Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5142, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446706

RESUMO

Congenital heart defects constitute the most common human birth defect, however understanding of how these disorders originate is limited by our ability to model the human heart accurately in vitro. Here we report a method to generate developmentally relevant human heart organoids by self-assembly using human pluripotent stem cells. Our procedure is fully defined, efficient, reproducible, and compatible with high-content approaches. Organoids are generated through a three-step Wnt signaling modulation strategy using chemical inhibitors and growth factors. Heart organoids are comparable to age-matched human fetal cardiac tissues at the transcriptomic, structural, and cellular level. They develop sophisticated internal chambers with well-organized multi-lineage cardiac cell types, recapitulate heart field formation and atrioventricular specification, develop a complex vasculature, and exhibit robust functional activity. We also show that our organoid platform can recreate complex metabolic disorders associated with congenital heart defects, as demonstrated by an in vitro model of pregestational diabetes-induced congenital heart defects.


Assuntos
Cardiopatias Congênitas/embriologia , Coração/embriologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Feminino , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Humanos , Masculino , Organoides/embriologia , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Via de Sinalização Wnt
2.
Tissue Eng Part C Methods ; 25(6): 334-343, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31007132

RESUMO

IMPACT STATEMENT: This article describes a method for the biofabrication of skin tissue equivalents in a multiwell plate format. The technique and results overcome shortcomings of previously published engineering methods, and show good architecture and barrier function from well to well; thus it may be used for compound functional testing and for the development of disease tissue models for screening.


Assuntos
Bioimpressão , Impressão Tridimensional , Pele Artificial , Alicerces Teciduais/química , Sobrevivência Celular/efeitos dos fármacos , Condutividade Elétrica , Epiderme/metabolismo , Humanos , Hidrogéis/farmacologia , Imageamento Tridimensional , Laminina/metabolismo , Glicoproteínas de Membrana/metabolismo , Reprodutibilidade dos Testes , Sobrevivência de Tecidos/efeitos dos fármacos
3.
J Vis Exp ; (144)2019 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-30799861

RESUMO

Tumor spheroids have been developed as a three-dimensional (3D) cell culture model in cancer research and anti-cancer drug discovery. However, currently, high-throughput imaging modalities utilizing bright field or fluorescence detection, are unable to resolve the overall 3D structure of the tumor spheroid due to limited light penetration, diffusion of fluorescent dyes and depth-resolvability. Recently, our lab demonstrated the use of optical coherence tomography (OCT), a label-free and non-destructive 3D imaging modality, to perform longitudinal characterization of multicellular tumor spheroids in a 96-well plate. OCT was capable of obtaining 3D morphological and physiological information of tumor spheroids growing up to about 600 µm in height. In this article, we demonstrate a high-throughput OCT (HT-OCT) imaging system that scans the whole multi-well plate and obtains 3D OCT data of tumor spheroids automatically. We describe the details of the HT-OCT system and construction guidelines in the protocol. From the 3D OCT data, one can visualize the overall structure of the spheroid with 3D rendered and orthogonal slices, characterize the longitudinal growth curve of the tumor spheroid based on the morphological information of size and volume, and monitor the growth of the dead-cell regions in the tumor spheroid based on optical intrinsic attenuation contrast. We show that HT-OCT can be used as a high-throughput imaging modality for drug screening as well as characterizing biofabricated samples.


Assuntos
Imageamento Tridimensional/métodos , Monitorização Fisiológica , Neoplasias/patologia , Esferoides Celulares/patologia , Tomografia de Coerência Óptica/métodos , Humanos , Células Tumorais Cultivadas
4.
Front Pharmacol ; 8: 182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28420995

RESUMO

RNA interfering (RNAi) using short interfering RNA (siRNA) is becoming a promising approach for cancer gene therapy. However, owing to the lack of safe and efficient carriers, the application of RNAi for clinical use is still very limited. In this study, we have developed cadmium sulphoselenide/Zinc sulfide quantum dots (CdSSe/ZnS QDs)-based nanocarriers for in vitro gene delivery. These CdSSe/ZnS QDs are functionalized with polyethyleneimine (PEI) to form stable nanoplex (QD-PEI) and subsequently they are used for siRNA loading which specially targets human telomerase reverse transcriptase (TERT). High gene transfection efficiency (>80%) was achieved on two glioblastoma cell lines, U87 and U251. The gene expression level (49.99 ± 10.23% for U87, 43.28 ± 9.66% for U251) and protein expression level (51.58 ± 7.88% for U87, 50.69 ± 7.59% for U251) of TERT is observed to decrease substantially after transfecting the tumor cells for 48 h. More importantly, the silencing of TERT gene expression significantly suppressed the proliferation of glioblastoma cells. No obvious cytotoxicity from these QD-PEI nanoplexes were observed over at 10 times of the transfected doses. Based on these results, we envision that QDs engineered here can be used as a safe and efficient gene nanocarrier for siRNA delivery and a promising tool for future cancer gene therapy applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa