Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytother Res ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237123

RESUMO

Gardenia jasminoides Ellis. polysaccharide (GPS) can protect against cholestatic liver injury (CLI) by regulating nuclear farnesoid X receptor (FXR).However, the mechanism via which GPS mediates the FXR pathway remains unclear. The aim of this study was to investigate the mechanism. Firstly, an alpha-naphthylisothiocyanate-induced cholestatic mouse model was administered with GPS to evaluate its hepatoprotective effects. The metabolic pathways influenced by GPS in cholestatic mice were detected by serum metabolomics. The effect of GPS on bile acid (BA) homeostasis, FXR expression, and liver inflammation were investigated. Second, the intestinal bacteria metabolites affected by GPS in vivo and in vitro were determined. The activation of FXR by sodium butyrate (NaB) was measured. Finally, the effects of NaB on cholestatic mice were demonstrated. The main pathways influenced by GPS involved BA biosynthesis. GPS upregulated hepatic FXR expression, improved BA homeostasis, reduced F4/80+ and Ly6G+ positive areas in the liver, and inhibited liver inflammation in cholestatic mice. Butyric acid was the most notable intestinal bacterial metabolite following GPS intervention. NaB activated the transcriptional activity of FXR in vitro, upregulated hepatic FXR and its downstream efflux transporter expression, and ameliorated disordered BA homeostasis in CLI mice. NaB inhibited the toll-like receptor 4/nuclear factor (TLR4/NF-κB) pathway and reduced inflammation and CLI in mice. An FXR antagonist suppressed the effects. In conclusion, GPS increased butyric acid production, which can activate hepatic FXR, reverse BA homeostasis disorder, and inhibit the TLR4/NF-κB inflammatory pathway, exerting protective effects against CLI.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36542898

RESUMO

Yinchenwuling Fang (YCWLF), a famous traditional Chinese medicine, has been used clinically for cholestatic liver disease treatment. However, quantification analysis for YCWLF components and their pharmacological effects remains largely unknown. Therefore, we aimed to determine the YCWLF components and their activities. Quantification analysis of 12 YCWLF components was performed using a comprehensive ultra-performance liquid chromatography (UPLC) coupled with the triple-quadrupole mass spectrometry method. Then, the anti-cholestasis effect and potential mechanism of YCWLF were performed in a mouse model induced by alpha-naphthyl isothiocyanate (ANIT). YCWLF decreased serum biochemical indicators (ALT, AST, ALP, TBA, TBIL, and DBIL) and ameliorated liver tissue damage in cholestatic mice. Mechanically, YCWLF increased the expression of the farnesoid X receptor (FXR) and its downstream efflux transporters and metabolic enzyme genes, reversed the disordered homeostasis of bile acids, and decreased cholestatic liver injury. Based on the important role of FXR in YCWLF amelioration on cholestasis, a dual-luciferase assay was used to screen the potential agonist of FXR from 12 YCWLF components. Chlorogenic acid, 4-hydroxyacetophenone, scoparone, atractylenolide Ⅰ, atractylenolide Ⅱ, and alisol B 23-acetate exhibited an activity effect of FXR. This study provides novel a therapeutic mechanism and potential active compounds of YCWLF on cholestatic liver injury.


Assuntos
Colestase , Hepatopatias , Camundongos , Animais , 1-Naftilisotiocianato/toxicidade , 1-Naftilisotiocianato/metabolismo , Colestase/induzido quimicamente , Colestase/tratamento farmacológico , Colestase/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Isotiocianatos/farmacologia , Ácidos e Sais Biliares/metabolismo
3.
Int J Nanomedicine ; 15: 2669-2683, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368048

RESUMO

BACKGROUND: Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanomaterials in a variety of fields such as industrial, pharmaceutical, and household applications. Increasing evidence suggests that ZnO NPs could elicit unignorable harmful effect to the cardiovascular system, but the potential deleterious effects to human cardiomyocytes remain to be elucidated. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been increasingly used as a promising in vitro model of cardiomyocyte in various fields such as drug cardiac safety evaluation. Herein, the present study was designed to elucidate the cardiac adverse effects of ZnO NPs and explore the possible underlying mechanism using hiPSC-CMs. METHODS: ZnO NPs were characterized by transmission electron microscopy and dynamic light scattering. The cytotoxicity induced by ZnO NPs in hiPSC-CMs was evaluated by determination of cell viability and lactate dehydrogenase release. Cellular reactive oxygen species (ROS) and mitochondrial membrane potential were measured by high-content analysis (HCA). Mitochondrial biogenesis was assayed by detection of mtDNA copy number and PGC-1α pathway. Moreover, microelectrode array techniques were used to investigate cardiac electrophysiological alterations. RESULTS: We demonstrated that ZnO NPs concentration- and time-dependently elicited cytotoxicity in hiPSC-CMs. The results from HCA revealed that ZnO NPs exposure at low-cytotoxic concentrations significantly promoted ROS generation and induced mitochondrial dysfunction. We further demonstrated that ZnO NPs could impair mitochondrial biogenesis and inhibit PGC-1α pathway. In addition, ZnO NPs at insignificantly cytotoxic concentrations were found to trigger cardiac electrophysiological alterations as evidenced by decreases of beat rate and spike amplitude. CONCLUSION: Our findings unveiled the potential harmful effects of ZnO NPs to human cardiomyocytes that involve mitochondrial biogenesis and the PGC-1α pathway that could affect cardiac electrophysiological function.


Assuntos
Coração/fisiopatologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/metabolismo , Nanopartículas/toxicidade , Biogênese de Organelas , Óxido de Zinco/toxicidade , Diferenciação Celular/efeitos dos fármacos , DNA Mitocondrial/genética , Coração/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Nanopartículas/ultraestrutura , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa