-745,870 (5 mg/kg) in mice at PND4 also increased the number of TH(+) neurons after 4 days. Treatment with the D1-like receptor agonist SKF38393 (10 mg/kg) or with the D2-like receptor agonist, quinpirole (1 mg/kg) did not change the number of TH(+) neurons. At least the effects of SCH23390 were prevented by a combined treatment with SKF38393. Immunohistochemical analysis indicated that striatal TH(+) neurons expressed D2 and D4 receptors, but not D1 receptors. Moreover, treatment with the α4ß2 receptor antagonist dihydro-ß-erythroidine (DHßE) (3.2 mg/kg) also increased the number of TH(+) neurons. The evidence that DHßE mimicked the action of SCH23390 in increasing the number of TH(+) neurons supports the hypothesis that activation of D1 receptors controls the number of striatal TH(+) neurons by enhancing the release of acetylcholine. These data demonstrate for the first time that endogenous DA negatively regulates the number of striatal TH(+) neurons by direct and indirect mechanisms mediated by multiple DA receptor subtypes.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Interneurônios/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Antagonistas de Dopamina/administração & dosagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Camundongos , Fenótipo , Receptores Dopaminérgicos/metabolismo , Receptores de Dopamina D2/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa