Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Pathol ; 194(6): 975-988, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423356

RESUMO

Radiation-induced enteritis, a significant concern in abdominal radiation therapy, is associated closely with gut microbiota dysbiosis. The mucus layer plays a pivotal role in preventing the translocation of commensal and pathogenic microbes. Although significant expression of REGγ in intestinal epithelial cells is well established, its role in modulating the mucus layer and gut microbiota remains unknown. The current study revealed notable changes in gut microorganisms and metabolites in irradiated mice lacking REGγ, as compared to wild-type mice. Concomitant with gut microbiota dysbiosis, REGγ deficiency facilitated the infiltration of neutrophils and macrophages, thereby exacerbating intestinal inflammation after irradiation. Furthermore, fluorescence in situ hybridization assays unveiled an augmented proximity of bacteria to intestinal epithelial cells in REGγ knockout mice after irradiation. Mechanistically, deficiency of REGγ led to diminished goblet cell populations and reduced expression of key goblet cell markers, Muc2 and Tff3, observed in both murine models, minigut organoid systems and human intestinal goblet cells, indicating the intrinsic role of REGγ within goblet cells. Interestingly, although administration of broad-spectrum antibiotics did not alter the goblet cell numbers or mucin 2 (MUC2) secretion, it effectively attenuated inflammation levels in the ileum of irradiated REGγ absent mice, bringing them down to the wild-type levels. Collectively, these findings highlight the contribution of REGγ in counteracting radiation-triggered microbial imbalances and cell-autonomous regulation of mucin secretion.


Assuntos
Enterite , Microbioma Gastrointestinal , Células Caliciformes , Homeostase , Camundongos Knockout , Animais , Enterite/microbiologia , Enterite/metabolismo , Enterite/patologia , Camundongos , Células Caliciformes/patologia , Células Caliciformes/metabolismo , Humanos , Proteínas Associadas a Pancreatite/metabolismo , Mucina-2/metabolismo , Disbiose/microbiologia , Disbiose/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Fator Trefoil-3/metabolismo , Camundongos Endogâmicos C57BL , Lesões por Radiação/metabolismo , Lesões por Radiação/microbiologia , Lesões por Radiação/patologia , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/microbiologia
2.
Neurochem Res ; 49(1): 184-198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702890

RESUMO

The inflammatory process mediated by nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain comprising 3 (NLRP3) inflammasome plays a predominant role in the neurological dysfunction following traumatic brain injury (TBI). SB332235, a highly selective antagonist of chemokine receptor 2 (CXCR2), has been demonstrated to exhibit anti-inflammatory properties and improve neurological outcomes in the central nervous system. We aimed to determine the neuroprotective effects of SB332235 in the acute phase after TBI in mice and to elucidate its underlying mechanisms. Male C57BL/6J animals were exposed to a controlled cortical impact, then received 4 doses of SB332235, with the first dose administered at 30 min after TBI, followed by additional doses at 6, 24, and 30 h. Neurological defects were assessed by the modified neurological severity score, while the motor function was evaluated using the beam balance and open field tests. Cognitive performance was evaluated using the novel object recognition test. Brain tissues were collected for pathological, Western blot, and immunohistochemical analyses. The results showed that SB332235 significantly ameliorated TBI-induced deficits, including motor and cognitive impairments. SB332235 administration suppressed expression of both CXCL1 and CXCR2 in TBI. Moreover, SB332235 substantially mitigated the augmented expression levels and activation of the NLRP3 inflammasome within the peri-contusional cortex induced by TBI. This was accompanied by the blocking of subsequent production of pro-inflammatory cytokines. Additionally, SB332235 hindered microglial activity induced by TBI. These findings confirmed the neuroprotective effects of SB332235 against TBI, and the involved mechanisms were in part due to the suppression of NLRP3 inflammasome activity. This study suggests that SB332235 may act as an anti-inflammatory agent to improve functional outcomes in brain injury when applied clinically.


Assuntos
Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Masculino , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/patologia
3.
Environ Res ; 244: 117930, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103771

RESUMO

Root-knot nematodes (RKNs) are distributed globally, including in agricultural fields contaminated by heavy metals (HM), and can cause serious crop damages. Having a method that could control RKNs in HM-contaminated soil while limit HM accumulation in crops could provide significant benefits to both farmers and consumers. In this study, we showed that the nematophagous fungus Purpureocillium lavendulum YMF1.683 exhibited a high nematocidal activity against the RKN Meloidogyne incognita and a high tolerance to CdCl2. Comparing to the P. lavendulum YMF1.838 which showed low tolerance to Cd2+, strain YMF1.683 effectively suppressed M. incognita infection and significantly reduced the Cd2+ uptake in tomato root and fruit in soils contaminated by 100 mg/kg Cd2+. Transcriptome analyses and validation of gene expression by RT-PCR revealed that the mechanisms contributed to high Cd-resistance in YMF1.683 mainly included activating autophagy pathway, increasing exosome secretion of Cd2+, and activating antioxidation systems. The exosomal secretory inhibitor GW4869 reduced the tolerance of YMF1.683 to Cd2+, which firstly demonstrated that fungal exosome was involved in HM tolerance. The up-regulation of glutathione synthesis pathway, increasing enzyme activities of both catalase and superoxide dismutase also played important roles in Cd2+ tolerance of YMF1.683. In Cd2+-contaminated soil, YMF1.683 limited Cd2+-uptake in tomato by up-regulating the genes of ABCC family in favor of HM sequestration in plant, and down-regulating the genes of ZIP, HMA, NRAMP, YSL families associated with HM absorption, transport, and uptake in plant. Our results demonstrated that YMF1.683 could be a promising bio-agent in eco-friendly management of M. incognita in Cd2+ contaminated soils.


Assuntos
Hypocreales , Metais Pesados , Tylenchoidea , Humanos , Animais , Cádmio/análise , Tylenchoidea/metabolismo , Tylenchoidea/microbiologia , Metais Pesados/análise , Hypocreales/metabolismo , Solo
4.
J Cell Physiol ; 234(12): 22400-22410, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31120582

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with low survival rate, so new therapies are urgently needed. Histone deacetylases (HDACs) play a critical role in tumorigenesis, and HDACs inhibition is a potential therapeutic target in ESSC. In our study, we evaluated the effect and molecular mechanism of MS-275 (an inhibitor of HDACs) on ESCC cells. We found that HDAC1 and HDAC2 were overexpressed in ESCC tissues and related with clinical pathological features of patients with ESCC. MS-275 markedly reduced HDAC1 and HDAC2 expression, whereas increased the level of AcH3 and AcH2B. MS-275 suppressed proliferation and clonogenicity of ESCC cells in a concentration-dependent manner. In addition, MS-275 induced apoptosis, arrested cell cycle, and inhibited migration, epithelial-mesenchymal transition, and sphere-forming ability of ESCC cells in vitro. Moreover, p-Akt1 and p-mTOR were downregulated by MS-275. Finally, MS-275 significantly inhibited tumor growth in vivo. Taken together, HDAC1 and HDAC2 are associated with the progression of ESCC, and MS-275 hinders the progression and stemness of ESCC cells by suppressing the PI3K/Akt/mTOR pathway. Our findings show that MS-275 inhibits ESCC cells growth in vitro and in vivo, which is a potential drug for the ESCC therapy.


Assuntos
Benzamidas/farmacologia , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Movimento Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Experimentais , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética
5.
Radiat Res ; 199(3): 252-262, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36701761

RESUMO

Radiation-induced intestinal injury is one the most common adverse events of radiotherapy, which can severely affect quality of life. There are currently no effective preventive and therapeutic options for this disorder. Quercetin is a natural flavonoid found in common food species, with the characteristics of antioxidative, anti-inflammatory, and anti-cancerous activity. However, the role of quercetin on radiation-induced intestinal injury and the underlying mechanism remains poorly understood. In this study, we found quercetin treatment can improve the survival rate of mice after a single-dose (10 Gy) abdominal irradiation. Quercetin-pretreated mice significantly reduced radiation-induced DNA damage and intestinal epithelium cell apoptosis. In addition, quercetin also improved the proliferation activity of intestinal stem cells and promoted intestine epithelium repair after irradiation. Further studies demonstrated that quercetin treatment curtailed radiation-induced reactive oxygen species generation via regulating Nrf2 signaling in intestinal epithelium cells. Furthermore, treatment with Nrf2 inhibitor, could reverse the above effects. Altogether, quercetin can ameliorate radiation-induced intestine injury via regulating Nrf2 signaling, scavenging free radicals, and promoting intestinal epithelium repair.


Assuntos
Antioxidantes , Lesões por Radiação , Camundongos , Animais , Antioxidantes/farmacologia , Quercetina/farmacologia , Quercetina/uso terapêutico , Fator 2 Relacionado a NF-E2/genética , Qualidade de Vida , Intestinos/efeitos da radiação , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/prevenção & controle , Mucosa Intestinal , Regeneração
6.
Redox Biol ; 53: 102325, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525026

RESUMO

Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) transplantation is a promising therapy for Alzheimer's disease (AD). However, hUC-MSCs cultured in vitro easily exhibit replicative senescence, which restricts their application. Although MG53 protein demonstrates multiple roles for a variety of cells and tissues repair, it remains unknown whether MG53 could rejuvenate senescent hUC-MSCs and enhance their efficacy in AD model. Here, we firstly presented that MG53 reinstated senescent hUC-MSCs via the activation of the Nrf2 signaling pathway by increasing cell proliferation and migration, ameliorating senescence and oxidative stress, and decreasing the release of senescence-associated secretory phenotype. In vivo studies showed that MG53 treatment improved the therapeutic effect of senescent hUC-MSCs in AD mice. Furthermore, MG53 combined with young hUC-MSCs transplantation alleviated cognitive deficit and depression-like behavior in AD mice, reduced Aß deposition and Tau phosphorylation, promoted neurogenesis, and inhibited glia cells activation and oxidative stress by activating the Nrf2 signaling. Moreover, these neuroprotective effects mediated by MG53 and hUC-MSCs were partly reversed by Brusatol, a specific inhibitor of Nrf2 signaling. Taken together, our study revealed that MG53 could rejuvenate senescent hUC-MSCs and facilitate their efficacy in AD mice at least partly through activating Nrf2 signaling pathway, which suggest that the combined therapy of MG53 and hUC-MSCs may be a novel and effective strategy for AD.


Assuntos
Doença de Alzheimer , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Animais , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Cordão Umbilical/metabolismo
7.
Acta Biomater ; 131: 185-197, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34217903

RESUMO

Stem cell therapy is promising for neural repair in devastating traumatic brain injury (TBI). However, the low survival and differentiation rates of transplanted stem cells are main obstacles to efficient stem cell therapy in TBI. Stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 are key factors that regulate the survival, recruitment, and differentiation of stem cells. Herein, we synthesized a sodium alginate (SA)/collagen type I (Col)/SDF-1 hydrogel and investigated whether the SA/Col/SDF-1 hydrogel loaded with bone marrow-derived mesenchymal stem cells (BMSCs) had therapeutic effects on a TBI model. Our results showed that the SA/Col/SDF-1 scaffold could stably release SDF-1 and provide biocompatible and biodegradable microenvironment for the survival, migration, and neuronal differentiation of BMSCs in vitro. In a rat model of TBI, the SA/Col/SDF-1 hydrogel loaded with BMSCs significantly ameliorated motor and cognition dysfunction and relieved anxiety and depressive-like behaviors. In addition, the BMSCs/SA/Col/SDF-1 scaffold reduced brain lesions and neuronal cell death and mitigated neuroinflammation. Further studies demonstrated that the BMSCs/SA/Col/SDF-1 hydrogel promoted the migration of BMSCs in the lesions and partly enhanced neurogenesis by activating the SDF-1/CXCR4-mediated FAK/PI3K/AKT pathway. Taken together, our results indicate that the SA/Col/SDF-1 scaffold loaded with BMSCs exerts neuroreparative effects in a TBI rat model, and thus, it may serve as an alternative neural regeneration scaffold for brain injury repair. STATEMENT OF SIGNIFICANCE: Hydrogel facilitates the biological behaviors of transplanted stem cells for tissue regeneration. In this study, we synthesized sodium alginate (SA)/collagen type I (Col)/ scaffold to simultaneously deliver stromal cell derived factor-1 (SDF-1) and bone marrow mesenchymal stem cells (BMSCs) in a rat model of traumatic brain injury (TBI). We found that the SA/Col/SDF-1 hydrogel could continuously release SDF-1 and was conducive to the survival, migration and neuronal differentiation of BMSCs in vitro. In addition, the SA/Col/SDF-1 hydrogel loaded with BMSCs significantly ameliorated neurological deficits, mitigated neuroinflammation, promoted the recruitment of BMSCs and enhanced neurogenesis in TBI partly by activating the SDF-1/CXCR4-mediated FAK/PI3K/AKT pathway. Our results may serve as an alternative neural regeneration strategy for brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Alicerces Teciduais , Alginatos/farmacologia , Animais , Lesões Encefálicas Traumáticas/terapia , Quimiocina CXCL12 , Colágeno , Ratos , Receptores CXCR4 , Recuperação de Função Fisiológica , Transdução de Sinais
8.
ACS Chem Neurosci ; 11(17): 2590-2601, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786312

RESUMO

The inflammatory microenvironment in a lesion is not conducive to the survival of stem cells. Improving the inflammatory microenvironment may be an alternative strategy to enhance the efficacy of stem cells. We evaluated the therapeutic effect and molecular mechanism of mitsugumin53 (MG53) on lipopolysaccharide (LPS)-induced damage in human umbilical cord mesenchymal stem cells (hUC-MSCs) and in C57/BL6 mice. MG53 significantly promoted the proliferation and migration of hUC-MSCs, protected hUC-MSCs against LPS-induced apoptosis and mitochondrial dysfunction, and reversed LPS-induced inflammatory cytokine release. Furthermore, MG53 combined with hUC-MSCs transplantation improved LPS-induced memory impairment and activated neurogenesis by promoting the migration of hUC-MSCs and enhancing ßIII-tubulin and doublecortin (DCX) expression. MG53 protein combined with hUC-MSCs improved the M1/M2 phenotype polarization of microglia accompanied by lower inducible nitric oxide synthase (iNOS) expression and higher arginase 1 (ARG1) expression. MG53 significantly suppressed the expression of tumor necrosis factor α (TNF-α), Toll-like receptor 4 (TLR4), nucleotide oligomerization domain-like receptor protein 3 (NLRP3), cleaved-caspase-1, and interleukin (IL)-1ß to alleviate LPS-induced neuroinflammation on hUC-MSCs and C57/BL6 mice. In conclusion, our results indicated that MG53 could protect hUC-MSCs against LPS-induced inflammatory damage and facilitate their efficacy in LPS-treated C57/BL6 mice partly by inhibiting the NLRP3/caspase-1/IL-1ß axis.


Assuntos
Transplante de Células-Tronco Mesenquimais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Encéfalo , Caspase 1 , Proteína Duplacortina , Proteínas de Membrana , Camundongos , Cordão Umbilical
10.
Artigo em Inglês | MEDLINE | ID: mdl-31260721

RESUMO

Neuroinflammation plays important roles in the pathogenesis and development of neurodegenerative disorders. Lipopolysaccharide (LPS) induces neuroinflammation and causes neurotoxicity, which results in cell damage or memory impairment in different cells and animals. In the present study, we investigated the neuroprotective effects of MG53, a member of the TRIM family proteins, against LPS-induced neuroinflammation and neurotoxicity in vitro and in vivo. MG53 significantly protected HT22 cells against LPS-induced cell apoptosis and cell cycle arrest by inhibiting TNF-α, IL-6 and IL-1ß expression. In addition, MG53 ameliorated LPS-induced memory impairment and neuronal cell death in mice. Interestingly, MG53 significantly promoted newborn cell survival, improved neurogenesis, and mitigated neuroinflammation evidenced by lower production of IL-1ß and IL-6, less activation of microglia in the hippocampus of LPS treated mice. Further studies demonstrated that MG53 significantly inhibited TLR4 expression and nuclear factor-κB (NF-κB) phosphorylation in LPS treated HT22 cells and mice. Taken together, our results suggested that MG53 attenuated LPS-induced neurotoxicity and neuroinflammation partly by inhibiting TLR4/NF-κB pathway in vitro and in vivo.


Assuntos
Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas com Motivo Tripartido/farmacologia , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo
11.
Front Cell Neurosci ; 12: 498, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30662396

RESUMO

Stem cell transplantation is a promising therapy for traumatic brain injury (TBI), but low efficiency of survival and differentiation of transplanted stem cells limits its clinical application. Histone deacetylase 1 (HDAC1) plays important roles in self-renewal of stem cells as well as the recovery of brain disorders. However, little is known about the effects of HDAC1 on the survival and efficacy of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in vivo. In this study, our results showed that HDAC1 silence promoted hUC-MSCs engraftment in the hippocampus and increased the neuroprotective effects of hUC-MSCs in TBI mouse model, which was accompanied by improved neurological function, enhanced neurogenesis, decreased neural apoptosis, and reduced oxidative stress in the hippocampus. Further mechanistic studies revealed that the expressions of phosphorylated PTEN (p-PTEN), phosphorylated Akt (p-Akt), and phosphorylated GSK-3ß (p-GSK-3ß) were upregulated. Intriguingly, the neuroprotective effects of hUC-MSCs with HDAC1 silence on behavioral performance of TBI mice was markedly attenuated by LY294002, an inhibitor of the PI3K/AKT pathway. Taken together, our findings suggest that hUC-MSCs transplantation with HDAC1 silence may provide a potential strategy for treating TBI in the future.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa