Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Carcinog ; 63(2): 224-237, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37861356

RESUMO

The majority of patients with advanced colorectal cancer have chemoresistance to oxaliplatin, and studies on oxaliplatin resistance are limited. Our research showed that RNA-binding motif single-stranded interacting protein 1 (RBMS1) caused ferroptosis resistance in tumor cells, leading to oxaliplatin resistance. We employed bioinformatics to evaluate publically accessible data sets and discovered that RBMS1 was significantly upregulated in oxaliplatin-resistant colorectal cancer cells, in tandem with ferroptosis suppression. In vivo and in vitro studies revealed that inhibiting RBMS1 expression caused ferroptosis in colorectal cancer cells, restoring tumor cell sensitivity to oxaliplatin. Mechanistically, this is due to RBMS1 inducing prion protein translation, resulting in ferroptosis resistance in tumor cells. Validation of clinical specimens revealed that RBMS1 is similarly linked to tumor development and a poor prognosis. Overall, RBMS1 is a potential therapeutic target with clinical translational potential, particularly for oxaliplatin chemoresistance in colorectal cancer.


Assuntos
Neoplasias Colorretais , Ferroptose , Humanos , Oxaliplatina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA , Proteínas Priônicas/metabolismo
2.
Cytotherapy ; 26(3): 299-310, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38159090

RESUMO

BACKGROUND AIMS: Chronic allograft vasculopathy (CAV) remains a predominant contributor to late allograft failure after organ transplantation. Several factors have already been shown to facilitate the progression of CAV, and there is still an urgent need for effective and specific therapeutic approaches to inhibit CAV. Human mesenchymal-like endometrial regenerative cells (ERCs) are free from the deficiencies of traditional invasive acquisition methods and possess many advantages. Nevertheless, the exact immunomodulation mechanism of ERCs remains to be elucidated. METHODS: C57BL/6 (B6) mouse recipients receiving BALB/c mouse donor abdominal aorta transplantation were treated with ERCs, negative control (NC)-ERCs and interleukin (IL)-37-/-ERCs (ERCs with IL-37 ablation), respectively. Pathologic lesions and inflammatory cell infiltration in the grafts, splenic immune cell populations, circulating donor-specific antibody levels and cytokine profiles were analyzed on postoperative day (POD) 40. The proliferative capacities of Th1, Th17 and Treg subpopulations were assessed in vitro. RESULTS: Allografts from untreated recipients developed typical pathology features of CAV, namely endothelial thickening, on POD 40. Compared with untreated and IL-37-/-ERC-treated groups, IL-37-secreting ERCs (ERCs and NC-ERCs) significantly reduced vascular stenosis, the intimal hyperplasia and collagen deposition. IL-37-secreting ERCs significantly inhibited the proliferation of CD4+T cells, reduced the proportions of Th1 and Th17 cells, but increased the proportion of Tregs in vitro. Furthermore, in vitro results also showed that IL-37-secreting ERCs significantly inhibited Th1 and Th17 cell responses, abolished B-cell activation, diminished donor-specific antibody production and increased Treg proportions. Notably, IL-37-secreting ERCs remarkably downregulated the levels of pro-inflammatory cytokines (interferon-γ, tumor necrosis factor-α, IL-1ß, IL-6 and IL-17A) and increased IL-10 levels in transplant recipients. CONCLUSIONS: The knockdown of IL-37 dramatically abrogates the therapeutic ability of ERCs for CAV. Thus, this study highlights that IL-37 is indispensable for ERC-mediated immunomodulation for CAV and improves the long-term allograft acceptance.


Assuntos
Transplante de Coração , Animais , Humanos , Camundongos , Aloenxertos , Imunoterapia , Interleucinas , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
3.
Nano Lett ; 23(24): 11866-11873, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38079362

RESUMO

The potential of memristive devices for applications in nonvolatile memory and neuromorphic computing has sparked considerable interest, particularly in exploring memristive effects in two-dimensional (2D) magnetic materials. However, the progress in developing nonvolatile, magnetic field-free memristive devices using 2D magnets has been limited. In this work, we report an electrostatic-gating-induced nonvolatile memristive effect in CrI3-based tunnel junctions. The few-layer CrI3-based tunnel junction manifests notable hysteresis in its tunneling resistance as a function of gate voltage. We further engineered a nonvolatile memristor using the CrI3 tunneling junction with low writing power and at zero magnetic field. We show that the hysteretic transport observed is not a result of trivial effects or inherent magnetic properties of CrI3. We propose a potential association between the memristive effect and the newly predicted ferroelectricity in CrI3 via gating-induced Jahn-Teller distortion. Our work illuminates the potential of 2D magnets in developing next-generation advanced computing technologies.

4.
Nano Lett ; 22(24): 9815-9822, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36315185

RESUMO

Tailoring magnetic orders in topological insulators is critical to the realization of topological quantum phenomena. An outstanding challenge is to find a material where atomic defects lead to tunable magnetic orders while maintaining a nontrivial topology. Here, by combining magnetization measurements, angle-resolved photoemission spectroscopy, and transmission electron microscopy, we reveal disorder-enabled, tunable magnetic ground states in MnBi6Te10. In the ferromagnetic phase, an energy gap of 15 meV is resolved at the Dirac point on the MnBi2Te4 termination. In contrast, antiferromagnetic MnBi6Te10 exhibits gapless topological surface states on all terminations. Transmission electron microscopy and magnetization measurements reveal substantial Mn vacancies and Mn migration in ferromagnetic MnBi6Te10. We provide a conceptual framework where a cooperative interplay of these defects drives a delicate change of overall magnetic ground state energies and leads to tunable magnetic topological orders. Our work provides a clear pathway for nanoscale defect-engineering toward the realization of topological quantum phases.

5.
Cytokine ; 150: 155760, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800851

RESUMO

Interleukin (IL)-37 is a novel defined cytokine that belongs to IL-1 family, which possesses potent anti-inflammatory and immunosuppressive properties. The IL-37 protein mainly exists in the cytoplasm of monocytes and is also expressed in epithelial cells and T cells. IL-37 is produced as a precursor which works in mature or immature isoforms without a classic signal peptide, and negatively regulates TLR agonist- mediated signaling pathway, proinflammatory cytokines, and IL-1R ligands. IL-37 has been found to be elevated and plays an anti-tumor role in various types of tumors, such as hepatocellular carcinoma, non-small cell lung cancer, and cervical cancer. The tumor microenvironment (TME) refers to the cellular environment where the tumor or cancer stem cells exist. At present, growing evidence shows that changes in TME can regulate metabolism, immunity, secretion, and function, so as to inhibit or promote the progression of the tumor. Therefore, a thorough understanding of the TME is essential for the occurrence and development of tumors. In this review, we will summarize the role of IL-37 in the microenvironment of different tumors, hoping to provide novel perspectives towards the mechanism, prevention, and treatment of tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Citocinas/metabolismo , Humanos , Interleucina-1 , Transdução de Sinais , Microambiente Tumoral
6.
Nano Lett ; 21(11): 4887-4893, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-33834787

RESUMO

In a topological semimetal with Dirac or Weyl points, the bulk-boundary correspondence principle predicts a gapless edge mode if the essential symmetry is still preserved at the surface. The detection of such topological surface state has been considered as the fingerprint prove for crystals with nontrivial topological bulk band. On the contrary, it has been proposed that even with symmetry broken at the surface, a new surface band can emerge in nonsymmorphic topological semimetals. The symmetry reduction at the surface lifts the bulk band degeneracies and produces an unusual "floating" surface band with trivial topology. Here, we first report quantum transport probing to ZrSiSe thin flakes and directly reveal transport signatures of this new surface state. Remarkably, though topologically trivial, such a surface band exhibits substantial two-dimensional Shubnikov-de Haas quantum oscillations with high mobility, which signifies a new protection mechanism and may open applications for quantum computing and spintronic devices.

7.
Cytotherapy ; 23(7): 617-626, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33593687

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells and immunosuppressive factor IL-37 can both suppress concanavalin A (Con A)-induced hepatitis in mice. Endometrial regenerative cells (ERCs), novel types of mesenchymal-like stromal cells, possess powerful immunomodulatory effects and are effective in treating various diseases. The aim of this study was to explore the effects of ERCs in suppressing Con A-induced hepatitis and determine whether IL-37 overexpression could enhance the therapeutic effect of ERCs in this process. METHODS: ERCs were extracted from the menstrual blood of healthy female volunteer donors. The IL-37 gene was transferred into ERCs, and the expression of IL-37 in cells was detected by western blot and enzyme-linked immunosorbent assay. Hepatitis was induced by Con A in C57BL/6 mice that were randomly divided into groups treated with phosphate-buffered saline, ERCs, IL-37 or ERCs transfected with the IL-37 gene (IL-37-ERCs). Cell tracking, liver function, histopathological and immunohistological changes, immune cell proportions and levels of cytokines were measured 24 h after Con A administration. RESULTS: Compared with ERC or IL-37 treatment, IL-37-ERCs further reduced levels of liver enzymes (alanine aminotransferase and aspartate aminotransferase) and improved histopathological changes in the liver. In addition, IL-37-ERC treatment further reduced the proportions of M1 macrophages and CD4+ T cells and increased the proportion of regulatory T cells. Moreover, IL-37-ERC treatment resulted in lower levels of IL-12 and interferon gamma, and higher level of transforming growth factor beta. CONCLUSIONS: The results of this study suggest that ERCs can effectively alleviate Con A-induced hepatitis. Furthermore, IL-37 overexpression can significantly enhance the therapeutic efficacy of ERCs by augmenting the immunomodulatory and anti-inflammatory properties of ERCs. This study may provide a promising strategy for treatment of T-cell-dependent hepatitis.


Assuntos
Endométrio , Hepatite , Animais , Feminino , Camundongos , Concanavalina A , Citocinas , Fígado , Camundongos Endogâmicos C57BL , Humanos
8.
Phys Chem Chem Phys ; 22(37): 21131-21138, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32959836

RESUMO

Understanding transport mechanisms of electrons and phonons, two major energy carriers in solids, are crucial for various engineering applications. It is widely believed that more free electrons in a material should correspond to a higher thermal conductivity; however, free electrons also scatter phonons to lower the lattice thermal conductivity. The net contribution of free electrons has been rarely studied because the effects of electron-phonon (e-ph) interactions on lattice thermal conductivity have not been well investigated. Here an experimental study of e-ph scattering in quasi-one-dimensional NbSe3 nanowires is reported, taking advantage of the spontaneous free carrier concentration change during charge density wave (CDW) phase transition. Contrary to the common wisdom that more free electrons would lead to a higher thermal conductivity, results show that during the depinning process of the condensed electrons, while the released electrons enhance the electronic thermal conductivity, the overall thermal conductivity decreases due to the escalated e-ph scattering. This study discloses how competing effects of free electrons result in unexpected trends and provides solid experimental data to dissect the contribution of e-ph scattering on lattice thermal conductivity. Lastly, an active thermal switch design is demonstrated based on tuning electron concentration through electric field.

9.
Nano Lett ; 18(7): 4214-4219, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29863369

RESUMO

As a 2D ferromagnetic semiconductor with magnetic ordering, atomically thin chromium tri-iodide is the latest addition to the family of two-dimensional (2D) materials. However, realistic exploration of CrI3-based devices and heterostructures is challenging due to its extreme instability under ambient conditions. Here, we present Raman characterization of CrI3 and demonstrate that the main degradation pathway of CrI3 is the photocatalytic substitution of iodine by water. While simple encapsulation by Al2O3, PMMA, and hexagonal BN (hBN) only leads to modest reduction in degradation rate, minimizing light exposure markedly improves stability, and CrI3 sheets sandwiched between hBN layers are air-stable for >10 days. By monitoring the transfer characteristics of the CrI3/graphene heterostructure over the course of degradation, we show that the aquachromium solution hole-dopes graphene.

10.
Phys Rev Lett ; 117(1): 016602, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419579

RESUMO

A Dirac nodal-line semimetal phase, which represents a new quantum state of topological materials, has been experimentally realized only in a few systems, including PbTaSe_{2}, PtSn_{4}, and ZrSiS. In this Letter, we report evidence of nodal-line fermions in ZrSiSe and ZrSiTe probed in de Haas-van Alphen quantum oscillations. Although ZrSiSe and ZrSiTe share a similar layered structure with ZrSiS, our studies show the Fermi surface (FS) enclosing a Dirac nodal line has a 2D character in ZrSiTe, in contrast with 3D-like FS in ZrSiSe and ZrSiS. Another important property revealed in our experiment is that the nodal-line fermion density in this family of materials (∼10^{20} cm^{-3}) is much higher than the Dirac fermion density of other topological materials with discrete nodes. In addition, we have demonstrated ZrSiSe and ZrSiTe single crystals can be thinned down to 2D atomic thin layers through microexfoliation, which offers the first platform to explore exotic properties of topological nodal-line fermions in low dimensions.

11.
Int Immunopharmacol ; 133: 112092, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626548

RESUMO

BACKGROUND: Endometrial regenerative cells (ERCs) have been proven to be an effective strategy for attenuating experimental colitis, but the complex in vivo microenvironment such as oxidative stress may largely limit and weaken ERC efficacy. Melatonin (MT) works as an anti-oxidative agent in a variety of preclinical diseases, and has been identified to promote mesenchymal stem cell-mediated therapeutic effects in different diseases. However, the ability of MT to enhance ERC-mediated effects in colitis is currently poorly understood. METHODS: Menstrual blood was collected from healthy female volunteers to obtain ERCs and identified. In vitro, H2O2-induced oxidative stress was introduced to test if MT could prevent ERCs from damage through detection of intracellular reactive oxidative species (ROS) and apoptosis assay. In vivo, dextran sodium sulfate (DSS)-induced acute colitis was treated by ERCs and MT-primed ERCs, therapeutic effects were assayed by the disease activity index (DAI), histological features, and macrophage and CD4+ T cell in the spleen and colon, and cytokine profiles in the sera and colon were also measured. RESULTS: In vitro, ERCs that underwent MT-precondition were found to possess more anti-oxidative potency in comparison to naïve ERCs, which were characterized by decreased apoptosis rate and intracellular ROS under H2O2 stimulation. In vivo, MT pretreatment can significantly enhance the therapeutic effects of ERCs in the attenuation of experimental colitis, including decreased DAI index and damage score. In addition, MT pretreatment was found to promote ERC-mediated inhibition of Th1, Th17, and M1 macrophage and pro-inflammatory cytokines, increase of Treg, and immunomodulation of cytokines in the spleen and colon. CONCLUSIONS: MT pretreatment facilitates the promotion of cell viability under oxidative stress in vitro, while also enhancing ERC-mediated therapeutic effects in experimental colitis.


Assuntos
Colite , Sulfato de Dextrana , Endométrio , Melatonina , Estresse Oxidativo , Melatonina/uso terapêutico , Melatonina/farmacologia , Animais , Feminino , Colite/induzido quimicamente , Colite/terapia , Colite/tratamento farmacológico , Humanos , Endométrio/patologia , Endométrio/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Peróxido de Hidrogênio/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos , Células Cultivadas , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Colo/patologia , Colo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Adulto , Regeneração/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos
12.
Heliyon ; 10(8): e29448, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655317

RESUMO

Background and aim: Solid organ transplantation remains a life-saving therapeutic option for patients with end-stage organ dysfunction. Acute cellular rejection (ACR), dominated by dendritic cells (DCs) and CD4+ T cells, is a major cause of post-transplant mortality. Inhibiting DC maturation and directing the differentiation of CD4+ T cells toward immunosuppression are keys to inhibiting ACR. We propose that oxymatrine (OMT), a quinolizidine alkaloid, either alone or in combination with rapamycin (RAPA), attenuates ACR by inhibiting the mTOR-HIF-1α pathway. Methods: Graft damage was assessed using haematoxylin and eosin staining. Intragraft CD11c+ and CD4+ cell infiltrations were detected using immunohistochemical staining. The proportions of mature DCs, T helper (Th) 1, Th17, and Treg cells in the spleen; donor-specific antibody (DSA) secretion in the serum; mTOR-HIF-1α expression in the grafts; and CD4+ cells and bone marrow-derived DCs (BMDCs) were evaluated using flow cytometry. Results: OMT, either alone or in combination with RAPA, significantly alleviated pathological damage; decreased CD4+ and CD11c+ cell infiltration in cardiac allografts; reduced the proportion of mature DCs, Th1 and Th17 cells; increased the proportion of Tregs in recipient spleens; downregulated DSA production; and inhibited mTOR and HIF-1α expression in the grafts. OMT suppresses mTOR and HIF-1α expression in BMDCs and CD4+ T cells in vitro. Conclusions: Our study suggests that OMT-based therapy can significantly attenuate acute cardiac allograft rejection by inhibiting DC maturation and CD4+ T cell responses. This process may be related to the inhibition of the mTOR-HIF-1α signaling pathway by OMT.

13.
Nat Commun ; 15(1): 3630, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693113

RESUMO

Effective control of magnetic phases in two-dimensional magnets would constitute crucial progress in spintronics, holding great potential for future computing technologies. Here, we report a new approach of leveraging tunneling current as a tool for controlling spin states in CrI3. We reveal that a tunneling current can deterministically switch between spin-parallel and spin-antiparallel states in few-layer CrI3, depending on the polarity and amplitude of the current. We propose a mechanism involving nonequilibrium spin accumulation in the graphene electrodes in contact with the CrI3 layers. We further demonstrate tunneling current-tunable stochastic switching between multiple spin states of the CrI3 tunnel devices, which goes beyond conventional bi-stable stochastic magnetic tunnel junctions and has not been documented in two-dimensional magnets. Our findings not only address the existing knowledge gap concerning the influence of tunneling currents in controlling the magnetism in two-dimensional magnets, but also unlock possibilities for energy-efficient probabilistic and neuromorphic computing.

14.
Stem Cell Res Ther ; 14(1): 277, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775797

RESUMO

BACKGROUND: As a kind of mesenchymal-like stromal cells, endometrial regenerative cells (ERCs) have been demonstrated effective in the treatment of Concanavalin A (Con A)-induced hepatitis. However, the therapeutic mechanism of ERCs is not fully understood. Ecto-5`-nucleotidase (CD73), an enzyme that could convert immune-stimulative adenosine monophosphate (AMP) to immune-suppressive adenosine (ADO), was identified highly expressed on ERCs. The present study was conducted to investigate whether the expression of CD73 on ERCs is critical for its therapeutic effects in Con A-induced hepatitis. METHODS: ERCs knocking out CD73 were generated with lentivirus-mediated CRISPR-Cas9 technology and identified by flow cytometry, western blot and AMPase activity assay. CD73-mediated immunomodulatory effects of ERCs were investigated by CD4+ T cell co-culture assay in vitro. Besides, Con A-induced hepatitis mice were randomly assigned to the phosphate-buffered saline treated (untreated), ERC-treated, negative lentiviral control ERC (NC-ERC)-treated, and CD73-knockout-ERC (CD73-KO-ERC)-treated groups, and used to assess the CD73-mediated therapeutic efficiency of ERCs. Hepatic histopathological analysis, serum transaminase concentrations, and the proportion of CD4+ T cell subsets in the liver and spleen were performed to assess the progression degree of hepatitis. RESULTS: Expression of CD73 on ERCs could effectively metabolize AMP to ADO, thereby inhibiting the activation and function of conventional CD4+ T cells was identified in vitro. In addition, ERCs could markedly reduce levels of serum and liver transaminase and attenuate liver damage, while the deletion of CD73 on ERCs dampens these effects. Furthermore, ERC-based treatment achieved less infiltration of CD4+ T and Th1 cells in the liver and reduced the population of systemic Th1 and Th17 cells and the levels of pro-inflammatory cytokines such as IFN-γ and TNF-α, while promoting the generation of Tregs in the liver and spleen, while deletion of CD73 on ERCs significantly impaired their immunomodulatory effects locally and systemically. CONCLUSION: Taken together, it is concluded that CD73 is critical for the therapeutic efficiency of ERCs in the treatment of Con A-induced hepatitis.


Assuntos
Hepatite , Camundongos , Animais , Concanavalina A , Células Th1 , Transaminases , Monofosfato de Adenosina , Camundongos Endogâmicos C57BL
15.
Front Immunol ; 14: 1155090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180168

RESUMO

Background: The disruption of intestinal barrier functions and the dysregulation of mucosal immune responses, mediated by aberrant purinergic metabolism, are involved in the pathogenesis of inflammatory bowel diseases (IBD). A novel mesenchymal-like endometrial regenerative cells (ERCs) has demonstrated a significant therapeutic effect on colitis. As a phenotypic marker of ERCs, CD73 has been largely neglected for its immunosuppressive function in regulating purinergic metabolism. Here, we have investigated whether CD73 expression on ERCs is a potential molecular exerting its therapeutic effect against colitis. Methods: ERCs either unmodified or with CD73 knockout (CD73-/-ERCs), were intraperitoneally administered to dextran sulfate sodium (DSS)-induced colitis mice. Histopathological analysis, colon barrier function, the proportion of T cells, and maturation of dendritic cells (DCs) were investigated. The immunomodulatory effect of CD73-expressing ERCs was evaluated by co-culture with bone marrow-derived DCs under LPS stimulation. FACS determined DCs maturation. The function of DCs was detected by ELISA and CD4+ cell proliferation assays. Furthermore, the role of the STAT3 pathway in CD73-expressing ERCs-induced DC inhibition was also elucidated. Results: Compared with untreated and CD73-/-ERCs-treated groups, CD73-expressing ERCs effectively attenuated body weight loss, bloody stool, shortening of colon length, and pathological damage characterized by epithelial hyperplasia, goblet cell depletion, the focal loss of crypts and ulceration, and the infiltration of inflammatory cells. Knockout of CD73 impaired ERCs-mediated colon protection. Surprisingly, CD73-expressing ERCs significantly decreased the populations of Th1 and Th17 cells but increased the proportions of Tregs in mouse mesenteric lymph nodes. Furthermore, CD73-expressing ERCs markedly reduced the levels of pro-inflammatory cytokines (IL-6, IL-1ß, TNF-α) and increased anti-inflammatory factors (IL-10) levels in the colon. CD73-expressing ERCs inhibited the antigen presentation and stimulatory function of DCs associated with the STAT-3 pathway, which exerted a potent therapeutic effect against colitis. Conclusions: The knockout of CD73 dramatically abrogates the therapeutic ability of ERCs for intestinal barrier dysfunctions and the dysregulation of mucosal immune responses. This study highlights the significance of CD73 mediates purinergic metabolism contributing to the therapeutic effects of human ERCs against colitis in mice.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Camundongos Knockout , Colite/induzido quimicamente , Colite/terapia , Intestinos/patologia
16.
Stem Cells Int ; 2022: 7842296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126527

RESUMO

BACKGROUND: Traditional interventions can play a certain role in attenuating ulcerative colitis (UC), known as one type of inflammatory bowel diseases, but sometimes are not effective. Endometrial regenerative cells (ERCs) have been shown to exert immunosuppressive effects in different models of inflammation, and stem cell-derived conditioned media (CM) have advantages over cell therapy in terms of easy access and direct action. However, whether ERC-CM could alleviate colitis remains unclear and will be explored in this study. METHODS: Menstrual blood was collected from healthy female volunteers to obtain ERCs and ERC-CM. Acute colitis was induced by 3% dextran sodium sulfate (DSS), and ERC-CM was injected on days 4, 6, and 8, respectively, after induction. The disease activity index was calculated through the record of weight change, bleeding, and fecal viscosity during the treatment process. Histological features, macrophage and CD4+ T cell in the spleen and colon, and cytokine profiles in the sera and colon were measured. In addition, an in vitro lymphocyte proliferation assay was measured by using a CCK-8 kit in this study. RESULTS: ERC-CM treatment significantly improved the symptoms and histological changes in colitis mice. ERC-CM increased the percentage of Tregs in the spleen and colon but decreased the percentages of M1 macrophages and Th1 and Th17 cells in the spleen and decreased the population of Th17 cells in the colon. In addition, ERC-CM treatment decreased the local expression of TNF-α, IL-6, and iNOS in the colon. Furthermore, ERC-CM increased the levels of anti-inflammatory cytokines IL-10 and IL-27 but decreased proinflammatory cytokines IL-6 and IL-17 in the sera. In addition, ERC-CM significantly inhibited ConA-induced mouse lymphocyte proliferation in vitro. CONCLUSION: The results suggest that ERC-CM can exert similar therapeutic effects as ERCs and could be explored for future application of cell-free therapy in the treatment of colitis.

17.
Front Immunol ; 13: 859972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663940

RESUMO

Background: Mesenchymal stem cells (MSCs) have important research value and broad application prospects in liver diseases. This study aims to comprehensively review the cooperation and influence of countries, institutions, authors, and journals in the field of MSCs in liver diseases from the perspective of bibliometrics, evaluate the clustering evolution of knowledge structure, and discover hot trends and emerging topics. Methods: The articles and reviews related to MSCs in liver diseases were retrieved from the Web of Science Core Collection using Topic Search. A bibliometric study was performed using CiteSpace and VOSviewer. Results: A total of 3404 articles and reviews were included over the period 2001-2021. The number of articles regarding MSCs in liver diseases showed an increasing trend. These publications mainly come from 3251 institutions in 113 countries led by China and the USA. Li L published the most papers among the publications, while Pittenger MF had the most co-citations. Analysis of the most productive journals shows that most are specialized in medical research, experimental medicine and cell biology, and cell & tissue engineering. The macroscopical sketch and micro-representation of the whole knowledge field are realized through co-citation analysis. Liver scaffold, MSC therapy, extracellular vesicle, and others are current and developing areas of the study. The keywords "machine perfusion", "liver transplantation", and "microRNAs" also may be the focus of new trends and future research. Conclusions: In this study, bibliometrics and visual methods were used to review the research of MSCs in liver diseases comprehensively. This paper will help scholars better understand the dynamic evolution of the application of MSCs in liver diseases and point out the direction for future research.


Assuntos
Pesquisa Biomédica , Hepatopatias , Células-Tronco Mesenquimais , Bibliometria , Humanos , Hepatopatias/terapia , Publicações
18.
Int J Gen Med ; 15: 3525-3540, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386863

RESUMO

Background: The prognostic value of m6A-related genes in hepatocellular carcinoma (HCC) and its correlation with the immune microenvironment still requires further investigation. Methods: Consensus clustering by m6A related genes was used to classify 374 patients with HCC from The Cancer Genome Atlas (TCGA) database. Then we performed the least absolute shrinkage and selection operator (LASSO) to construct the m6A related genes model. The International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) datasets were used to verify and evaluate the model. ESTIMATE, CIBERSORTx, the expression levels of immune checkpoint genes, and TIDE were used to investigate the tumor microenvironment (TME) and the response to immunotherapy. Gene set enrichment analyses (GSEA), tumor-associated macrophages (TAMs), and gene-drug sensitivity were also analyzed. Results: By expression value and regression coefficient of five m6A related genes, we constructed the risk score of each patient. The patients with a higher risk score had a considerably poorer prognosis in the primary and validated cohort. For further discussing TME and the response to immunotherapy, we divided the entire set into two groups based on the risk score. Our findings implied that the tumor-infiltrating lymphocytes (TILs) were proportional to the risk scores, which seemed to contradict that patients with higher scores had a poor prognosis. Further, we found that the high-risk group had higher expression of PD-L1, CTLA-4, and PDCD1, indicating immune dysfunction, which may be a fundamental reason for poor prognosis. This was further reinforced by the fact that the low-risk group responded better than the high-risk group to monotherapy and combination therapy. Conclusion: The m6A related risk score is a new independent prognostic factor that correlates with immunotherapy response. It can provide a new therapeutic strategy for improving individual immunotherapy in HCC.

19.
Nat Commun ; 13(1): 7348, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522317

RESUMO

Van der Waals (vdW) magnet heterostructures have emerged as new platforms to explore exotic magnetic orders and quantum phenomena. Here, we study heterostructures of layered antiferromagnets, CrI3 and CrCl3, with perpendicular and in-plane magnetic anisotropy, respectively. Using magneto-optical Kerr effect microscopy, we demonstrate out-of-plane magnetic order in the CrCl3 layer proximal to CrI3, with ferromagnetic interfacial coupling between the two. Such an interlayer exchange field leads to higher critical temperature than that of either CrI3 or CrCl3 alone. We further demonstrate significant electric-field control of the coercivity, attributed to the naturally broken structural inversion symmetry of the heterostructure allowing unprecedented direct coupling between electric field and interfacial magnetism. These findings illustrate the opportunity to explore exotic magnetic phases and engineer spintronic devices in vdW heterostructures.

20.
Front Immunol ; 13: 931783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935954

RESUMO

Background: IL-37 is a recently identified cytokine with potent immunosuppressive functions. The research fronts of IL-37 are worth investigating, and there is no bibliometric analysis in this field. The purpose of this study is to construct the intellectual base and predict research hotspots of IL-37 research both quantitatively and qualitatively according to bibliometric analysis. Methods: The articles were downloaded from the Web of Science Core Collection (WoSCC) database from the inception of the database to 1 April 2022. CiteSpace 5.8.R3 (64-bit, Drexel University, Philadelphia, PA, USA) and Online Analysis Platform of Literature Metrology (https://bibliometric.com/) were used to perform bibliometric and knowledge-map analyses. Results: A total of 534 papers were included in 200 academic journals by 2,783 authors in 279 institutions from 50 countries/regions. The journal Cytokine published the most papers on IL-37, while Nature Immunology was the most co-cited journal. The publications belonged mainly to two categories of Immunology and Cell Biology. USA and China were the most productive countries. Meanwhile, the University of Colorado Denver in USA produced the highest number of publications followed by Radboud University Nijmegen in the Netherlands and Monash University in Australia. Charles A. Dinarello published the most papers, while Marcel F. Nold had the most co-citations. Top 10 co-citations on reviews, mechanisms, and diseases were regarded as the knowledge base. The keyword co-occurrence and co-citations of references revealed that the mechanisms and immune-related disorders were the main aspects of IL-37 research. Notably, the involvement of IL-37 in various disorders and the additional immunomodulatory mechanisms were two emerging hotspots in IL-37 research. Conclusions: The research on IL-37 was thoroughly reviewed using bibliometrics and knowledge-map analyses. The present study is a benefit for academics to master the dynamic evolution of IL-37 and point out the direction for future research.


Assuntos
Bibliometria , Internet , Citocinas , Previsões , Humanos , Países Baixos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa