Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
EMBO J ; 40(8): e105776, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33687089

RESUMO

In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large-scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre- to post-implantation epiblast in utero. We identified 496 naïve state-associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition.


Assuntos
Diferenciação Celular , Redes Reguladoras de Genes , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Transcriptoma
2.
Nature ; 544(7651): 503-507, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28424523

RESUMO

Mammalian genomes are spatially organized by CCCTC-binding factor (CTCF) and cohesin into chromatin loops and topologically associated domains, which have important roles in gene regulation and recombination. By binding to specific sequences, CTCF defines contact points for cohesin-mediated long-range chromosomal cis-interactions. Cohesin is also present at these sites, but has been proposed to be loaded onto DNA elsewhere and to extrude chromatin loops until it encounters CTCF bound to DNA. How cohesin is recruited to CTCF sites, according to this or other models, is unknown. Here we show that the distribution of cohesin in the mouse genome depends on transcription, CTCF and the cohesin release factor Wings apart-like (Wapl). In CTCF-depleted fibroblasts, cohesin cannot be properly recruited to CTCF sites but instead accumulates at transcription start sites of active genes, where the cohesin-loading complex is located. In the absence of both CTCF and Wapl, cohesin accumulates in up to 70 kilobase-long regions at 3'-ends of active genes, in particular if these converge on each other. Changing gene expression modulates the position of these 'cohesin islands'. These findings indicate that transcription can relocate mammalian cohesin over long distances on DNA, as previously reported for yeast cohesin, that this translocation contributes to positioning cohesin at CTCF sites, and that active genes can be freed from cohesin either by transcription-mediated translocation or by Wapl-mediated release.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Mamíferos/metabolismo , Genoma/genética , Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica/genética , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/deficiência , Proteoglicanas de Sulfatos de Condroitina/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/deficiência , Proteínas Cromossômicas não Histona/genética , Cromossomos de Mamíferos/genética , DNA/genética , DNA/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Masculino , Camundongos , Transporte Proteico , Proteínas/genética , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Sítio de Iniciação de Transcrição , Coesinas
3.
EMBO J ; 37(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29930102

RESUMO

Chromosome segregation depends on sister chromatid cohesion which is established by cohesin during DNA replication. Cohesive cohesin complexes become acetylated to prevent their precocious release by WAPL before cells have reached mitosis. To obtain insight into how DNA replication, cohesion establishment and cohesin acetylation are coordinated, we analysed the interaction partners of 55 human proteins implicated in these processes by mass spectrometry. This proteomic screen revealed that on chromatin the cohesin acetyltransferase ESCO2 associates with the MCM2-7 subcomplex of the replicative Cdc45-MCM-GINS helicase. The analysis of ESCO2 mutants defective in MCM binding indicates that these interactions are required for proper recruitment of ESCO2 to chromatin, cohesin acetylation during DNA replication, and centromeric cohesion. We propose that MCM binding enables ESCO2 to travel with replisomes to acetylate cohesive cohesin complexes in the vicinity of replication forks so that these complexes can be protected from precocious release by WAPL Our results also indicate that ESCO1 and ESCO2 have distinct functions in maintaining cohesion between chromosome arms and centromeres, respectively.


Assuntos
Acetiltransferases/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Acetilação , Proteínas de Ciclo Celular/metabolismo , Humanos , Mitose/genética , Coesinas
4.
EMBO J ; 33(22): 2643-58, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25257309

RESUMO

Although splicing is essential for the expression of most eukaryotic genes, inactivation of splicing factors causes specific defects in mitosis. The molecular cause of this defect is unknown. Here, we show that the spliceosome subunits SNW1 and PRPF8 are essential for sister chromatid cohesion in human cells. A transcriptome-wide analysis revealed that SNW1 or PRPF8 depletion affects the splicing of specific introns in a subset of pre-mRNAs, including pre-mRNAs encoding the cohesion protein sororin and the APC/C subunit APC2. SNW1 depletion causes cohesion defects predominantly by reducing sororin levels, which causes destabilisation of cohesin on DNA. SNW1 depletion also reduces APC/C activity and contributes to cohesion defects indirectly by delaying mitosis and causing "cohesion fatigue". Simultaneous expression of sororin and APC2 from intron-less cDNAs restores cohesion in SNW1-depleted cells. These results indicate that the spliceosome is required for mitosis because it enables expression of genes essential for cohesion. Our transcriptome-wide identification of retained introns in SNW1- and PRPF8-depleted cells may help to understand the aetiology of diseases associated with splicing defects, such as retinosa pigmentosum and cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas do Citoesqueleto/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas do Citoesqueleto/genética , Deleção de Genes , Células HeLa , Humanos , Coativadores de Receptor Nuclear/genética , Precursores de RNA/genética , Transcriptoma/fisiologia
5.
Am J Hum Genet ; 86(2): 262-6, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20137776

RESUMO

The iron-sulfur-containing DNA helicases XPD, FANCJ, DDX11, and RTEL represent a small subclass of superfamily 2 helicases. XPD and FANCJ have been connected to the genetic instability syndromes xeroderma pigmentosum and Fanconi anemia. Here, we report a human individual with biallelic mutations in DDX11. Defective DDX11 is associated with a unique cellular phenotype in which features of Fanconi anemia (drug-induced chromosomal breakage) and Roberts syndrome (sister chromatid cohesion defects) coexist. The DDX11-deficient patient represents another cohesinopathy, besides Cornelia de Lange syndrome and Roberts syndrome, and shows that DDX11 functions at the interface between DNA repair and sister chromatid cohesion.


Assuntos
Anormalidades Múltiplas/enzimologia , Anormalidades Múltiplas/genética , Quebra Cromossômica , RNA Helicases DEAD-box/genética , DNA Helicases/genética , Mutação/genética , Troca de Cromátide Irmã/genética , Xeroderma Pigmentoso/genética , Adolescente , Sequência de Bases , Pré-Escolar , RNA Helicases DEAD-box/deficiência , DNA Helicases/deficiência , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Dados de Sequência Molecular , Neoplasias/genética , Linhagem , Fenótipo , Polônia , Gravidez , Síndrome
6.
Life Sci Alliance ; 3(7)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32467316

RESUMO

The cohesin subunit STAG2 has emerged as a recurrently inactivated tumor suppressor in human cancers. Using candidate approaches, recent studies have revealed a synthetic lethal interaction between STAG2 and its paralog STAG1 To systematically probe genetic vulnerabilities in the absence of STAG2, we have performed genome-wide CRISPR screens in isogenic cell lines and identified STAG1 as the most prominent and selective dependency of STAG2-deficient cells. Using an inducible degron system, we show that chemical genetic degradation of STAG1 protein results in the loss of sister chromatid cohesion and rapid cell death in STAG2-deficient cells, while sparing STAG2-wild-type cells. Biochemical assays and X-ray crystallography identify STAG1 regions that interact with the RAD21 subunit of the cohesin complex. STAG1 mutations that abrogate this interaction selectively compromise the viability of STAG2-deficient cells. Our work highlights the degradation of STAG1 and inhibition of its interaction with RAD21 as promising therapeutic strategies. These findings lay the groundwork for the development of STAG1-directed small molecules to exploit synthetic lethality in STAG2-mutated tumors.


Assuntos
Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Neoplasias/genética , Proteínas Nucleares/genética , Mutações Sintéticas Letais , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Inativação Gênica , Marcação de Genes , Estudo de Associação Genômica Ampla , Humanos , Modelos Moleculares , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteólise , Relação Estrutura-Atividade , Coesinas
7.
Elife ; 92020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32065581

RESUMO

Eukaryotic genomes are folded into loops. It is thought that these are formed by cohesin complexes via extrusion, either until loop expansion is arrested by CTCF or until cohesin is removed from DNA by WAPL. Although WAPL limits cohesin's chromatin residence time to minutes, it has been reported that some loops exist for hours. How these loops can persist is unknown. We show that during G1-phase, mammalian cells contain acetylated cohesinSTAG1 which binds chromatin for hours, whereas cohesinSTAG2 binds chromatin for minutes. Our results indicate that CTCF and the acetyltransferase ESCO1 protect a subset of cohesinSTAG1 complexes from WAPL, thereby enable formation of long and presumably long-lived loops, and that ESCO1, like CTCF, contributes to boundary formation in chromatin looping. Our data are consistent with a model of nested loop extrusion, in which acetylated cohesinSTAG1 forms stable loops between CTCF sites, demarcating the boundaries of more transient cohesinSTAG2 extrusion activity.


Assuntos
Acetiltransferases/fisiologia , Fator de Ligação a CCCTC/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Acetilação , Proteínas de Transporte/genética , Simulação por Computador , Fase G1 , Genoma Humano , Humanos , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Coesinas
8.
Elife ; 82019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30910006

RESUMO

Targeted cancer therapy is based on exploiting selective dependencies of tumor cells. By leveraging recent functional screening data of cancer cell lines we identify Werner syndrome helicase (WRN) as a novel specific vulnerability of microsatellite instability-high (MSI-H) cancer cells. MSI, caused by defective mismatch repair (MMR), occurs frequently in colorectal, endometrial and gastric cancers. We demonstrate that WRN inactivation selectively impairs the viability of MSI-H but not microsatellite stable (MSS) colorectal and endometrial cancer cell lines. In MSI-H cells, WRN loss results in severe genome integrity defects. ATP-binding deficient variants of WRN fail to rescue the viability phenotype of WRN-depleted MSI-H cancer cells. Reconstitution and depletion studies indicate that WRN dependence is not attributable to acute loss of MMR gene function but might arise during sustained MMR-deficiency. Our study suggests that pharmacological inhibition of WRN helicase function represents an opportunity to develop a novel targeted therapy for MSI-H cancers.


Assuntos
Instabilidade de Microssatélites , Neoplasias/terapia , Helicase da Síndrome de Werner/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular , Reparo de Erro de Pareamento de DNA , Humanos , Modelos Teóricos , Helicase da Síndrome de Werner/genética
9.
Elife ; 62017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28691904

RESUMO

Recent genome analyses have identified recurrent mutations in the cohesin complex in a wide range of human cancers. Here we demonstrate that the most frequently mutated subunit of the cohesin complex, STAG2, displays a strong synthetic lethal interaction with its paralog STAG1. Mechanistically, STAG1 loss abrogates sister chromatid cohesion in STAG2 mutated but not in wild-type cells leading to mitotic catastrophe, defective cell division and apoptosis. STAG1 inactivation inhibits the proliferation of STAG2 mutated but not wild-type bladder cancer and Ewing sarcoma cell lines. Restoration of STAG2 expression in a mutated bladder cancer model alleviates the dependency on STAG1. Thus, STAG1 and STAG2 support sister chromatid cohesion to redundantly ensure cell survival. STAG1 represents a vulnerability of cancer cells carrying mutations in the major emerging tumor suppressor STAG2 across different cancer contexts. Exploiting synthetic lethal interactions to target recurrent cohesin mutations in cancer, e.g. by inhibiting STAG1, holds the promise for the development of selective therapeutics.


Assuntos
Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutações Sintéticas Letais , Proteínas de Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos
10.
Curr Biol ; 25(17): 2290-9, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26299517

RESUMO

A bipolar mitotic spindle facilitates the equal segregation of chromosomes to two daughter cells. To achieve bipolar attachment of microtubules to kinetochores of sister chromatids, chromatids must remain paired after replication. This cohesion is mediated by the conserved cohesin complex comprised of SMC1, SMC3, SCC1, and either SA1 or SA2 in humans. Because defects in spindle assembly or sister chromatid cohesion can lead to aneuploidy in daughter cells, proper regulation of these processes is essential for fidelity in chromosome segregation. In an RNAi screen for regulators of spindle assembly, we identify the deubiquitinase USP37 as a regulator of mitotic progression, centrosome integrity, and chromosome alignment. USP37 associates with cohesin and contributes to sister chromatid resolution. Cohesion defects are rescued by expression of an RNAi-resistant USP37, but not the catalytically impaired USP37(C350A) mutant. Further, USP37 associates with WAPL, a negative regulator of cohesion necessary for cohesin release in prophase, in a manner dependent on USP37's second and third ubiquitin-interacting motifs. Depletion of USP37 reduces the stability of chromatin-associated WAPL and increases the fraction of WAPL that is more heavily ubiquitylated in mitosis. Consistently, overexpression of USP37(C350A) results in increased modification of WAPL, and addition of purified USP37(WT), but not USP37(C350A), to WAPL immunoprecipitates results in a reduction of ubiquitylated products. Taken together, our results ascribe a novel function for USP37 in mitotic progression and further suggest that USP37 positively regulates the stability of chromatin-associated WAPL to facilitate sister chromatid resolution.


Assuntos
Cromátides/genética , Segregação de Cromossomos , Endopeptidases/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Endopeptidases/metabolismo , Células HeLa , Humanos , Interferência de RNA , Coesinas
11.
Cancer Res ; 75(17): 3543-53, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26122845

RESUMO

Failure to repair DNA damage or defective sister chromatid cohesion, a process essential for correct chromosome segregation, can be causative of chromosomal instability (CIN), which is a hallmark of many types of cancers. We investigated how frequent this occurs in head and neck squamous cell carcinoma (HNSCC) and whether specific mechanisms or genes could be linked to these phenotypes. The genomic instability syndrome Fanconi anemia is caused by mutations in any of at least 16 genes regulating DNA interstrand crosslink (ICL) repair. Since patients with Fanconi anemia have a high risk to develop HNSCC, we investigated whether and to which extent Fanconi anemia pathway inactivation underlies CIN in HNSCC of non-Fanconi anemia individuals. We observed ICL-induced chromosomal breakage in 9 of 17 (53%) HNSCC cell lines derived from patients without Fanconi anemia. In addition, defective sister chromatid cohesion was observed in five HNSCC cell lines. Inactivation of FANCM was responsible for chromosomal breakage in one cell line, whereas in two other cell lines, somatic mutations in PDS5A or STAG2 resulted in inadequate sister chromatid cohesion. In addition, FANCF methylation was found in one cell line by screening an additional panel of 39 HNSCC cell lines. Our data demonstrate that CIN in terms of ICL-induced chromosomal breakage and defective chromatid cohesion is frequently observed in HNSCC. Inactivation of known Fanconi anemia and chromatid cohesion genes does explain CIN in the minority of cases. These findings point to phenotypes that may be highly relevant in treatment response of HNSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Instabilidade Cromossômica/genética , Anemia de Fanconi/genética , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Cromátides/genética , Dano ao DNA/genética , Reparo do DNA/genética , Anemia de Fanconi/patologia , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Mutação , Estadiamento de Neoplasias , Troca de Cromátide Irmã , Carcinoma de Células Escamosas de Cabeça e Pescoço
12.
Anemia ; 2010: 565268, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21490908

RESUMO

Fanconi anemia (FA) is a recessively inherited disease characterized by multiple symptoms including growth retardation, skeletal abnormalities, and bone marrow failure. The FA diagnosis is complicated due to the fact that the clinical manifestations are both diverse and variable. A chromosomal breakage test using a DNA cross-linking agent, in which cells from an FA patient typically exhibit an extraordinarily sensitive response, has been considered the gold standard for the ultimate diagnosis of FA. In the majority of FA patients the test results are unambiguous, although in some cases the presence of hematopoietic mosaicism may complicate interpretation of the data. However, some diagnostic overlap with other syndromes has previously been noted in cases with Nijmegen breakage syndrome. Here we present results showing that misdiagnosis may also occur with patients suffering from two of the three currently known cohesinopathies, that is, Roberts syndrome (RBS) and Warsaw breakage syndrome (WABS). This complication may be avoided by scoring metaphase chromosomes-in addition to chromosomal breakage-for spontaneously occurring premature centromere division, which is characteristic for RBS and WABS, but not for FA.

13.
PLoS One ; 4(9): e6936, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19738907

RESUMO

Cohesion between sister chromatids is essential for faithful chromosome segregation. In budding yeast, the acetyltransferase Eco1/Ctf7 establishes cohesion during DNA replication in S phase and in response to DNA double strand breaks in G2/M phase. In humans two Eco1 orthologs exist: ESCO1 and ESCO2. Both proteins are required for proper sister chromatid cohesion, but their exact function is unclear at present. Since ESCO2 has been identified as the gene defective in the rare autosomal recessive cohesinopathy Roberts syndrome (RBS), cells from RBS patients can be used to elucidate the role of ESCO2. We investigated for the first time RBS cells in comparison to isogenic controls that stably express V5- or GFP-tagged ESCO2. We show that the sister chromatid cohesion defect in the transfected cell lines is rescued and suggest that ESCO2 is regulated by proteasomal degradation in a cell cycle-dependent manner. In comparison to the corrected cells RBS cells were hypersensitive to the DNA-damaging agents mitomycin C, camptothecin and etoposide, while no particular sensitivity to UV, ionizing radiation, hydroxyurea or aphidicolin was found. The cohesion defect of RBS cells and their hypersensitivity to DNA-damaging agents were not corrected by a patient-derived ESCO2 acetyltransferase mutant (W539G), indicating that the acetyltransferase activity of ESCO2 is essential for its function. In contrast to a previous study on cells from patients with Cornelia de Lange syndrome, another cohesinopathy, RBS cells failed to exhibit excessive chromosome aberrations after irradiation in G2 phase of the cell cycle. Our results point at an S phase-specific role for ESCO2 in the maintenance of genome stability.


Assuntos
Acetiltransferases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Fibroblastos/metabolismo , Transtornos do Crescimento/diagnóstico , Camptotecina/farmacologia , Proteínas de Ciclo Celular/metabolismo , Aberrações Cromossômicas , Segregação de Cromossomos , Anormalidades Congênitas/diagnóstico , Anormalidades Congênitas/genética , Dano ao DNA , Etoposídeo/farmacologia , Transtornos do Crescimento/genética , Humanos , Lactente , Masculino , Mitomicina/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Troca de Cromátide Irmã , Síndrome , Coesinas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa