Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Hum Mol Genet ; 31(15): 2639-2654, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35333353

RESUMO

XBP1 variant 1 (Xv1) is the most abundant XBP1 variant and is highly enriched across cancer types but nearly none in normal tissues. Its expression is associated with poor patients' survival and is specifically required for survival of malignant cells, but the underlying mechanism is not known. Here we report that Xv1 upregulates the polyglutamylase tubulin tyrosine ligase-like 6 (TTLL6) and promotes mitosis of cancer cells. Like the canonical XBP1, Xv1 mRNA undergoes unconventional splicing by IRE1α under endoplasmic reticulum stress, but it is also constitutively spliced by IRE1ß. The spliced Xv1 mRNA encodes the active form of Xv1 protein (Xv1s). RNA sequencing in HeLa cells revealed that Xv1s overexpression regulates expression of genes that are not involved in the canonical unfolded protein response, including TTLL6 as a highly upregulated gene. Gel shift assay and chromatin immunoprecipitation revealed that Xv1s bind to the TTLL6 promoter region. Knockdown of TTLL6 caused death of cancer cells but not benign and normal cells, similar to the effects of knocking down Xv1. Moreover, overexpression of TTLL6 partially rescued BT474 cells from apoptosis induced by either TTLL6 or Xv1 knockdown, supporting TTLL6 as an essential downstream effector of Xv1 in regulating cancer cell survival. TTLL6 is localized in the mitotic spindle of cancer cells. Xv1 or TTLL6 knockdown resulted in decreased spindle polyglutamylation and interpolar spindle, as well as congression failure, mitotic arrest and cell death. These findings suggest that Xv1 is essential for cancer cell mitosis, which is mediated, at least in part, by increasing TTLL6 expression.


Assuntos
Endorribonucleases , Neoplasias , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células HeLa , Humanos , Mitose , Neoplasias/genética , Peptídeo Sintases/genética , Proteínas Serina-Treonina Quinases , RNA Mensageiro/genética , Regulação para Cima , Proteína 1 de Ligação a X-Box/genética
2.
Biochem Biophys Res Commun ; 562: 69-75, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34038755

RESUMO

XBP1 is a basic leucine zipper (bZIP) transcription factor and a key mediator of the endoplasmic reticulum (ER) stress-activated unfolded protein response (UPR). XBP1-mediated transcription facilitates cell adaptation to ER stress and also promotes tumor progression, while suppressing anti-tumor immunity. Here we report a novel XBP1 variant, namely XBP1 variant 1 (XBP1v1, Xv1 for short), that is specifically required for survival of cancer cells. Xv1 contains a cryptic first exon that is conserved only in humans and great apes. Comparing to XBP1, Xv1 encodes a protein with a different N-terminal sequence containing 25 amino acids. Analysis of RNAseq database reveals that Xv1 is broadly expressed across cancer types but almost none in normal tissues. Elevated Xv1 expression is associated with poor survival of patients with several types of cancer. Knockdown of Xv1 induces death of multiple cancer cell lines but has little effect on non-cancerous cells in vitro. Moreover, knockdown of Xv1 also inhibits growth of a xenograft breast tumor in mice. Together, our results indicate that Xv1 is essential for survival of cancer cells.


Assuntos
Variação Genética , Neoplasias/genética , Neoplasias/patologia , Proteína 1 de Ligação a X-Box/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biochim Biophys Acta ; 1853(12): 3279-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26417682

RESUMO

The amount of transcription factor OCT4 is strictly regulated. A tight regulation of OCT4 levels is crucial for mammalian embryonic development and oncogenesis. However, the mechanisms underlying regulation of OCT4 protein expression and nuclear distribution are largely unknown. Here, we report that DPF2, a plant homeodomain (PHD) finger protein, is upregulated during H9 cell differentiation induced by retinoic acid. Endogenous interaction between DPF2 and OCT4 in P19 cells was revealed by an immunoprecipitation assay. GST-pull down assay proved that OCT4 protein in H9 cells and recombinant OCT4 can precipitate with DPF2 in vitro. In vitro ubiquitination assay demonstrated DPF2 might serve as an E3 ligase. Knock down of dpf2 using siRNA increased OCT4 protein level and stability in P19 cells. DPF2 siRNAs also up-regulates OCT4 but not NANOG in H9 cells. However, RA fails to downregulates OCT4 protein level in cells infected by lenitviruses containing DPF2 siRNA. Moreover, overexpression of both DPF2 and OCT4 in 293 cells proved the DPF2-OCT4 interaction. DPF2 but not PHD2 mutant DPF2 enhanced ubiquitination and degradation of OCT4 in 293 cells co-expressed DPF2 and OCT4. Both wild type DPF2 and PHD2 mutant DPF2 redistributes nuclear OCT4 without affecting DPF2-OCT4 interaction. Further analysis indicated that DPF2 decreases monomeric and mono-ubiquitinated OCT4, assembles poly-ubiquitin chains on OCT4 mainly through Ub-K48 linkage. These findings contribute to an understanding of how OCT4 protein level and nuclear distribution is regulated by its associated protein.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/fisiologia , Fator 3 de Transcrição de Octâmero/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proteínas de Ligação a DNA/genética , Humanos , Ligação Proteica , Fatores de Transcrição , Tretinoína/farmacologia , Ubiquitinação
4.
Biochem Biophys Res Commun ; 458(2): 424-8, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25660456

RESUMO

Misfolded proteins or orphan subunits of protein complexes are removed from the endoplasmic reticulum (ER) by ER-associated degradation (ERAD). ERAD requires dislocation, also known as retrotranslocation, of those unwanted proteins from the ER lumen to the cytosol for destruction by the proteasomes. Over one hundred ERAD component proteins have been identified but their role in dislocation remain poorly understood. Here we assessed the requirement of ERAD components for dislocation of NHK in live cells using our recently developed dislocation-induced reconstituted GFP (drGFP) assay. RNAi revealed that 12 out of 21 ERAD components examined are required for efficient dislocation of NHK among which Hrd1, Sel1L, GRP94 and p97/VCP are critically required. In addition, knockdown of 7 of the 21 components enhanced NHK dislocation. This study uncovers a complex functional network of proteins required for NHK dislocation.


Assuntos
Degradação Associada com o Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , alfa 1-Antitripsina/metabolismo , Células HeLa , Hong Kong , Humanos
5.
J Biol Chem ; 287(33): 28057-66, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22722934

RESUMO

Misfolded proteins in the endoplasmic reticulum (ER) are dislocated to the cytosol to be degraded by the proteasomes. Various plant and bacterial toxins and certain viruses hijack this dislocation pathway to exert their toxicity or to infect cells. In this study, we report a dislocation-dependent reconstituted GFP (drGFP) assay that allows, for the first time, imaging proteins dislocated from the ER lumen to the cytosol in living cells. Our results indicate that both luminal and membrane-spanning ER proteins can be fully dislocated from the ER to the cytosol. By combining the drGFP assay with RNAi or chemical inhibitors of proteins in the Hrd1 ubiquitin ligase complex, we demonstrate that the Sel1L, Hrd1, p97/VCP, and importin ß proteins are required for the dislocation of misfolded luminal α-1 antitrypsin. The strategy described in this work is broadly applicable to the study of other types of transmembrane transport of proteins and likely also of viruses and toxins in living cells.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , alfa 1-Antitripsina/metabolismo , beta Carioferinas/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Citosol/metabolismo , Retículo Endoplasmático/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Microscopia de Fluorescência , Transporte Proteico/fisiologia , Proteínas/genética , Ubiquitina-Proteína Ligases/genética , Proteína com Valosina , alfa 1-Antitripsina/genética , beta Carioferinas/genética
6.
Biochem Biophys Res Commun ; 439(1): 154-9, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23939048

RESUMO

The neural differentiation of human embryonic stem cells (ESCs) is a potential tool for elucidating the key mechanisms involved in human neurogenesis. Nestin and ß-III-tubulin, which are cytoskeleton proteins, are marker proteins of neural stem cells (NSCs) and neurons, respectively. However, the expression patterns of nestin and ß-III-tubulin in neural derivatives from human ESCs remain unclear. In this study, we found that neural progenitor cells (NPCs) derived from H9 cells express high levels of nestin and musashi-1. In contrast, ß-III-tubulin was weakly expressed in a few NPCs. Moreover, in these cells, nestin formed filament networks, whereas ß-III-tubulin was distributed randomly as small particles. As the differentiation proceeded, the nestin filament networks and the ß-III-tubulin particles were found in both the cell soma and the cellular processes. Moreover, the colocalization of nestin and ß-III-tubulin was found mainly in the cell processes and neurite-like structures and not in the cell soma. These results may aid our understanding of the expression patterns of nestin and ß-III-tubulin during the neural differentiation of H9 cells.


Assuntos
Diferenciação Celular , Citoesqueleto/metabolismo , Células-Tronco Embrionárias/citologia , Neurônios/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neurogênese , Proteínas de Ligação a RNA/metabolismo , Tubulina (Proteína)/metabolismo
7.
Nat Commun ; 14(1): 4798, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558718

RESUMO

UBA1 is the primary E1 ubiquitin-activating enzyme responsible for generation of activated ubiquitin required for ubiquitination, a process that regulates stability and function of numerous proteins. Decreased or insufficient ubiquitination can cause or drive aging and many diseases. Therefore, a small-molecule enhancing UBA1 activity could have broad therapeutic potential. Here we report that auranofin, a drug approved for the treatment of rheumatoid arthritis, is a potent UBA1 activity enhancer. Auranofin binds to the UBA1's ubiquitin fold domain and conjugates to Cys1039 residue. The binding enhances UBA1 interactions with at least 20 different E2 ubiquitin-conjugating enzymes, facilitating ubiquitin charging to E2 and increasing the activities of seven representative E3s in vitro. Auranofin promotes ubiquitination and degradation of misfolded ER proteins during ER-associated degradation in cells at low nanomolar concentrations. It also facilitates outer mitochondrial membrane-associated degradation. These findings suggest that auranofin can serve as a much-needed tool for UBA1 research and therapeutic exploration.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Auranofina/farmacologia , Ubiquitinação , Enzimas Ativadoras de Ubiquitina/metabolismo
8.
J Biol Chem ; 286(39): 33921-30, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21832065

RESUMO

The mechanism by which misfolded proteins in the endoplasmic reticulum (ER) are retrotranslocated to the cytosol for proteasomal degradation is still poorly understood. Here, we show that importin ß, a well established nucleocytoplasmic transport protein, interacts with components of the retrotranslocation complex and promotes ER-associated degradation (ERAD). Knockdown of importin ß specifically inhibited the degradation of misfolded ERAD substrates but did not affect turnover of non-ERAD proteasome substrates. Genetic studies and in vitro reconstitution assays demonstrate that importin ß is critically required for ubiquitination of mutant α1-antitrypsin, a luminal ERAD substrate. Furthermore, we show that importin ß cooperates with Ran GTPase to promote ubiquitination and proteasomal degradation of mutant α1-antitrypsin. These results establish an unanticipated role for importin ß in ER protein quality control.


Assuntos
Retículo Endoplasmático/metabolismo , Mutação , Ubiquitinação/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , alfa 1-Antitripsina/metabolismo , beta Carioferinas/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/genética , Células HEK293 , Células HeLa , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico/fisiologia , alfa 1-Antitripsina/genética , beta Carioferinas/genética , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo
9.
Biochem Biophys Res Commun ; 417(2): 738-43, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22197812

RESUMO

Endoplasmic reticulum (ER) stress occurs during early embryonic development. The aim of this study is to determine whether ER stress occurs during human embryonic stem cell differentiation induced by retinoic acid (RA). H9 human embryonic stem cells were subjected to RA treatment for up to 29days to induce differentiation. HEK293 cells were treated with RA as a control. The results demonstrate that several ER stress-responsive genes are differentially regulated in H9 and HEK293 cells in response to 5days of RA treatment. GRP78/Bip was upregulated in H9 cells but downregulated in HEK293 cells. eIF2α was downregulated in H9 cells but not in HEK293 cells. Phosphorylation of eIF2α was downregulated in H9 cells but upregulated in HEK293 cells. XBP-1 was downregulated immediately after RA treatment in H9 cells, but its downregulation was much slower in HEK293 cells. Additionally, two ER-resident E3 ubiquitin ligases, gp78 and Hrd1, were both upregulated in H9 cells following 5 days of exposure to RA. Moreover, the protein Bcl2 was undetectable in H9 cells and H9-derived cells but was expressed in HEK293 cells, and it expression in the two types of cells was unaltered by RA treatment. In H9 cells treated with RA for 29 days, GRP78/Bip, XBP-1 and Bcl2 were all upregulated. These results suggest that ER stress is involved in H9 cell differentiation induced by RA.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Tretinoína/fisiologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HEK293 , Humanos , Fosforilação , Receptores do Fator Autócrino de Motilidade/biossíntese , Tretinoína/farmacologia , Ubiquitina-Proteína Ligases/biossíntese
10.
Mol Biol Cell ; 33(13): ar120, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36074076

RESUMO

RNF5 E3 ubiquitin ligase has multiple biological roles and has been linked to the development of severe diseases such as cystic fibrosis, acute myeloid leukemia, and certain viral infections, emphasizing the importance of discovering small-molecule RNF5 modulators for research and drug development. The present study describes the synthesis of a new benzo[b]thiophene derivative, FX12, that acts as a selective small-molecule inhibitor and degrader of RNF5. We initially identified the previously reported STAT3 inhibitor, Stattic, as an inhibitor of dislocation of misfolded proteins from the endoplasmic reticulum (ER) lumen to the cytosol in ER-associated degradation. A concise structure-activity relationship campaign (SAR) around the Stattic chemotype led to the synthesis of FX12, which has diminished activity in inhibition of STAT3 activation and retains dislocation inhibitory activity. FX12 binds to RNF5 and inhibits its E3 activity in vitro as well as promoting proteasomal degradation of RNF5 in cells. RNF5 as a molecular target for FX12 was supported by the facts that FX12 requires RNF5 to inhibit dislocation and negatively regulates RNF5 function. Thus, this study developed a small-molecule inhibitor and degrader of the RNF5 ubiquitin ligase, providing a chemical biology tool for RNF5 research and therapeutic development.


Assuntos
Proteínas de Ligação a DNA , Ubiquitina , Óxidos S-Cíclicos , Proteínas de Ligação a DNA/metabolismo , Tiofenos/farmacologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
J Biol Chem ; 285(41): 31634-46, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20663883

RESUMO

Type I transglutaminase (TG1) is an enzyme that is responsible for assembly of the keratinocyte cornified envelope. Although TG1 mutation is an underlying cause of autosomal recessive congenital ichthyosis, a debilitating skin disease, the pathogenic mechanism is not completely understood. In the present study we show that TG1 is an endoplasmic reticulum (ER) membrane-associated protein that is trafficked through the ER for ultimate delivery to the plasma membrane. Mutation severely attenuates this processing and a catalytically inactive point mutant, TG1-FLAG(C377A), accumulates in the endoplasmic reticulum and in aggresome-like structures where it is ubiquitinylated. This accumulation results from protein misfolding, as treatment with a chemical chaperone permits it to exit the endoplasmic reticulum and travel to the plasma membrane. ER accumulation is also observed for ichthyosis-associated TG1 mutants. Our findings suggest that misfolding of TG1 mutants leads to ubiquitinylation and accumulation in the ER and aggresomes, and that abnormal intracellular processing of TG1 mutants may be an underlying cause of ichthyosis.


Assuntos
Membrana Celular/enzimologia , Retículo Endoplasmático/enzimologia , Doenças Genéticas Inatas/enzimologia , Ictiose/enzimologia , Queratinócitos/enzimologia , Mutação Puntual , Dobramento de Proteína , Transglutaminases/metabolismo , Ubiquitinação/genética , Membrana Celular/genética , Células Cultivadas , Retículo Endoplasmático/genética , Doenças Genéticas Inatas/genética , Humanos , Ictiose/genética , Masculino , Transporte Proteico/genética , Transglutaminases/genética
12.
Proc Natl Acad Sci U S A ; 105(2): 554-9, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18182494

RESUMO

Heat-shock protein 90alpha (Hsp90alpha) is a member of the molecular chaperone family involved in protein folding and assembly. The role of Hsp90alpha in the developmental process, however, remains unclear. Here we report that zebrafish contains two Hsp90alpha genes, Hsp90alpha1, and Hsp90alpha2. Hsp90alpha1 is specifically expressed in developing somites and skeletal muscles of zebrafish embryos. We have demonstrated that Hsp90alpha1 is essential for myofibril organization in skeletal muscles of zebrafish embryos. Knockdown of Hsp90alpha1 resulted in paralyzed zebrafish embryos with poorly organized myofibrils in skeletal muscles. In contrast, knockdown of Hsp90alpha2 had no effect on muscle contraction and myofibril organization. The filament defects could be rescued in a cell autonomous manner by an ectopic expression of Hsp90alpha1. Biochemical analyses revealed that knockdown of Hsp90alpha1 resulted in significant myosin degradation and up-regulation of unc-45b gene expression. These results indicate that Hsp90alpha1 plays an important role in muscle development, likely through facilitating myosin folding and assembly into organized myofibril filaments.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP90/química , Músculo Esquelético/embriologia , Miofibrilas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Proteínas Musculares/química , Miosinas/química , Oligonucleotídeos Antissenso/química , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Peixe-Zebra , Proteínas de Peixe-Zebra/química
13.
Sci Rep ; 9(1): 10901, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358863

RESUMO

Infection with flaviviruses, such as dengue virus (DENV) and the recently re-emerging Zika virus (ZIKV), represents an increasing global risk. Targeting essential host elements required for flavivirus replication represents an attractive approach for the discovery of antiviral agents. Previous studies have identified several components of the Hrd1 ubiquitin ligase-mediated endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, a cellular protein quality control process, as host factors crucial for DENV and ZIKV replication. Here, we report that CP26, a small molecule inhibitor of protein dislocation from the ER lumen to the cytosol, which is an essential step for ERAD, has broad-spectrum anti-flavivirus activity. CP26 targets the Hrd1 complex, inhibits ERAD, and induces ER stress. Ricin and cholera toxins are known to hijack the protein dislocation machinery to reach the cytosol, where they exert their cytotoxic effects. CP26 selectively inhibits the activity of cholera toxin but not that of ricin. CP26 exhibits a significant inhibitory activity against both DENV and ZIKV, providing substantial protection to the host cells against virus-induced cell death. This study identified a novel dislocation inhibitor, CP26, that shows potent anti-DENV and anti-ZIKV activity in cells. Furthermore, this study provides the first example of the targeting of host ER dislocation with small molecules to combat flavivirus infection.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Dengue/tratamento farmacológico , Vírus da Dengue/fisiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Células HeLa , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Células Vero , Zika virus/fisiologia , Infecção por Zika virus/tratamento farmacológico
14.
Antiviral Res ; 171: 104590, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31421166

RESUMO

Two major flaviviruses, dengue virus (DENV) and Zika virus (ZIKV), cause severe health and economic burdens worldwide. Recently, genome-wide screenings have uncovered the importance of regulators of the Hrd1 ubiquitin ligase-mediated endoplasmic reticulum (ER)-associated degradation (ERAD) pathway for flavivirus replication in host cells. Here we report the identification of the compound Bardoxolone methyl (CDDO-me) as a potent inhibitor of the Hrd1 ubiquitin ligase-mediated ERAD, which possesses a broad-spectrum activity against both DENV and ZIKV. Cellular thermal shift assay (CETSA) suggested that CDDO-me binds to grp94, a key component of the Hrd1 pathway, at a low nanomolar concentration, whereas interaction was not detected with its paralog Hsp90. CDDO-me and the grp94 inhibitor PU-WS13 substantially suppressed DENV2 replication and the cytopathic effects caused by DENV and ZIKV infection. The antiviral activities of both compounds were demonstrated for all four DENV serotypes and four ZIKV strains in multiple human cell lines. This study defines grp94 as a crucial host factor for flavivirus replication and identified CDDO-me as a potent small molecule inhibitor of flavivirus infection. Inhibition of grp94 may contribute to the antiviral activity of CDDO-me. Further investigation of grp94 inhibitors may lead to a new class of broad-spectrum anti-flaviviral medications.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/virologia , Glicoproteínas de Membrana/antagonistas & inibidores , Ácido Oleanólico/análogos & derivados , Infecção por Zika virus/virologia , Zika virus/efeitos dos fármacos , Sobrevivência Celular , Dengue/tratamento farmacológico , Dengue/metabolismo , Humanos , Ácido Oleanólico/farmacologia , Replicação Viral/efeitos dos fármacos , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/metabolismo
15.
FEBS Lett ; 581(13): 2534-40, 2007 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-17499245

RESUMO

Virus-encoding nuclear transcriptional regulators play important roles in the viral life cycle. Most of these proteins exhibit intrinsic transcriptional activation or repression activity, and are involved in the regulation of the expression of virus genome itself or important cellular genes to facilitate viral replication and inhibit antiviral responses. Here, we report that the minor core protein P8 of Rice black-streaked dwarf virus, a dsRNA virus infecting host plants and insects, is targeted to the nucleus of insect and plant cells via its N-terminal 1-40 amino acids and possesses potent active transcriptional repression activity in Bright Yellow-2 tobacco suspension cells. Moreover, P8, like many transcriptional regulatory proteins, is capable of forming homo-dimers within insect cells and in vitro. All these data suggest that P8 is likely to enter the nucleus of host cell and play an important role as a negative transcriptional regulator of host gene expression during the process of virus-host interaction.


Assuntos
Nicotiana/genética , Vírus de Plantas/metabolismo , Protoplastos/fisiologia , Transcrição Gênica , Proteínas do Core Viral/metabolismo , Animais , Dimerização , Regulação Viral da Expressão Gênica , Genes Reporter , Insetos/virologia , Vírus de Plantas/genética , Reação em Cadeia da Polimerase , Proteínas Recombinantes de Fusão/metabolismo , Mapeamento por Restrição , Nicotiana/virologia , Proteínas do Core Viral/química , Proteínas do Core Viral/genética
16.
Virus Res ; 127(1): 34-42, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17442443

RESUMO

The P10 protein encoded by S10 ORF of Rice black-streaked dwarf virus (RBSDV) was thought to be the component of outer shell of viral particle. In the present study, P10 has an ability for self-interaction as shown by a GAL4 transcription activator-based yeast two-hybrid assay system and further confirmed by in vitro far-Western blot analysis. The domain responsible for P10-P10 self-interaction was mapped to the first 230 amino acids at the N-terminal region of the protein. The oligomerization property of P10 was further investigated using chemical cross-linking with purified recombinant P10 proteins expressed in a baculovirus expression system and glutaraldehyde. Intact P10 recombinants existed predominantly as trimers in solution in the absence of other viral proteins and displayed the oligomeric nature common to all known second-layer protein units of the Reoviridae. A truncated P10 mutant encoding the first 230 N-terminal amino acids lost its ability to form trimers even though dimeric forms were detected during the cross-linking assay. Polyacrylamide gel electrophoresis under reducing or non-reducing conditions suggested that P10 subunits were oligomerized not through intermolecular disulfide bonds, but perhaps through some other type of association, such as hydrophobic or charge interactions.


Assuntos
Proteínas do Capsídeo/metabolismo , Oryza/virologia , Reoviridae/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Glutationa Transferase/metabolismo , Doenças das Plantas/virologia , Isoformas de Proteínas
17.
Nat Commun ; 8(1): 1472, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133892

RESUMO

Endoplasmic-reticulum-associated degradation (ERAD) is an important protein quality control system which maintains protein homeostasis. Constituents of the ERAD complex and its role in neurodegeneration are not yet fully understood. Here, using proteomic and FRET analyses, we demonstrate that the ER protein membralin is an ERAD component, which mediates degradation of ER luminal and membrane substrates. Interestingly, we identify nicastrin, a key component of the γ-secretase complex, as a membralin binding protein and membralin-associated ERAD substrate. We demonstrate a reduction of membralin mRNA and protein levels in Alzheimer's disease (AD) brain, the latter of which inversely correlates with nicastrin abundance. Furthermore, membralin deficiency enhances γ-secretase activity and neuronal degeneration. In a mouse AD model, downregulating membralin results in ß-amyloid pathology, neuronal death, and exacerbates synaptic/memory deficits. Our results identify membralin as an ERAD component and demonstrate a critical role for ERAD in AD pathogenesis.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Disfunção Cognitiva/patologia , Degradação Associada com o Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Memória/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/fisiologia , Linhagem Celular , Feminino , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Dobramento de Proteína , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
18.
Elife ; 62017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28463106

RESUMO

Over 170 different mutations in the gene encoding SOD1 all cause amyotrophic lateral sclerosis (ALS). Available studies have been primarily focused on the mechanisms underlying mutant SOD1 cytotoxicity. How cells defend against the cytotoxicity remains largely unknown. Here, we show that misfolding of ALS-linked SOD1 mutants and wild-type (wt) SOD1 exposes a normally buried nuclear export signal (NES)-like sequence. The nuclear export carrier protein CRM1 recognizes this NES-like sequence and exports misfolded SOD1 to the cytoplasm. Antibodies against the NES-like sequence recognize misfolded SOD1, but not native wt SOD1 both in vitro and in vivo. Disruption of the NES consensus sequence relocalizes mutant SOD1 to the nucleus, resulting in higher toxicity in cells, and severer impairments in locomotion, egg-laying, and survival in Caenorhabditis elegans. Our data suggest that SOD1 mutants are removed from the nucleus by CRM1 as a defense mechanism against proteotoxicity of misfolded SOD1 in the nucleus.


Assuntos
Transporte Ativo do Núcleo Celular , Carioferinas/metabolismo , Dobramento de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/toxicidade , Motivos de Aminoácidos , Animais , Caenorhabditis elegans , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/toxicidade , Ligação Proteica , Sinais Direcionadores de Proteínas , Superóxido Dismutase-1/química , Proteína Exportina 1
19.
Mol Cancer Ther ; 16(4): 717-728, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27903750

RESUMO

Although proteasome inhibitors such as bortezomib had significant therapeutic effects in multiple myeloma and mantel cell lymphoma, they exhibited minimal clinical activity as a monotherapy for solid tumors, including colorectal cancer. We found in this study that proteasome inhibition induced a remarkable nuclear exportation of ubiquitinated proteins. Inhibition of CRM1, the nuclear export carrier protein, hampered protein export and synergistically enhanced the cytotoxic action of bortezomib on colon cancer cells containing wild-type p53, which underwent G2-M cell-cycle block and apoptosis. Further analysis indicated that tumor suppressor p53 was one of the proteins exported from nuclei upon proteasome inhibition, and in the presence of CRM1 inhibitor KPT330, nuclear p53, and expression of its target genes were increased markedly. Moreover, knockdown of p53 significantly reduced the synergistic cytotoxic action of bortezomib and KPT330 on p53+/+ HCT116 cells. In mice, KPT330 markedly augmented the antitumor action of bortezomib against HCT116 xenografts as well as patient-derived xenografts that harbored functional p53. These results indicate that nuclear p53 is a major mediator in the synergistic antitumor effect of bortezomib and KPT330, and provides a rationale for the use of proteasome inhibitor together with nuclear export blocker in the treatment of colorectal cancer. It is conceivable that targeting nuclear exportation may serve as a novel strategy to overcome resistance and raise chemotherapeutic efficacy, especially for the drugs that activate the p53 system. Mol Cancer Ther; 16(4); 717-28. ©2016 AACR.


Assuntos
Antineoplásicos/administração & dosagem , Bortezomib/administração & dosagem , Núcleo Celular/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Inibidores de Proteassoma/administração & dosagem , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Sinergismo Farmacológico , Células HCT116 , Células HeLa , Humanos , Hidrazinas/administração & dosagem , Hidrazinas/farmacologia , Camundongos , Inibidores de Proteassoma/farmacologia , Triazóis/administração & dosagem , Triazóis/farmacologia , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nat Plants ; 2: 16094, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27322605

RESUMO

When membrane proteins and secretory proteins are misfolded or incompletely folded, they are retained in the endoplasmic reticulum (ER) for further folding or degradation. The HMG-COA reductase degradation 1 (HRD1) and degradation of alpha2 10 (DOA10) complexes are two major components involved in the ER-associated protein degradation (ERAD) system in eukaryotic organisms(1-4). However, the relationship between these two complexes is largely unknown, especially in higher eukaryotes. Here, we report that the plant ubiquitin-conjugating enzyme 32 (UBC32), an ER-bound E2 working in the DOA10 complex, is maintained at low levels under standard conditions by proteasome-dependent degradation mediated by the HRD1 complex, the other E3 complex involved in ERAD. Loss of this negative regulation under ER stress increases capacity for degradation of misfolded proteins retained in the ER. Consistently, UBE2J1, the homologue of UBC32 in mammals, was also identified to be targeted by HRD1 for degradation. Taken together, these results suggest that the regulation of UBC32 (or UBE2J1) by the HRD1 complex is conserved between plants and mammals.


Assuntos
Acil Coenzima A/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Degradação Associada com o Retículo Endoplasmático , Oxirredutases/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa