RESUMO
We report a different mechanism for rotation sensing by analyzing the polarization of light exiting from a Sagnac loop. Unlike in an interferometric fiber optic gyroscope (I-FOG), here the counter-propagating waves in the Sagnac loop are orthogonally polarized at the loop exit and, consequently, cannot directly interfere with each other when recombined at the exit. We show that the Stokes parameters s2 and s3 of the combined waves are simply the cosine and sine functions of the phase difference between the counter propagation waves, which is linearly proportional to the rotation rate, allowing precise determination of the rotation rate by polarization analysis. We build such a proof-of-concept polarimetry FOG and achieved key performance parameters comparable to those of a high-end tactical-grade gyroscope. In particular, the device shows a bias instability of 0.09°/h and an angular random walk of 0.0015°/h, with an unlimited dynamic range, demonstrating its potential use for rotation sensing. This new approach eliminates the need for phase modulation required in I-FOGs, and promotes easy photonics integration, enabling the development of low-cost FOGs for price-sensitive applications, such as autonomous and robotic vehicles.
RESUMO
Herein, we achieved the asymmetric synthesis of (+)-vellosimine in 13 steps (longest linear sequences, LLS). This synthesis featured a sequential nucleophilic addition/cyclization process, which provided an efficient protocol for synthesizing a range of indole fused azabicyclo[3.3.1]nonane. Additionally, a SmI2-mediated reductive cyclization of ketone with an attached α,ß-unsaturated ester for constructing the strained quinuclidine moiety was also highlighted.
RESUMO
We disclose herein a Au(I)-catalyzed domino cyclization of 1,6-diynes incorporated with indole. This protocol enabled the diastereoselective buildup of indole-fused azabicyclo[3.3.1]nonanes from linear precursors. Density functional theory calculations showed that the reaction proceeded via an unprecedented cascade dearomatization/rearomatization/dearomatization process. Independent gradient model analysis revealed that a noncovalent attractive interaction between the distal alkyne and the Au/proximal complex was responsible for the chemoselectivity of the first spirocyclization step.
RESUMO
The release of selenium (Se) and chromium (Cr) into the environment from anthropogenic activities has posed a hazard to aquatic ecosystems. In this study, we used Chlorella vulgaris for Se/Cr bioremediation and evaluated their mutual effects on the removal efficiency. Our results found C. vulgaris highly effective in removing selenite-Se(IV) (49.5 ± 1.9%), selenate-Se(VI) (93.0 ± 0.5%), chromic nitrate-Cr(III) (89.0 ± 3.2%) and dichromate-Cr(VI) (88.1 ± 1.3%) over a 72 h period. Cr(VI) significantly impeded Se removal, particularly for selenate, due to competition between both for algal uptake, whereas Cr(III) obviously enhanced Se removal, increasing Se volatilization by ~29%. Similarly, Se significantly increase Cr removal rates, with a maximum of 94.6 ± 0.2% for the algal co-exposed to Se(IV) and Cr(III). To reduce residual pollutants in the alga, we applied combustion as a post-treatment to burn off >99% of the biomass Se for all Se treatments, whereas most of the biomass Cr (54.7-81.6%) remained in the ash at significantly higher levels (~7430 µg Cr/g DW). For toxicity, our speciation analysis found organo-Se (SeCys and SeMet) dominant in the alga exposed to Se, particularly selenite. No Cr(VI) but Cr(III) forms were detected in all Cr-exposed alga. Elemental Se disappeared from all Se-exposed alga in the presence of Cr(VI), while Se resulted in the emergence of Cr-acetate in all Cr(III)-treated alga. After combustion, mineral Se, particularly elemental Se dominated most of the ash; likewise, elemental Cr, along with Cr2O3, was found in all the ash. Overall, our research would contribute to developing a low ecotoxic algal treatment system for Se/Cr contaminated water.